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1. INTRODUCTION 

In a recent paper’ concerning inverse-source problems in radiative transfer, it was mentioned that 
inverse boundary-condition problems could be solved in a manner similar to the one used to solve 
the source problems. Here we report some computations to support that suggestion. 

We consider the equation of transfer2 for the radiation intensity I( T, p), written as 

P&T./J) + z(T, /J) = y ,$o/‘$8tP) (f, fi(/J’)z(T, Cc’) dp’ (1) 

where T E (0, TO) is the optical variable, /.J E [-I, 11 is the cosine of the polar angle (as measured 
from the positive T axis) used to describe the direction of propagation of the radiation and VJ is 
the albedo for single scattering. In addition, the /31 are the coefficients in a Legendre polynomial 
expansion of the scattering law. For direct problems in radiative transfer, we normally supplement 
Eq. (1) with boundary conditions of the form 

J 
1 I(O,P) = fi(l.4 + P_EZ(O,-c1) + 24 ItO, -d)d dd (24 
0 

and 

z(-ro, -/J) = fi(/4 + @(To, /J) + 3.4 J $o.P')P' dp’ (2b) 

for P E (0, 11. Here FlQ.4 and 4(p) are considered given, and pi and p$ for fl = 1 and 2, are 
coefficients for specular and diffuse reflection. 

For the inverse problem considered here, we suppose that the radiation density 

J 
I 

a(T) = z(T,P) du 
-I 

is known at certain positions {Ti) within the medium, and we then seek to determine what fun&ions 
fi (~1 and F~(P) for P E (0, 11 can induce such a radiation density.3 The motivation for this problem 
comes from the field of radiation therapy, where it is often a difficult task to predict the angular 
shape and strength of an exposing radiation beam incident on the surface of the body that will 
give rise to a desired internal dose. We note that the analysis of practical applications of radiation 
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therapy must, in general, be based on a more complex model than the one considered here. Of 
course, more complex mathematical models may require strictly numerical methods of solution or 
Monte Carlo methods, coupled with iterative procedures, and thus the simplified model considered 
here is to be understood as a first attempt to provide a more deterministic algorithm for the problem. 
Also, in order to allow for some possible radiative heat-transfer applications, we use in Eqs. (2) the 
coefficients pg and pi, for /I= 1 and 2, to include the effects of specular and diffuse reflection at the 
boundaries. 

2. FORMULATION 

To solve the considered inverse problem, we first formulate and solve the two sets of direct 
problems expressed, for k = 0, 1,2, . . . , K,, o( = 1 and 2, by the equation of transfer 

for T E (0, TO) and p E [-1, 11, and the boundary conditions 

Yka(O, PO = &,cJ&(P) + P;Y,a(O, -P) + 2P; 
I 

; Y;(O, -p’)Cr’dCc’ 

and 

Pa) 

y;(To, -P) = '-32,a~k(fl) +P;y;(To,P) +&$ y;(To,P')P' dp’ 

for p E (0, I]. Here we use {H&(p)] to denote a set of basis functions that we are free to specify. If 
we now solve these two sets of basic problems and determine, for k = 0, 1,2, . . , fl,, a = 1 and 2, 

J 
I 

B;(T) = _IYk"(T, Ld dy, (6) 

we can approximate the radiation density defined in Eq. (3) by 

Ki K2 

6(T)= xUk$(T) + 2 b&(T), 
k=O k=O 

where the constants {Uk] and {bk} are to be found simply by constraining 6(~) to match the desired 
radiation density (B(T) at Kt + K2 + 2 positions given by {TV). We get 

K2 

$'k'i(Ti) + CbkB:(Ti) = @(Ti) (8) 
k=O k=O 

for i = 1, 2,. . . , Kl + K2 + 2. Once this system of linear algebraic equations is solved for {Uk] and 
{bk], it follows that we can compute the desired boundary data from 

K2 

&(jd = 1 bkHk(bd (9'4 
k=O 

for cc E (0, I]. We note that our solution given by Eqs. (9) is independent of the method to be used 
to solve the basic problems defined by Eqs. (4) and (5). 
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3. A SPHERICAL-HARMONICS SOLUTION 
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We now develop a spherical-harmonics (P,v) solution for the two sets of direct problems that are 
fundamental to the solution of our inverse problem. 

Following previous works,4+5 we begin by writing our PN approximation (with N odd) to Y;(T, ~1 
as 

where J = (N -t 1112, P,(p) and gn(g) are respectively the Legendre and the Chandrasekhar 
polynomials of order n, the eigenvalue sj is the j-th positive zero of gM+l(5) and (A&f and ~~,j). 

are unknown coefficients. If we now substitute Eq. (10) into the Mark version6 of the boundary 
conditions expressed by Eqs. (S), we obtain the linear systems, for k = 0, 1,2,. . . , K,, a = 1 and 2, 

(;; 2) (S) = (;$$). 

Here, the vectors that define the vector of unknowns are given by 

(11) 

and 

and the vector that defines the right-hand side is given by 

Hk= (13) 

where pi, i = 1,2,. . . , J, denote the positive zeros of PN+ l(p). In addition, E is a diagonal Matrix 
of order J with exp(-To/&i) as the j-th diagonal element, and by defining 

and 

si,j = f (y) P*(Pi)&(Sj)8 

n=O 

(154 
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with 

I 

I 
A,, = Pn(/-d~ dp> (16) 

0 

we can write the elements of the J x J matrices MB and Nfl, /I = 1 or 2, as 

~~j = Si, j - Ps z,j - 2P$b (17a) 

and 

Nisi = r’;:,j - &Si,j - 2&Uj. (17b) 

In regard to the A,, constants defined by Eq. (16) and required in Eqs. (15), we note that a 
particularly simple and accurate scheme for computing these constants is provided by A0 = l/2, 
At=1/3and,form=1,2 ,..., J-l, 

A2m = - 
2m-3 ( > 2m A2m-2 WW 

and 

A2m+1 = 0. (18b) 

Now, it is clear that since the matrix of coefficients in Eq. (11) is the same for any k = 
0, 1,2,... , Ka, a = 1 and 2, only one LU factorization is sufficient for solving all the KI + K2 + 2 
systems defined by Eq. (11). In this work, we have used either DGECO or DGEFA of the LIN- 
PACK subroutine package7 to factor the matrix of coefficients, followed by DGESL to solve the 
linear systems. Having determined the coefficients {Akqj} and {Bgj}, we can integrate Eq. (10) to 
find that our PN approximation to Z:(T), required in Eq. (8) for k = 0, 1,2, . , Km, a = 1 and 2, 
and T = Ti, i = 1,2, . . . , Kl + K2 + 2, is given by 

(19) 

4. SAMPLE CALCULATIONS 

To have a specific scattering law for testing our solution technique, and to avoid having to provide 
a table of the scattering law coefficients {/II}, we use here the binomial scattering law* 

p(cos0) = q1 + cosw 

which can be represented exactly with L + 1 Legendre coefficients that can be computed with /IO = 1 
and9 

(21) 

For our first sample calculation, we considered a case where there is no radiation inciding on 
the right boundary, i.e. Fz(p) = 0. To deal with this case, we note that we used K2 = -1 in our 
formalism, so that the second set of direct problems defined by Eqs. (4) and (5) with o( = 2 was 
not required and the summations involving I&} in Eqs. (7) and (8) could be ignored when solving 
this problem. Then with L = 99, m = 0.99, TO = 1.0, 10.0 and 100.0, and various choices for 
the reflection coefficients & and pi, we solved, using the spherical-harmonics method with Mark 
boundary conditions described in Sec. 3, the direct problems defined by Eq. (4) subject to Eqs. (5) 
with 

Hk(/J) = P,,(p) (22) 

fork = 0, l,... , KI and various values of Kl. Note that we continue to use Pn(x) to denote the 
Legendre polynomial of order n. Next, we used 

Ti = [(i- l)/Kl]~,, i= 1,2 ,... ,Kl + 1, (23) 



Inverse boundary-condition problems 409 

where T* = min{ 10.0, TO}, and considered a radiation density specified by 

@(Ti) = 2 EA(Ti) (24) 
k=O 

on the right-hand side of Eq. (8) to define a system of linear algebraic equations for the desired {ak 1. 
It is clear that the choice of the observation points {To} can affect greatly the condition number of 
the linear system given by Eq. (8). And, though we have not made a definitive study of this issue, 
we did find that the scheme defined by Eq. (23) provided an improvement, for thick layers, over 
using a uniform distribution. We note that, for Kr I 5, we were able to obtain the correct results, 
Uk= l.Ofork=O,l,... , Kl. As we increased Ki beyond 5, we observed a progressive deterioration 
in the conditioning of the linear system for {Uk} . 

Of course, there are applications for which we would like +(T) to display a certain shape, the 
simplest being that of a constant. However, upon repeating the first calculation with Cp (Ti) = 1.0 
on the right-hand side of Eq. (8), we found that the resulting Fi (/J) was not non-negative (clearly a 
non-physical result). 

As a third sample problem, we considered fi(p) = Jl - $) and fi(p) = 0 in Eqs. (2) and 
used the spherical-harmonics method described in Sec. 3 to solve the direct problem defined by 
Eqs. (1) and (2) with L = 99, zrr = 0.99 and various choices for the reflection coefficients pi and 

p$, for TO = 1.0,lO.O and 100.0. The solution to this problem was computed for the Ti given by 
Eq. (23), in order to specify the radiation density +(Ti) required in Eq. (8). In addition, we solved 
the direct problems defined by using the same basic data (L, m, pi, pg and TO) in Eqs. (4) and (5) 
for o( = 1 and the basis functions specified by Eq. (22) in Eqs. (5), and then we used these solutions 
to compute the quantities {E:(Ti)} required in Eq. (8). Here, as in the first sample problem, we 
took & = -1 in our formalism, so that the set of direct problems for o( = 2 was not required and 
the summations involving {bk} in Eqs. (7) and (8) were also ignored. Having solved the system of 
equations for the desired {Uk}, k = 0, 1,. . , k, with Ki = 5, we then used Eq. (7) to recompute 
the radiation density at the values of T given by Eq. (23) and found (not surprisingly) agreement to 
at least five figures with the originally computed direct density, even though there was, of course, 
some difference between the assumed Fi (cc) and the one computed. 

Finally, in order to give some specific results, we consider the case defined by 

Fl(P) = 41 - p2) + & + c! log(i4e-p (25) 

and F~(/J) = 0 along with w = 0.99, TO = 10.0, L = 99, pi = 0.1, pf = 0.2, pi = 0.3, and p(: = 0.4. 
We used the P~J solution to solve the basic problems and then used Kr = 9 to obtain the results 
shown in Table 1. Again we see that while the values of FI (p) computed from the inverse method 
are not very accurate, the values of the radiation density resulting from the use of the approximate 
fi (cc) match the correct values to within +-1 in the sixth significant figure. 

5. CONCLUDING REMARKS 

We start this section by reporting some observations in regard to the numerical aspects of our 
solution. By monitoring the condition number estimates returned by DGECO, we have found, for 
the sample calculations reported in Sec. 4, that the linear systems defined by Eq. (11) were always 
well-conditioned, even in very high order, say N = 499. On the other hand, as discussed in Sec. 4, 
the linear system defined by Eq. (8) became poorly conditioned for & + K2 + 2 typically between 
10 and 15. For the third and fourth sample problems, we have observed that while the boundary 
conditions computed from the inverse method did not agree very accurately with the postulated 
ones, the values of the computed radiation density matched very closely the correct values. However, 
it is possible that for more complicated problems the inherent ill-conditioning of Eq. (8) may Ipose 
a more severe limitation on the level of accuracy attainable for the computed radiation density. 

Finally, we conclude by noting that, as with other types of inverse problems in radiative transfer, 
the existence and uniqueness issues play also an important role here. As seen for the second sample 
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Table 1. Direct and inverse results for boundary data and radiation density. 

5 4(E = /J) 4(5=fl) a(5 = T/To) ‘@(z = r/To) 
0.00 2.00 1.88 2.51815 2.51815 
0.10 1.78 1.80 2.23102 2.23103 
0.20 1.68 1.67 2.11349 2.11349 
0.30 1.60 1.60 2.02838 2.02838 
0.40 1.53 1.54 1.96096 1.96096 
0.50 1.46 1.45 1.90537 I .90537 
0.60 1.37 1.37 1.85848 1.85848 
0.70 1.26 1.26 1.81829 1.81829 
0.80 1.13 1.13 1.78315 1.78315 
0.90 0.95 0.94 1.75087 1.75087 
1 .oo 0.50 0.47 1.70421 1.70421 

problem considered in Sec. 4, simply postulating a desired CP(T) for a given problem may give rise 
to non-physical results for the boundary conditions. The question of assuring that a preassigned 
radiation density will (or will not) give rise to a physically acceptable pair of boundary conditions 
remains an open one. 
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