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An expression for the disadvantage factor for a two-region heterogeneous cell in
plane geometry has been obtained within the structure of one-speed neutron trans-
port theory. The scattering in the fuel region has been assumed isotropic; how-
ever, to describe more accurately the scattering in the moderator, a two-term
kernel has been used. The analysis is based on Case’s normal-mode expansion
technique and leads to a set of Fredholm equations for the unknown expansion

coefficients.

Numerical solutions, obtained by solving iteratively the Fredholm

equations for the expansion coefficients, are given for several sets of parameters.

INTRODUCTION

The utility of the disadvantage factor in the
calculation of the thermal utilization in hetero-
geneous reactor cells is well known. For the
purpose of reactor design calculations, one would
like to know this quantity as accurately as pos-
sible. In general, of course, this would require
solutions to the energy-dependent neutron trans-
port equation in order to describe accurately the
processes involved. Because of the complexity of
the general model, the one-speed approximation
has found favor in the calculation of fine structure
parameters for heterogeneous lattices.

The standard texts“? illustrate the concept of
the disadvantage factor; however, the calculations
are usually limited to a diffusion-theory treat-
ment. Pomraning and Clark® have made calcula-
tions based on an improved diffusion-theory model,
and Theys4 has applied the Amouyal-Benoist-
Horowitz (A-B-H) technique’® to plane geometry
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problems and has also made S-8 calculations. One
of the more rigorous analyses in one-speed theory
for the slab lattice is that of Ferziger and Robin-
son,” who used Case’s method of normal modes™®
and solved numerically the ensuing Fredholm
equations for the expansion coefficients. More
recently, Carlvik’ has used an integral transport
method, which takes into account the effects of
anisotropic scattering, to make disadvantage fac-
tor calculations. In addition to having merit in
several geometries, the method reported by Carl-
vik appears to be useful for accurate numerical
calculations.

It is well known that the assumption of isotropic
scattering is especially violated in media con-
taining light elements.'® This, of course, is
precisely the case in a heterogeneous reactor
cell, where a fuel region is embedded in a
thermalizing moderator. The assumption of iso-
tropic scattering in the heavy fuel region is quite
reasonable, but this proposition is certainly not
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justified in the moderator. The purpose of this
paper is thus to extend the technique used by
Ferziger and Robinson® to include the effect of a
two-term scattering kernel in the moderator re-
gion.

BASIC FORMALISM

If we denote the fuel and moderator regions of
the reactor cell by 1 and 2, respectively, then the
appropriate transport equations are

2 —aaz ‘PI(Z,#) + 0-14/1(2,“)
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where

a and 8 = the dimensions of the cell

Yi(z,u) and yu(2,u) = the neutron angular den-
sities
0, and 02 = the total cross sections

¢, and ¢, = the mean numbers of sec-
ondary neutrons per colli-
sion (no fission)

S = the source (assumed con-
stant and isotropic)

z = the position coordinate (in
cm)

p = the direction cosine of the
neutron velocity vector (as
measured from the posi-
tive z axis)

w = the Legendre coefficient in
a two-term expansion of
the scattering kernel.

We thus seek solutions to Eqs. (1) subject to
the boundary conditions:

a) Yla, k) = Yyla, 1)
b) Wl(o,'l-'-) = 4/1(0,“')
c) ¥alB,-1) = (B, 1) -

The first boundary condition states that the angu-
lar density should be continuous at the interface
between the two media. The second and third
conditions reflect the symmetry of the problem.

BOND AND SIEWERT

For the sake of economy in notation, we prefer
to write Eqs. (1) in terms of an optical variable,
x, defined as

x=0,2, 0sz<aq (2a)

(2b)

b
x = 0y2+a(0,-02), a<zs<gB.

Thus, we obtain

B % Yilx,u) + Yily,p) = c—z’ S (rop 60 wir, ) ap?
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and the boundary conditions
la,u) = Yla,p), pe(-1,1) (4a)
Yalb, 1) = Yu(b,-) 5 poe (-1,1) (4b)
i(0,1) = 41 (0,-p) , 1 e(-1,1), (4c)

where

0, a

ne e

a + 0,(B-a) .
ANALYSIS

Following the work of Case and Zweifel® for
isotropic scattering and that of McCormick and
KuSEer'' for anisotropic scattering, we write the
solutions to Eq. (3) in the forms

Yy, u) = Ao, (n)exp(-x/vg) + A_¢_ (1) exp(x/vo)

1
+ 2 AW)9u(w)exp(-x/v)dv (52)
Yalor, 1) = ByX (1) exp[(b-x)/n,] + B-X ()
1
X exp[-(b-x)/n,] + f_l B)Xy(w)
x exp[(b-x)/nldn + 7~ (5D)
Here, the discrete solutions are
_Ci1lg 1
o, (W)= =5 a— (6a)
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X4 = =5 Tzl (6b)
where Vo and 7, are the positive zeros of
Ay(z)=1-c,z tanh™* zl (7a)
Ax(z)= d(z?) (1 -cyztanh™! %) - w(l-c3)?2?, (7o)
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respectively. the continuum modes

are given by

In addition,

c.v P
oK) = 2; vt Ai(v) 6(v-p) (8a)

Cs
Xo2) = S0 alms) 2=+ xaln) (1) (8b)

n-u
where
A,(v)=1-c,vtanh™* (9a)
Xa(n) = d(n®) (1 -contanh™ n) - w(1-c,)%n? (9b)
Also,
dnp) = 1+ w(l-ca)npu - (10)

Finally, the symbol P indicates that the various

integrals are to be considered in the Cauchy
principal-value sense, and 5(x) denotes the Dirac
delta function,

Case’ showed that the ¢,(1) are orthogonal,
with respect to weight function M, over the full
range -1< p <1. The required integrals are”
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The correspondmg forms for the X (LL) de-
veloped by Mlka Z are
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In addition, we shall need the ‘‘cross-product”’
integrals, which may be summarized as

f_l1 1 o (W) Xg (W) = EE" F(EE) f_g +M(E)E6(E-£T),
E=xypor £=ve(-1,1)and &' = %7
or ¢ e(-1,1) , (17)
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where

F(ge) = 52 + B (1-ca)(1-ca) wEE! (18)
M(&) =X (5)7\2(5)‘* 01025 a(&?) . (19)

Clearly, the symmetry conditions Eqgs. (4b) and
(4c), are satisfied if A, = A_, B, = B_, A(v) = A(~v),
and B(n) = B(-n). Thus, the expansion coefficients,
A,, B, A(v), and B(n), are to be determined from
the continuity condition, Eq. (4a), i.e.,

A, [¢:+(n) exp(-a/vo) + ¢_(u) expla/vo)]
+ [, AW) exp(-a/v) 9w av
= 1+ B, [x.(1) exp(a/no) + X_(1) exp(-A/n,)]
+ [, B0 exp(a/n) xwdn , e (-1,1), (20)

where A = b - a; we have, without loss of gener-
ality, taken S= 02(1 - ¢2). That Eq. (20) has a
solution is a consequence of the completeness
theorems proved for the eigenfunctions, ¢,(u) and
Xq(4), by Case’ and Mika.”” All of the unknown
expansion coefficients can be determined from
Eq. (20), and this, of course, is the basic problem;
however, we digress for a moment to formulate
the expression for the disadvantage factor.

Since the eigenfunctions are normalized to
unity,® the neutron densities are obtained im-
mediately by integration of Eqgs. (5). Keeping in
mind the symmetry of the expansion coefficients
and the source normalization, we write

p.(x) = 2A, cosh x/y, + 2 folA(v) cosh x/v dv (21a)

palx) = 2B+cosh( > 2f

x cosh(b%‘) dn + 2 (21b)
Thus, the disadvantage factor,
b
cr<o> o Jor0® )
=X - s
<Pr> _/(; pl(x)dx
becomes

moB.sinh A/n,+ [" nB(n) sinh A/ndn+ A

c:

DR

VoA, sinh a/ve +j: VA (v) sinha /v dv

(23)

We write Eq. (23) in a more convenient form by
eliminating the discrete coefficients A, and B,,



280

following the procedure used by Ferziger and
Robinson,” i.e., by taking the zeroth and first
moments of Eq. (20) with respect to y, we can
express A, and B, in terms of A(v)and B(n). When
this is done and the results substituted into Eq.
(23), there results

g{(_l:_c_l_) [Acoth A + K - 1]+ —é—cothg—}

A |(1-c2) |no Mo 0 Yo
g= 1K » (24)
where
K=Ao-Bo-ﬂcoth—"—+§—1 coth & (25)
Vo Vo Mo Mo
_ ! a
Ao—fo A(v) cosh S av (26a)
A= [ AW) v sinn 2 dv (26b)
A
B, = j: B(n) cosh ; dn (26c)
_ [t o A
B, = fo B(n) i sinh , an . (264)

Clearly, the lowest order solution for ¢ is
obtained by taking K = 0; however, for a more
rigorous calculation, we must find A(v) and B(n).
Though we cannot obtain these expansion' coeffi-
cients explicitly, Fredholm integral equations for
them can be generated, and by iterating these
Fredholm equations, we can obtain the solutions
for A(v) and B(n) to any desired degree of ac-
curacy.

The usual technique for isolating the expansion
coefficients, namely, employing the orthogonality
of the eigenfunctions, yields a pair of coupled
singular integral equations for A(v) and B(n).
Robinson® was able to circumvent the singular
nature of these equations by judicious algebraic
manipulation. We take a slightly different tack,
which yields similar results, by utilizing an
integral operator H(a,8); if G(1) is an arbitrary
function defined for p €(-1,1), then

H(e,p)6W) 2 [ u[Qu(m)exp(-8/a)+ 2alp)

x exp(8/a)] G(w)dy, (27)
where Qu(u) represents either set ¢,(u) or X (1)-
[We will always associate the parameter v with
¢u(1) andn with Xy(w).]

By operating on Eq. (20) with H(ve, A), H(ng, -a),
H(v,A), and H(n,-a) and then rearranging the re-
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sulting equations,
following:

we obtain, respectively, the

AN, T(Vy) = QeyC 1, A) + BiR (g, Vs A)

+ [ B Ry, v, 4) iy (28)
-§+N+2T(770)= Qnec2,a) + A~+R(Vo’770’a)
+ [ AW) Rwnpa)dv (29)
AW)N,()T(v) = Q(v,c1, A) + B,R(no, v, A)
+ [ B Ran,v, A) dy (30)
-BMmNn)T () = @, c2,a) + A,R(ve,n,a)
+ _]: Z(V)R(V,n,a)du , (31)
where
A, = A, cosh a/v, (32a)
Av) = A(v) cosh a/v (32b)
B, = B, cosh A/n, (33a)
B() = B(n) cosh a/n, , (33Db)
T(x) = tanh % + tanh % (34)
Q(x,y,2) = x(1 - y) tanh z/x (35)
R(x,y,z) = fz—x:%z [xF(yz) tanh %
-yF(x® tanh 5] . (36)

We note that the function R(x,y,z) is non-
singular, and thus standard quadrature formulae
may be used to evaluate the integrals appearing in
Eqgs. (28) through (31). The numerical solution of
these four coupled equations is considered in the
following section.

NUMERICAL SOLUTION

While one may partially decouple Egs. (28)
through (31) by repeated substitution, there ap-
pears to be no particular merit in doing so, since
the resulting equations must still be solved nu-
merically. There is, of course, no general proof
that Eqgs. (28) through (31) have a unique solution;
this point, however, can be circumvented by in-
voking the uniqueness theorems established by
Case and Zweifel® for the complete solution
Vilx,u). The procedure used here to solve Egs.
(28) through (31) is to replace all integral terms
by an appropriate quadrature formula and to solve
by iteration the ensuing equations.

We initiate the solution scheme by neglecting
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the continuum contribution in Egs. (28) and (29);
the lowest order gstimates for the discrete coef-
ficients A, and B, are thus readily available.
These values are then entered into Egs. (30) and
(31), and initial estimates of A(v) and B(n) are
found by ignoring the integral terms. We now
proceed through each of the four equations, ob-
taining new estimates of the coefficients from the
last iterated values. This process is repeated
until the difference in successive iterations is
less than some preassigned number.

This scheme has been used to compute the dis-
advantage factor for a number of slab cells and
for several values of the anisotropy factor w.
The results of our calculations are shown in
Table 1. There, the basic cells are those intro-
duced by Theys® and studied by others.®»®% %

In generating the results given in Table I, we
have employed an 81-point improved Gaussian
quadrature formula® for the numerical integra-
tions, and we have performed the computations in
double-precision arithmetic on an IBM 360/75
computer. A need for a relatively high-order
quadrature formula was suggested by preliminary
results which indicated a sharp peak, generally
occurring for v between 0.8 and unity, in the coef-
ficient A(v). A number of test cases showed that
increasing the quadrature nodal density beyond the
81-point scheme failed to alter the disadvantage
factor within the significant figures reported here.

A, S. KRONROD, Nodes and Weights of Quadrature
Formulas, Consultants Bureau, Inc., New York (1965).
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The iterative procedure outlined above was
terminated when successive iterations showed a
relative difference of < 107'°, This is, of course,
no assurance that the coefficients thus determined
reflect this degree of precision; as will be dis-
cussed, additional measures are needed to in-
crease confidence in the calculations. It is clear
that the proposed solutions, Egs. (5), satisfy the
given transport equations. In addition, the sym-
metry properties of the expansion coefficients
guarantee that the reflection conditions, Eqgs. (4),
are met rigorously. Thus, the only possible error
is measured by how accurately we can meet the
interface condition, Eq. (20). This boundary con-
dition is, of course, precisely the one that led to
the coupled set of integral equations for the un-
known expansion coefficients. Having obtained the
expansion coefficients numerically, we should now
like to estimate the degree of accuracy with which
our solution meets the remaining boundary condi-
tion.

Ideally, one would like to compute y,(a,u) and
Yyla, ) explicitly for many values of yu to ensure
that the continuity condition is satisfied. This
would, however, necessitate the numerical evalua-
tion of principal-value integrals; we prefer to
avoid this by comparing numerous moments of the
continuity condition rather than y,(a,u) and y,(a,u)
directly. Defining

M, = /jlll/l(a,u)ukdu/f_ll ala, pukdy , (37)

we note that it can be written in terms of the

TABLE I
The Disadvantage Factor of Slab Cells with Linearly Anisotropic Scattering
¢, the Disadvantage Factor
Anisotropy Cell 17 Cell 22 Cell 32 Cell 4°
Calculational Coefficient a=0.10 cm a=0.20 cm a =0.30 cm o =0.40 cm
Model w B=0.45 cm B=0.90 cm B =1.35cm B=1.80cm
P, theory 0.0 1.028 1.113 1.253 1.447
Converged solution 0.0 1.0978 1.2317 1.4077 1.6284
P, theory 0.1 1.027 1.110 1.245 1.433
Converged solution 0.1 1.0970 1.2283 1.4001 1.6151
P, theory 0.3 1.026 1.103 1.230 1.407
Converged solution 0.3 1.0953 1.2215 1.3849 1.5885
P, theory 0.6 1.023 1.093 1.207 1.366
Converged solution 0.6 1.0927 1.2113 1.3621 1.5485
P, theory 0.9 1.021 1.082 1.184 1.326
Converged solution 0.9 1.0901 1.2010 1.3392 1.5083

apfuel - 9.32/cm shiel = 9.717/cm

zmed=0.0195/cm  =7°d=2.33/cm.
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already calculated expansion coefficients,
— A 1
%) 2 1 o (wutap (38a)
and

Xm)  [2 Xuptap . (38b)

It is a simple matter to show that ¢,(v) and Xp(n)

satisfy, respectively, the following recurrence
relations:
0k(V) = vy, (v) - % Je-1, k=1, (39a)
= - c
Xe) = 0 Xeea() - 2L Jpes
-933—(%@1724, E=>1, (39b)
where
k
1+ (-1
=t 40
0o(v) = X,(n) = 1. (41)

Should the coefficients be precisely determined,
then clearly M, would equal unity for all 2. In the
present work, we have calculated the first ten
moments of the interface condition for each of the
cells shown in Table I. In the worst case, our
results showed [M- 1lmax< 2X 1078, For this
reason, we believe our results for the disadvan-
tage factor to be accurate to as many figures as
reported.

In Table II, we have compared our results to
previously reported calculations for the special
case of isotropic scattering (w = 0). The values of
Ferziger and Robinson® shown in the table are
also based on Case’s method. Their procedure,
while more rapidly convergent than ours, required
numerical estimation of principal-value integrals
and utilized lower-order quadrature.

Inspection of Table I reveals that, for the cases
considered here, the disadvantage factor decreases
with moderator anisotropy, an effect that we would
have anticipated from the P -theory results. It
should be noted that only positive values of the
anisotropy factor w have been investigated. For
the most frequently used scattering law, i.e., iso-
tropic scattering in the center-of-mass system,
this will always be the case.

BOND AND SIEWERT

TABLE II

The Disadvantage Factor of Isotropically Scattering
Slab Cells by Various Computational Methods

Computational Method Cell 1 |Cell 2 [Cell 3 |Cell 4

P, theory 1.028 |1.113 |1.253 |1.447
Pomraning and Clark®

Asymptotic diffusion theory| 1.06 1.18 1.34 1.56
Theys*

Modified A-B-H method 1.08 1.20 1.36 1.58
Theys*

Sg calculation 1.09 1.23 1.43 1.64
Perkins®

Sg calculation 1.069 [1.203 |1.382 |1.605
Lathrop™

Sg calculation 1.090 |1.231 |1.410 |1.632
Carlvik®

Integral transport theory 1.097911.2318|1.408 |1.629
Ferziger and Robinson?

Case’s method 1.094 |1.227 [1.401 |1.623
Converged solution 1.0978|1.231711.4077|1.6284

?A. H. Robinson (Private Communication) has established
these as the correct values rather than those reported in Ref. 6.

Certainly there are a number of other methods,
usually utilizing discrete ordinates and/or differ-
ence-equation techniques, for treating anisotropic
scattering in slab cells. We believe our results to
be of sufficient accuracy to serve as bench marks
in assessing the relative merits of these various
approximations.

In addition, we have further illustrated that
Case’s normal-mode expansion technique can be
conveniently used in reactor computations. For
practical applications, one would probably elect to
reduce the quadrature order below that which we
have used, sacrificing but a small degree of
accuracy for considerable savings in computer
time.
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