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Department of Theoretical Physics, Middle East Technical University, Ankara, Turkey 

Case’s method of singular normal modes is used to obtain an exact solution 
to the equations of radiative transfer in the “uniform” or “random” picket 
fence model assuming Local Thermodynamic Equilibrium. Completeness and 
orthogonality theorems are proved, and explicit results are obtained for the 
extrapolated endpoint, the temperature distribution, and law of darkening 
for the Milne problem. In addition, the method for solving other half-space 
problems is sketched. The case when the determinant of the “transfer matrix” 
does not vanish (corresponding to radiative transfer without Complete Local 
Thermodynamic Equilibrium or the neutron transport problem) is also dis- 
cussed. Full range completeness and orthogonality theorems are presented 
for this case; however, no convenient form for the half-range case has been 
found. 

I. INTRODUCTION 

In this paper we present a solution of the equation of radiative transfer in the 
picket fence model (1). In this model, t.he absorption coefficient for the radiation 
is assumed to be representable as a set of two different constant values over the 
frequency spectrum.’ This represents to some approximation absorption by reso- 
nance lines. In Section II we show how in this approximation, under the assump- 
tion of Local Thermodynamic Equilibrium (Z), the equation of radiative transfer 
reduces to a set of two coupled t,ransport equations similar to the two-group 
neutron transport equations considered by ielazny and Iiuszell (3).z The radia- 

* Based on a Ph.D. thesis submitted by one of the Authors (C.E.S.) to the University of 
Michigan. 
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ment of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina. 

$ On Sabbatical leave, academic year, 19641965, from the Department of Nuclear Engi- 
neering, the rniversity of Michigan. 

1 The generalization to N different values of the absorption coefficient is discussed in a 
forthcoming paper. 

2 These authors used a highly inconvenient form of the (degenerate) eigensolutions. A 
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tive case, however, is simpler because the ‘(transfer matrix” takes a particularly 
simple (degenerate) form and has a vanishing determinant. Our method of solu- 
tion is given in some detail, because it will serve as a guide to the more general 
case mentioned in footnote 1. 

The method we use is similar to that of ref. 3, i.e., Case’s method of singular 
eigensolutions (4-Y). 

A number of solutions to the picket fence model exist. Chandrasekhar, in ref. 
1, solves the equations using the Eddington approximation. Actually, his model 
is somewhat more general than ours in that he also considers scattering. Ours, 
in fact, corresponds to his case E = 1. The case e # 1 involves a transfer matrix 
whose determinant does not vanish; this case is discussed in Section VII. Various 
other approximate and numerical solutions have been developed and have been 
summarized by Gingerich (9) who considers numerical solutions. We will not 
attempt to review any of this work, except to note that numerical solutions are 
extremely difficult. Stewart (10) has obtained an exact solution; he used a Wick- 
Chandrasekhar discrete ordinates procedure (11) and took the limit. as the num- 
ber of ordinates approached infinity. However, we believe our method to be 
simpler and, in addition, posesses the merit that it can be readily generalized 
in the manner already mentioned. 

There have also been a number of recent papers which consider the solution 
of the radiative transfer equations for various models in the nongray case, but 
these are not, strictly speaking, picket fence models. See, for example, refs. 12-16 

As we have stated, Section II is devoted to a brief derivation of t.he picket 
fence equations. Thus, in Section III we begin the soIution by introdticing 
normal modes. In Section IV a completeness proof is sketched and orthogonality 
relations are deduced in Section V. In Section VI explicit solutions for the extrap- 
olated endpoint, the temperature distribution, and the law of darkening are 
developed for the Milne problem (17). Actually, we show how t’o solve any of the 
standard half-range problems, e.g., the Green’s function and the albedo problem 
(the slab albedo problem can be solved by extending the method of McCormick 
and Mendelson (18)), but the Milne problem is of primary interest here.3 In 
Section VII we make a few remarks about the problem in which the transfer 
matrix is completely arbitrary (this case is of considerable interest. in neutron 
physics and also corresponds to Chandrasekhar’s E # 1 (I)), but we have been 
able to obtain explicit solutions only for full-space problems. More work is needed 
on the half-space solutions. 

similar inconvenient form has been used by Fersiger and Leonard (8) who consider a related 
problem. 

3 The solution of the half-space Green’s function requires a special technique. This is 
discussed in Appendix B. 



EQUATIONS OF RADIATIVE TRANSFER 63 

Our not’ation is that of neutron physics because Case’s paper (4), which we 
draw so heavily upon, uses this not’ation.4 

Although the physical model considered here is idealized, the exact solut,ions 
obtained can be used to test numerical methods which may then be applied to 
more realistic physical sit.uations. 

II. THE EQUATIONS IN THE PICKET FENCE MODEL6 

The equation of radiative transfer under the assumption of local thermody- 
namic equilibrium can be written in the form 

PZ (2, cl) + P(Z)k-Y!G, /J) = ,&)KY B”(m)). (1) 

This equat,ion can be deduced from ref. 11 with the aid of footnote 4. Briefly, 
2&(2, p) (1~ (ZV & represent.s the radiant energy contained in position clz at z, in 
solid angle clP = 2~ & at P with frequency between v and Y + dv. It is the 
analogue of the angular density in neutron transport. K, is the absorption co- 
efficient for radiation of frequency v, p(x) is density of the medium, and T(x) 
is the local temperature. In this equation BY( T(z)) is the Planck black body 
function : 

B,(T(z)) = ‘$ 
( 
exp Ls - 1 

> 

-1 

. 

To solve Eq. (l), a subsidiary condition is needed. This is the Schwarzschild 
condition, which states local energy conservation, thus 

Equat’ions (1) and (3) are two equations for the two unknowns &(x, cl) and 
T(x). Obviously they are nonlinear. However, if the absorption coefficient 
takes a certain form the problem becomes much simpler. The so-called gray 
case refers to K, = constant. For this situation Eq. (1) reduces to the form 

where x is the optical thickness and J/(x, p) is the integrated energy density, 
i.e., 

d4.&11> k lrn kL(x, cl> dv. (5) 

4 In order to compare our equations with those used in Astrophysics (e.g. ref 2) one must 
change 9 to -1, #” to I. . 

6 The derivation of the picket fence equations are given in a number of places, e.g. ref. I. 
A brief sketch is presented here for the sake of completeness. 
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Equation (4) is precisely the equation considered by Case (h), and refers to 
the gray atmosphere in L.T.E. or to the case of pure isotropic scat.tering. We 
say no more about it. 

In the picket fence model we have two constant values K1 and K2 . Let Avi 
represent the frequency region over which K, has the value Ki , and integrate 
Eqs. (1) and (3) obtaining 

a4h 
M - (2, CL) + P(Z)& $4x, EL) a2 

= p(;)Ki wi 5 Ki j-1 t,bj(x, cl’) dp’, 
(6) 

i = 1,2. 

2 c Kj wj j-l 
j=l 

Here #i(z, P) is defined by 

and wi is given by 
A wi = ye-& s, dvBv(T(z)), 

yz 

where u is the Stefan-Boltzman constant. To obtain Eq. (6) the Schwarzschild 
condition has been used. In the present model it takes the form 

(9) 

We note that in general the wi are functions of z. In order to solve the trans- 
port equation, Eq. (6), we shall have to assume the wi are constant. This im- 
plies either the uniform picket fence model (cf. ref. 9) or a “random” model 
(10). In the uniform model, it is assumed that the frequency spectrum can be 
divided into ranges, Avi , so small that BY( T(z)) may be considered constant in 
each range. In each range it is assumed that the fractional frequency width 
covered by each ki is constant. From these two assumptions, one readily verifies 
from Eq. (8) that the wd are independent of x. In the random model, one as- 
sumes that there are so many lines of random width randomly distributed 
throughout the spectrum that the distribution may be considered uniform on 
the average. Chandrasekhar, in ref. 1, implicitly assumed one of these two 
models. 

Equation (6) can be put in more convenient notation. Let Kz be the smaller 
of the Ki . Then define an optical variable x in terms of Kz , i.e. 

x k Kz 
s 

z 
&z’) dz’. (10) 
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Further denote K;/K2 by (ri(a? = 1). Equation (6) can thus be written in form 

P& WC-q P> + ZT(“?P) = c 1’l w(x, j.4’) d/.4’. (11) 
-1 

Here \~r(x, CL) is a 2-component, vector with elements tii(5, p) while Z and C 
are the following matrices: 

(Z)ij = ui 6ij (12a) 

(cjij = ,iwi ffj . 

2 5 ujWi 
(12b) 

C is the transfer matrix; we not’e that det C = 0. 
We turn now to the solution of Eq. (11) . 

III. EIGENVALUES AND EIGENPOLUTIONS 

We proceed as Case did (4) by noting the translational invariance of Eq. ( 11) . 
This suggests that the eigensolutions should transform according to the irre- 
ducible representations of the t,ranslation group. We first try the one-dimen- 
sional representation e-“‘“, i.e., we assume a solution to Eq. (11) of the form 

W(x, p) = eAZ”‘F(q, P). (13) 

When this ansatx is substituted into Eq. (ll), we obtain an eigenequation for 
F( 7, P), where 7 is the eigenvalue: 

1 arl -/J 0 

rl 0 71-p 
) WV, PL) = C f: F(v, cl’) 4~‘. (14) 

The eigenvalue spectrum of Eq. (14) must be considered as three separate 
regions. There are two continuum regions and a discrete spectrum. Consider 
then the first of the continuous spectra. 

Region 1: TJ E [-l/al, l/uJ. 

Here we write 

i 

?P + h*(q)G(u17 - d 0 
F”‘(,,, p) = u1 11 - p 

0 -!A? + Xldrl)S(77 - Pcl> 
1)-/J (15) 

. C f: F(‘)(r], /.J’) C&L’. 

The symbol P indicates that the Cauchy principal value is to be taken when 
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integrals over these function are performed. The functions &c(q) are chosen 
such that Eq. (15) is satisfied. Since Eq. (15) is homogeneous the normaliza- 
tion is arbitrary. We select 

1 
1 
F”‘h, P’) cl/~’ = -1 

where, as yet, the ai are unspecified functions of q. 
find 

(16) 

Integrating Eq. (15) we 

where we have used the abbreviat,ion T(x) for tanh-’ x. 
Equation (17) is really two equations for the four unknowns, X1;( 7) and 

ai( q). Thus we note that t,he eigensolutions in this region are twofold degenerate. 
(At this point we deviate from the treatment of ref. 3 in which the eigensolution 
was left arbitrary. We explicitly take the degeneracy into account.) Clearly 
the two linearly independent choices for F”‘(7, /J) correspond to al(q) = 1, 
~~(71) = 0, and a,(q) = 0, an(q) = 1. Therefore for region 1 we can write (solv- 
ing for ~~~(71) and multiplying out Eq. (15)), 

i 

-2!fc!c + 6(qq - /.L)(l - 2r]cn T(u1 q)) 

F%, P) = u1 ’ ,,& 

r 

(Isa) 
rp + s(s - P) (--wzl T(s)) 

and 

i 

42 + 6(a1q - ,uL(-277c12 T(mq>> 
F61’h PL) = ” z2,--- 

rp + s(q - P)(l - 27lc22 T(q)) 

We now consider the second continuum. 

(18b) 

Region 2. q E I- 1, -l/ml and [l/m , 11 
Solving Eq. (14) for region 2, the factor alq - p, we note, is not singular. 

Thus only one coefficient, h(q), enters; and there is no degeneracy. 

We easily find 
Cl2 q 

F%, PL) = 
019 - G 

c22 qP . (19) 
+ S(v - d(1 - 2wcll T 

11-p 
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Finally we have the discrete spectrum. 

Region 3. q 6 [-1, 11 

Solving Eq. (14) for F( 7, CL) and integrat#ing over p we find the dispersion 
relation, 

n(x) = 1 - 2X~1T(l/U~Z) - 2zczzT( l/x). (20) 

That is, the discrete eigenvalues are the zeros of Q(z). It can be shown readily 
that n(x) has only two zeros, TJO = f a. Thus, we find that the discrete eigen- 
solutions are also twofold degenerate. In this case, however, unlike the degen- 
eracy of region 1, we can no longer use the one-dimensional representation of 
the t,ranslation group, Eq. (13). Since we are dealing with twofold degeneracy, 
the two dimensional representation is appropriate. It can be generated by the 
basis set (7) 

Y1(x, 7) = e-“” ---f 1 (21) 

Y2(2, 7) = zeK+” + II: (22) 

where the arrows indicate the limit for 70 --f QI. The appropriate linear combi- 
nations which satisfy Eq. (11) we find to be 

and 

=(z, PI = ( 
Wl(x: - P/d 

w2(2 - CL) ) . 

(23) 

(24) 

Instead of the continuum eigenfunctions, F(;)(q, I*) which we have just cal- 
culated, Eqs. (18) and (19), it is more convenient to use certain linear combi- 
nations. The use of these linear combinations simplifies both the completeness 
proof, (Sec. IV) and the calculation of the normalization integrals (Sec. V). We 
define therefore 

a&~, ALL) = F:‘)h, cl) 

(25b) 

(25~) 

and 
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We note that, if we wished, we could consider that we have only two con- 
tinuum eigensolutions, namely, ml(~, cl) and 

Here 

@i(V) = 1, rl E regioni 

= 0, otherwise. 
(27) 

Having determined the eigenvalue spectrum and the corresponding eigen- 
solutions, we consider next the completeness theorem. 

IV. COMPLETENESS 

THEOREM I. The functions ml(v, P), @ii’( q, P), 11 E [0, 11, and @+ fornz a 
complete set for functions dejked on the “half-range” 0 5 F 5 1, in the sense that 
an arbitrary function, Y’(P), defined for 0 5 P 5 1 can be expanded in the form 

Here the ranges of integration 1’ and 2’ refer to those portions of regions 1 and 2 
for which q 2 0. 

This is the half-range completeness theorem .6 Before proving this theorem, 
we should make two comments. First, the expansion coefficients cyl(q) and 
01~(77) are taken to be scalars (i.e., multiples of the unit matrix). This is im- 
portant because we wish to construct solutions to the transport equation (Eq. 
(11)) from the eigensolutions W( 7, x, p). In order that these combinations be 
solutions, it is necessary, in general, that the coefficients commute with the 
Boltzmann operator B, 

1 

B&&E+=-C *d/.2 s -1 

(where E is the unit matrix). This will be true only if the expansion coefficients 
are scalars. 

The second comment has to do with the arbitrariness of the expansion func- 
tion Y?(r). Actually, the solution of Eq. (28) incorporates results which are 
valid only if W’(p) obeys a Holder condition on the interval [0, l] (19). How- 

6 A full-range completeness theorem can also be proved but the restriction det C = 0 
is not necessary, cf. Section VII. Also, there is an analogous theorem for the other half- 
range (-1 5 j4 5 0). 
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ever, we shall wish to apply the method when V?(P) is a distribution. A distribu- 
tion is a weak limit of a sequence of Holder functions; this implies that any 
results obtained when ~(1) is a distribution are to be interpreted in the weak 
topological sense, which is appr0priat.e for transport t,heory. This point is dis- 
cussed in more detail in ref. 7. 

We turn now to the proof of Theorem I. Equation (28) can be considered a 
singular integral equation for the expansion coefficients. To prove the theorem, 
it is sullicient to prove that a solution exists. This, in turn is done by solving 
the equation using the methods of ref. 19. This yields expressions for the expan- 
sion coefficients; however, they are more conveniently obtained from the ortho- 
gonality relations developed in Section V. 

We begin by attempting an expansion in terms of the continuum modes 
alone, i.e., 

Putting in the explicit forms of the eigensolutions, we obt,ain the two equations 

(30a) 

(30b) 

Here @l(p) and $2(p) are the two components of w(p). Making the change of 
variable p + u1 P, solving for CQ(~) from Eq. (30a) and substituting into Eq. 
(30b) we obtain 
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where we have defined 

W(P) e 1 - 2~22 T(P) - 2/x11 T(uIP)@I(P) - %LCII T & W/L). (32) 
( > 

Taking the boundary values on the branch cut of the dispersion function, 
Eq. (20), we see that 

&*(,4 = 1 - 2w11T(wL) - %.d”h.4C() f ?ri/.dcn + cd (33a) 

and 

Q,*(P) = 1 - 2wJ’(l/wL) - 2w22T(~CL) f mh22. (33b) 

Here the subscripts on Q&(p) refer to the region in which the boundary value is 
evaluated. Thus, we find 

4P) = %tQ+(P) + Q-b>f (34a) 
and 

c22 + Cll@l C/J) = && {Q+bL) - Q-(co). (34b) 

Proceeding in standard fashion (19, 4), we introduce the auxiliary function 
N(z) defined by 

with boundary values 

(35) 

(36) 

From Eq. (35), N(x) should be analytic in the cut plane and vanish as l/z for 
large z. Substituting Eqs. (34) and (36) into Eq. (31) we find 

#2(/J> + u1~2~1du1 P)@l(Pcc) = Q+b)N+(d - Q-(PL)N-(PL). (37) 

The solution to Eq. (37) is well known. It is expressed in terms of a function 
X(z) which has the properties 

x+(P) Q’(P) --=- 
x-b-4 w/J> ’ P2.0 (38) 

but with X+(p) = X-(p) for p < 0. That is, X(z) is analytic in the complex 
plane cut, on the real line, from 0 to 1. X(z) must also obey other restrictions 
as discussed in ref. 4. The appropriate X function for this case is 

. (39) 
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The solution to Eq. (37) is then 

N(z) = -L- 

1 s 1 2&X(z) 0 Y(P) b(P) + ~l+n /J)Ol(PL) 
) 

d/J 
__ (40) 
cl-2 

where 

(41) 

We see from Eq. (40) that N(z) does not vanish at infinity as l/z unless 
1 

1 1 
y(p) &h(p) 

0 
+ Ul ;z $l(Ul p)%(p) 

> 
Q = 0. (42) 

In general, this condition will not be satisfied. However, we recall that we 
are actually expanding not V!(P) but Y!( II) - A+@+ (comparing Eqs. (28) 
and (29)). Replacing the #i(p) in Eq. (42) by #i( CL) - A+wi , we see that 
Eq. (42) will be satisfied if A+ is defined by 

where 

W(cc) = 0 ( 
wb/d 0 

Y(P) ) 
and 

t= 1 @+ 0 1 . 

(44) 

(45) 

The coefficients are now determined. A+ is given by Eq. (43) while the continuum 
coefficients may be determined from N(z), Eq. (40), using Eq. (36) to find 
czp( 9) and then obtaining QI~( q) from Eq. (30a). In principle the expansion coeffi- 
cients could be found in this manner. However, the orthogonality relations de- 
rived in the next section provide a more convenient method. The existence of 
such relations is already strongly suggested by the form of Eq. (43), particularly 
because one verifies immediately that Q+’ is a solution of the “adjoint” equa- 
tion, i.e., Eq. (14) with C replaced by C corresponding to eigenvalue q. = f cc. 
In this case the scalar product must be defined including a “weight function,” 
W(P). 

V. ORTHOGONALITY AND NORMALIZATION 

THEOREM II. The functions Q,( 1, ~.r), @ii’ (q, CL), and a+ are odhogonal to the 
corresponding solutions of the adjoint equation on the range [O, I] with weight func- 
tion W(P). That is, 
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We shall prove this theorem using the original continuum eigensolutions, F (7, cl), 
rather than the (P(q) g). This is clearly immaterial to the proof but the choice 
is made for convenience. 

We rewrite Eq. (14) and the adjoint equation below in symbolic form: 

(47a) 

(47b) 

(The superscript tilde means transpose.) It is easily verified that Eqs. (47) 
have identical eigenvalue spectra. Furthermore we see that 

F+h, ~1, Cl = F(rl, PL, c>, (48) 

i.e., the adjoint functions are obtained from F(Q II) by interchanging in the 
latter cij and Cji .7 The discrete adjoint function is simply 

a++ = 
1 0 1 * (49) 

To prove the theorem, multiply Eq. (47a) from the left by gt( q’, p) W( cl). 
Then multiply the transpose of Eq. (47b) from the right with W(r)F(v, I(). 
Integrate both equations over dp from 0 to 1 and subtract. The terms involving 
Z are identical since B and W(p) commute, and so we obtain 

(50) 

Thus, to prove Theorem II it is necessary to show that the left hand side of Eq. 
(50) vanishes if ? # rt’. Denote 

s 1 

Wq, P’> dcl’ g  A(q) 
-1 

(51a) 

and 

7 In making this replacement cij(J I+ one must be careful not to express the components 
of the x matrix in terms of the eii until after the replacement has been made. 



EQUATIONS OF RAnIATIVE TRANSFER 73 

s 1 

F+(?l’, /J’) dP’ g A+(q’). (51b) 
-1 

(With the proviso of footnote 7 the elements a:(q) of A+(v) are obtained from 
the elements a<( 71) of A(q) under the transformation cij ---) cji). Furthermore, 
let 

and 
s l cl/.4 o yW(~)F(v, cl) b B(q) (52a) 

s 
l dp - W(r)F+(~‘, ~0 A B+(T’). 

0 CL 
(.‘i2b) 

In this notation the left hand side of Eq. (50) becomes 

L.H.S. = B+(,‘)CA(TJ) - ii+(~‘)cB(~), (53) 

or in summation form we have 

L.H.S. = C b>(v’)cijaj(v) - C G+(D’)ci$j(B), (54) 

where bi( TJ) (b>( 11’) ) are t’he elements of B( 11) ( Bt (q’) ). ru’ow from the defini- 
tion of cij , Eq. (12b), we note 

c.>j C;n 
cij = __ --. 

c22 

When this expression is substituted into Eq. (54)) the sums separate: 

(5.5) 

CE(IJ.H.S.) = C bZi(7’)~;2 C czjaj(q) - T CJ:(~‘)C~~C czjbj(q). (56) 
z i j 

~U’OW we divide Eq. (56) by c cejUi( 7) c IJ>({)c~~ and call c~~( L.H.S.) di- 
j I 

vided by this product J. Thus we have 

T  bitCl7/)Ci2 C C2j bj(Tjj 

J = C Ut(9'jk - 5 C2j Uj(qj ' 
j 

(57) 

The two terms on the right hand side of Eq. (57) are related by 17’ e=, r] and ci3 
ej cj; . A surcient condition for the theorem to be true (J = 0) is that one of 
these terms, the second for example, be a constant independent of q and of the 
fij . We shall show that this is indeed true. We denote the second term of Eq. 
(57) by JI, . Substituting for bj( 11) (Eq. (52)) we obtain 

(58) 
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Here fj( r], /L) are the components of any of the F( TJ, CL) and can be written in the 
form (cf. Eq. (14)) 

(This equation holds for all continuum modes as well as the discrete mode, al- 
though in various regions the delta function may vanish and the symbol P may 
be superfluous. This makes no difference to the general form of fi( 7, ML). The func- 
tion xi(~), of course, must be chosen so that Eq. (59a) is consistent.). If Eq. 
(59b) is substituted into Eq. (SS), and if we replace the product c2jCji by the 
equivalent cjjczi , the factor C cgjoi( 7) cancels out of numerator and denomina- 

tor, and we find 

The integration over the delta function can be carried out, and we can write 

The integrals in Eq. (61) can be carried out with the help of Identity I given in 
Appendix A. 
We find 

(w(q) was defined in Eq. (32); we have also noted that X(0) = 1). We should 
clarify the meaning of Eq. (62). First, we note that w(q) is a different function 
in the two continuum regions and in the “discrete region.” Similarly, Xj(v) 
takes a different value for each of the three continuum F(T, p) and for the dis- 
crete mode. That Js = constant must be verified for each of the four possibilities 
in order that the theorem be proved. For example, by comparing Eqs. (59) and 
(Ba), and recalling that (Ba) was obtained with the normalization 

NT) = :, 0 (63) 

we see that for the mode Fi”( 7, cc), 
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1 
x,(q) = & (1 - "qcn T(a1g)) 

and 

hz(q) = ; (-%s,U11)). 
I 

(64) 

Also, for sE region 1 (cf. Eq. (32)) 

w(q) = 1 - 27PllT(w7) - 27mT(7lI). (66) 

Inserting these values into Eq. (62), we find 

Jz = 1. (67) 

In the same way, we verify that Jz = 1 when the eigensolutions F’:‘(v, IL) and 
F”‘( 7, CL) are used (in the latter case, of course, 

1 
477) = 1 -217CnT _ ( > - 2qc22 T(q) 

fJ1 11 

must be used in Eq. (62) ). For the discrete mode, X = 0. But Q+( 70) = Q-( 70) 
= Q( 71~) = 0, by definition, and we see immediately that J2 = 1. Thus we obtain 

Jz = 1 (69) 

and the theorem is proved, i.e., 

(70) 

Our method of proving Theorem II has several advantages. We mention two: 
1. If the form of W(p) had not already been suggested, a similar procedure to 

the above could be used to find W(P). 
2. The method can be generalized to the N-group problem, in which the 

above procedure serves as a guide. 
For the normalization integrals, we return to the @( 1, /.L) rather than the F( 7, 

,LL), since we will expand in terms of the @( 7, P). 
The degenerate eigensolutions can be orthogonalized using a Schmidt type 

procedure. First we present the normalization integrals. Defining 

(E, G) b I’ ii+( v’, PL)W(ILM~I, I*) ch, (71) 

we have 

(a+, *+I = N+ (72a) 

(al, al) = NI(TI)~(T - rl') Wb) 
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(Q(l) 21 dl’) 2 = Ap(q)6(q - 7)‘) 

(d2’ 2) d2’) 2 = N’2’(q)6(q 2 - q’) 

(ml) &‘) = ~12(7l,)f3(7 - 7’) 
(Q(l) 7.3 Q, 1 ) = Mzl(q)qq - 7’). 

Here 

N+ = 2(UlW + wz> 

(724 

Wd) 
We) 
ww 

(73d 

V3b) 

W(q) = rhbr2?&&11 + c22) + (1 - 2TK22 Th))2 

+ 4Tj2cu c22 T2(u1 ?I) ) 
(73c) 

N:2’(q) = rhNh+h)s22-h) UW 

Mij(?L> = $& -Y(q) { 1 - %c22 T(q) + 2w22 T(Ul q> 1. (73e) 

Explicitly, we write (cf. Eqs. (33)) 

%+(q>K(q> = (1 - 2WllT(v?) - 2 tlC22T(rl))2 + 1r2q2(c11 + c22>” 

and 

(74a) 

n2+(77>s22-(11> = (1 - 2WllT(l/Ulll) - 2rlc225y77>)2 + 7r2712d2. (74b) 
Since ml and &’ are not orthogonal for q = v’, we introduce two new func- 

tions xi’) and ~2 (‘) defined such that ~1~) is orthogonak to #p’ and $’ is orthog- 
onal to a1 (clearly both xp are orthogonal to a:“‘). Therefore 

and 

We find 

and 

(754 

A & 
#(q, PI = yo (W&d%, /-d - ~Zlh)~drl, PI f 05b) 

(x:l’, a> = r(s)~l+(dKhm - 9’1, (76a) 

((g’, a$‘) = 0, (76b) 

(& *F’) = r(s>Ql+(dQl-b?)~(~ - 77, (76~) 

(&‘, al) = 0. (76d) 
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With the formalism developed in this section, typical half-space problems can 
be solved immediately. We consider, in the next section, the Milne problem. 

VI. MILNE PROBLEM 

We seek the angular energy density, \ITM(z, CL), in the source-free half-space 
subject to the boundary conditions (7) : 

(a> vM(O, P) = 0, p 2 0 (zero re-entrant radiation) 

tb) vJrM(x, IL) - w - (2, P) for large 22. 

The second condition specifies that ‘IP~(x, II) diverges no more rapidly than the 
slowest diverging mode w-(x, p). 

The solution can be constructed from the normal modes of the transport 
equation. Condition (b) requires that no ~(7, Z, P) be included for TIE [ - 1, 01, 
Thus we write 

The coefficient A- we leave arbitrary (it depends upon the normalization). 
The other coefficients are obtained from condition (a). Sett,ing z = 0 in Eq. 
(77), we have 

Thus the coefficients are merely the half-range expansion coefficients for the 
function 

- A- w-(0, /.L) = A- /.t. 

They are found immediately from the orthogonality relations: 

A+ 1 l -=- I A- N+ o P &, 

(79) 

(804 

or 
1 l/Cl 

rb.4~ dcc + a2 ~1 s . (Sob) 
0 

This expression can be put in terms of the X-function by the use of Identity 
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IV, Appendix A. We find 

A+ 3Ul 
l/r1 

cc2 -zz 
A- 2(Ul U’2 +wl) 

+ U12 Wl 
s 

(81) 
0 4- PL) 

where the explicit form of N+ (Eq. (73a) ) has been used. Similarly, 

s 1 2’ (17, PI W(P) W/U1 a1(71) _ 0 ( > w2 P & (82) 
A- r(dQl+(Tm-(s> * 

This integration is somewhat lengthy, but completely straightforward. We find 

w(q) Cl1 Cl2 qwz (1 - 27 c22 T(q) + 27J cz2 T(a1 q)J 
-= - 
A- (83) c22 r(dfh+(~>fes> 

Similarly 
az(rl> _ s(w2 + 012 Wl @l(PL)J 

A- rb?&+wea- * 
(84) 

The expansion coefficients are now determined, so the problem is solved. Note 
that all results are expressed in terms of the two functions T(z) and X(-P) 
(Q* ( ,.J) are given in terms of T-functions, while y(p) is expressed in terms of 
X( -P), 0 5 P 5 1 in Appendix A, Identity IV.). 

The customary normalization (9) is to set 

where T, is the “effective temperature”. This leads to 

A- = 
3~1 uTe4 

4*(a1 wz + 201) * 
The energy density 

is given by 

or finally 

F = (A+ + xA-) (WI + wz) + ; L, {y - +} c”‘~ drl 

(85) 

(86) 

(87) 

(88) 

(89) 
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The ext’rapolated endpoint, x0 , is defined as the distance from the boundary 
at which the asymptotic density extrapolates to zero. 
It is 

A+ 
x0 = k- 

which is given already by Eq. (81). 
The temperature distribution is found from Eq. (9), i.e., 

N 

aT4( x) 1 1 
Cl ___ = 

7r OS 2(Ul Wl + w2) 1 
~Y(X, d dP. 

-1 

We find 

T4(.4 _ 3a1 
l/O, 

w 
-Xl? 

TC4 qa1w2 + WI) i 
z + x0 - (Cl1 + s2> 

s r(?m+(ll)wv) 
dll 

0 

Writing this in terms of X( --IL) we have 

T4b:) 3a1 ___ zzz 

Te4 4(mh + Wl> 
x + xo _ (Cl1 + c22) (a1 w2 + 4 

3UI(Ul Wl + w2) 

.I 

l's1 X( -q)eP' dq _ c22(fn w2 +& 

0 fh+(11)fr(d 3Ul(Ul WI + WP) 
(92b) 

Now that the temperature distribution is known, one can obtain the frequency 
dependent angular densit’y, &(x, P), simply by integrating Eq. (1) (after 
transforming it to the optical variable 5). The frequency dependent law of 
darkening is then given by &(O, II). The law of darkening for the integrated 
quantities is found from ~~(0, II). Just as in the gray problem, if we consider 
~‘~(0, P), P < 0 the integrals over dq can be performed by extending the tech- 
nique of ref. 21. We thus write 

Cl2 

Wibf(O, - pee) = A+ Q-t + A- W-(0, - p) + 11a2(q) 

I 

" ' + ' 1 q dq, p > 0. (93a) 
c22 1 

I- 11+!J J 

Here the continuum part of the expansion becomes particularly simple because 
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by restricting P to be negative, the eigen solutions (7 > 0) are no longer singular. 
We find 

I 201 I 

WM(O, - P> = 
3~1 aTe4 

4a(m w2 + Wl) 
, P>O. (93b) 

It is clear how other half-space problems could be solved. For example, con- 
sider the albedo problem. Here we have a source-free half-space with incident 
distribution’ 

(94) 

Here the solution must not diverge at infinity, so we set 

(95) 

+ /@, a2(q)e-z” &‘(q,p) dq + / a2(q)eMZ” @?‘(n cc> drl. 
0’ 

Since 
qIp,(O, cl) = vim(P), c120 (96) 

the expansion coefficients are found as integrals of hhe adjoint functions times 
delta functions. We omit any details of this or other possible half-space problems 
except for the half-space Green’s function, discussed briefly in Appendix B. 

VII. THE CASE OF GENERAL C 

As has been discussed in the introduction, the case of general C has interest both 
in neutron transport theory and in radiative transfer. In the latter, if we had 
included scattering in the resonance lines (E # 1 (1) ) we would have been led 
to this case. We discuss this situation briefly in the present section. All results 
are presented without proof. 

The eigenfunctions for region 1 have the same form as for det C = 0. They are 
given by Eqs. (18). For region 2, however, we find 

F(2)(,& = u1 ' - ' 
(97) 

xf(g)p + NT - P) X(T) 

\ 7-P 

8 If the albedo solution is to be used to generate the solution to a problem involving 
arbitrary incident distribution, then two albedo problems must be defined, just as two 
Green’s functions are defined; cf. Appendix B. 
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where 

X(q) = 1 - 2m,T(rl) - 2~~c~~T(l/a177) + 4q2detCT(q)T(l/w) (98) 

and 

f(17) = 62 - 2~ det CT( l/‘ulrl). (99) 

The discrete solutions are 

F&) = 

Cl2 7Ji 

Cl?Ii =F /J 

~22 - 2 det C qL!‘(l/~~ vi) rli 
?li =F P. i 

(100) 

where vi are positive roots of the dispersion function 

Q(Z) = 1 - 2zcllT(l/cr1x) - 2xczzT(l/z) + 42* det CT(l/~)T(l/a~z). (101) 

It can be shown ($0) that for det C 5 0, Q(Z) has only two zeros while for det 
C > 0 it may have two or four depending upon the relative magnitude of the 
cij and (TV. Note that Q(x) = a( -2); hence the roots occur in f pairs, explain- 
ing the nobation of Eq. (100). 

THEOREM III. The function Fy) (1, p), Fc2’( 3, p)und Fi f (c() fornr a co?npZete 
set in the sense that an arbitrary j’unction Y?(p) cZefined on the interval [ - 1, l] can 
be expanded in the ;form 

The proof of this theorem follows in analogous fashion to that of Theorem I 
except that here it is unnecessary to introduce the X function since N(z) 
and Q(x) have the same branch cut. 

THEOREM IV. The functions F(T, p) are orthogonal to the c&joint functions, 
F’( 9, p), on the interval [- 1, l] with weight function p. This applies to both con- 
tinuum and discrete modes.’ 

This theorem is proved, in the usual manner, directly from the equations 
obeyed by F(rl,~Cc) and F+tv, II>. 

In attempting to prove the half-range theorem, analogous to Theorem I but 
for det C # 0, one proceeds in exactly the same manner as for Theorem I. How- 
ever, instead of arriving at Eq. (37), which is solved by Wiener-Hopf factoriza- 

9 It is possible even for the case det C # 0 that there is a degenerate doubleroot atinfinity 
(80). In this situation \Ir - (0, p) is not included in the orthogonal set. 
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tion, one finds an equation which cannot be simply factored. Actually, a proof 
of this theorem is given in ref. 5, but not in a form which makes it possible to 
obtain the expansion coefficients in any simple way. While we have remedied 
this for the full-range case through Theorems III and IV, we have thus far been 
unable to discover a similar scheme for the half-range problem. 

APPENDIX A. X-FUNCTION IDENTITIES 

IDENTITY I 

X(x> = c22 I 
l Y(P) - d/.t + cl1 

0 1.1-Z I 
1’u’ Y(P) dp 

0 Z’ 

The proof follows by writing Cauchy’s theorem for X(z), i.e., 

(A.1) 

(A.2) 

where the contour can be shrunk down to include only the branch cut (the in- 
tegrand vanishes at infinity). Thus we write 

X(2> = z’,z 4’ fX’(P> - x-b>) +& . 

Using Eqs. (34b) and (38) we obtain 

x+(P) - x-(P) = %+/(U)lh + Cll@l(~)l. 

Entering Eq. (A.3) with this result gives Identity I. 

IDENTITY II 

(A.4) 

X(z) X( - 2) = 3ultyw;++w;) n(2). 

For the proof, we note that the function 

F(x) * X(z) xc- 2) (Ul w2 + Wl> 

= 3Ul(Ul Wl + wz) Q(z) 

(A.51 

(A.6) 

is an entire function because it is analytic in the cut plane and its discontinuity 
across the cut vanishes. It is thus a constant. 

Letting z approach infinity we find 

Lim F(z) = 1 (A.71 
z-m 

because in the same limit 

X(x)X( -2) - -l/z2 (A.8) 
and 

n(z) - - l UlW2 + WI 

x2 3Ul(Ul Wl + w2) . 
(A.91 

This proves Identity II. 
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II)ENTIT~ III 

3Ul 
1 

s(x) = a((r, w2 + WT, 
P &J 

X(-p) (CL - 2) 
(A.lO) 

+ Cl2 Wl s 

I/r1 

0 

This is a nonlinear integral equation for X(z) which can be used by the ambitious 
to evaluate .X(x) numerically. It is obtained by combining Identities I and II 
and noting the trivial, 

IIIENTITY IV 

-AWL) = 
3a1 da1 Wl + wd 

(a wz + w)S(-CL) 
(A.ll) 

obtained from Eq. (A.5) by taking boundary values of both sides. 

APPENDIX B. THE HALF-SPACE GREEN’S FUNCTION 

For the case, det C = 0, there is no solut’ion to the infinite medium Green’s 
function which is finite everywhere. However, we can define a “pseudo Green’s 
function” for the infinite medium that goes to a constant at plus infinity and 
diverges at minus infinity, which can then be used to construct the half-space 
Green’s function in the following way. 

We wish to construct a solution t,o the homogeneous transport equation, Eq. 
(II), which approaches a constant bounded value at plus infinity, obeys the 
“jump conditions” at the source position, and has zero incident distribution. 
We note that there are two Green’s functions, G1 and Gz , corresponding to 
sources 

1 
q1 = 6(x: - &I) S(P - PO> o 0 
qn = 6(x: - x0) S(P - PO) y 

0 

respectively. Each is found in a similar way, so we simply discuss G1 . 
Consider an artificial infinite medium Green’s function of the form 

+ l”- ol13(g)e-(l-Sll)‘n0~1)(0, /AL) dll (B.2a) 

+ r;., (Y12(0)e-(*-T0)‘$0:2)(~1, PL) do, x: > 20. 
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Glm(xu , pu + cc, p) = -A,- W- (.c - zo , /A) 

s 

0 
- m(7l)e (ro-*)‘vOl(q, p) dq 

-l/al 

s 

0 

- 
w2(o>e 

hr~)/90;1) (q, p) (jq 

-l/01 

- 

s 

-l/r1 

m(rl>e (*“-z)‘70:z) (q, p) dq, x < 20. 
-1 

(B.2b) 

Here the coefficients are found in the usual manner; i.e., we set 

Gdxo , /LO -+ TO+, P> - Gmbo , PO + zo-, PL) = 27v.db.4 - PO> 
1 

0 0 ’ (B.3) 

which leads to 

Theorems III and IV apply to the above and thus we can find Al+, A,-, (YU(~), 
and a12(q). Note that Gl- obeys the first two boundary conditions; i.e., it goes 
to a constant at + 00 and it obeys the “jump condition,” Eq. (B.3). That it 
diverges at - ~0 is not important here. We now must fix the zero incident dis- 
tribution condition. To this end, we write 

(B.5) 

s 

1 
- aL2(q)e-z’n0?)(9, P> 6, z > 0. 

l/Cl 

Setting II: = 0, we obtain the condition for zero incident, distribution; namely, 

I 

1101 

Gdxo , PO * 2, p) = A:+ 0+ + 41 (rl)0l(rl, P> drl 
0 

+ 6”” c&(q)O:l)(vl, IL) 6 03.6) 

+ CT, 
a:*(9)0:2Y9: CL) 67, p 2 0. 
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Since the left-hand side of Ey. (B.6) is known, we can determine the u~J<~lown 

coefficients, A:+, C&(T), and &(q), with the aid of Theorems I and II. The 
half-space Green’s function corresponding to source ql is thus known and given 
by &I. (B.5). In exactly the same way, Gz,,,, can be found. 
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