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AbstractÐThe spherical-harmonics method, including some recent improvements, is used to
establish the complete solution for a general problem concerning radiative transfer in a
plane-parallel medium. An L-th order Legendre expansion of the phase function is allowed,
internal sources and re¯ecting boundaries are included in the model, and since a non-nor-
mally incident beam is impinging on one surface, all components in a Fourier decompo-
sition of the intensity are required in the solution. Numerical results for two test problems
are reported. # 1998 Elsevier Science Ltd. All rights reserved

1. INTRODUCTION

Some years ago, the FN method was used1 to solve a general radiative-transfer problem that was
based on a model that included internal sources, re¯ecting and emitting boundaries and a beam
incident on one surface. Here we use some recent improvements in the spherical-harmonics
method to solve this class of problems.

We let I(t, m, f) denote the intensity (radiance) of the radiation ®eld and utilize the equation
of transfer2 for a plane-parallel medium for our model. We write

m
@

@t
I�t; m;f� � I�t; m;f� � $

4p

Z 1

ÿ1

Z 2p

0

p� cosY�I�t; m 0;f 0� df 0 dm 0 � S0�t� �1�

where t $ (0, t0) is the optical variable and $ $ [0, 1] is the albedo for single scattering. In ad-
dition, m $ [ÿ1, 1] and f $ [0, 2p] are, respectively, the cosine of the polar angle (as measured
from the positive t axis) and the azimuthal angle which describe the direction of propagation of
the radiation. Here we use S0(t) to represent an internal source of radiation. We note also that
the phase function p�cosY� is represented by a ®nite Legendre polynomial expansion in terms of
the cosine of the scattering angle Y, viz.

p� cosY� �
XL
l�0

blPl� cosY� �2�

where the coe�cients are such that b0=1 and jblj< 2l + 1 for 0 < lRL. In regard to the
physical parameters of this problem, we do not, for the moment, consider the special case of a
conservative medium ($= 1). The modi®cations to our general development for this special
case are discussed in Section 6 of this paper.

We assume that the medium is illuminated uniformly at t = 0 by a beam with a direction
speci®ed by (m0, f0) and that there is also an incident distribution, described by T(m), of radi-
ation on the surface located at t = t0. We therefore seek a solution to Eq. (1) that satis®es the
boundary conditions

J. Quant. Spectrosc. Radiat. Transfer Vol. 60, No. 2, pp. 247±260, 1998
# 1998 Elsevier Science Ltd. All rights reserved

Printed in Great Britain
0022-4073/98 $19.00+0.00PII: S0022-4073(97)00176-3

247



I�0; m;f� � pd�mÿ m0�d�fÿ f0� � rs1I�0;ÿm;f� �
rd1
p

Z 2p

0

Z 1

0

I�0;ÿm 0;f 0�m 0 dm 0 df 0 �3a�

and

I�t0;ÿm;f� � T�m� � rs2I�t0; m;f� �
rd2
p

Z 2p

0

Z 1

0

I�t0; m 0;f 0�m 0 dm 0 df 0 �3b�

for m $ (0, 1] and f $ [0, 2p]. Here we use the symbols rsa and rda, for a = 1 and 2, to character-
ize specular and di�use re¯ection.

2 . THE SINGULAR COMPONENT OF THE INTENSITY

Since the incident beam for the considered problem is represented by delta functions, the
resulting intensity will also have a component containing generalized functions, and so, in order
to remove the generalized functions from the computation, we use a decomposition of the form

I�t; m;f� � I��t; m;f� � D�t; m;f� �4�
where D(t, m, f) contains all of the generalized functions in the complete solution. Considering
the homogeneous version of Eq. (1) for the case $= 0, we write

D�t; m;f� � F�m;f�eÿt=m: �5�
We next substitute Eq. (5) into Eqs. (3) for the case without di�use re¯ection and with T(m) = 0
to ®nd

F�m;f� � pDÿ1�m�d�mÿ m0�d�fÿ f0� �6a�
and

F�ÿm;f� � prs2D
ÿ1�m�eÿ2t0=md�mÿ m0�d�fÿ f0� �6b�

for m $ (0, 1] and f $ [0, 2p]. Here we have used

D�m� � 1ÿ rs1r
s
2e
ÿ2t0=m: �7�

3. THE NON-SINGULAR COMPONENT OF THE INTENSITY

We can now substitute Eq. (4) into Eqs. (1) and (3) and deduce that the non-singular com-
ponent I*(t, m, f) is de®ned by

m
@

@t
I��t; m;f� � I��t; m;f� � $

4p

Z 1

ÿ1

Z 2p

0

p� cosY�I��t; m 0;f 0� df 0 dm 0 � S�t; m;f�; �8�

for t $ (0, t0), m $ [ÿ1, 1] and f $ [0, 2p], and the boundary conditions

I��0; m;f� � rd1K1 � rs1I��0;ÿm;f� �
rd1
p

Z 2p

0

Z 1

0

I��0;ÿm 0;f 0�m 0 dm 0 df 0 �9a�

and

I��t0;ÿm;f� � rd2K2 � T�m� � rs2I��t0; m;f� �
rd2
p

Z 2p

0

Z 1

0

I��t0; m 0;f 0�m 0 dm 0 df 0 �9b�

for m $ (0, 1] and f $ [0, 2p]. Here, the known inhomogeneous term is

S�t; m;f� � S0�t� � $
4p

Z 1

ÿ1

Z 2p

0

p� cosY�D�t; m 0;f 0� df 0 dm 0: �10�

In addition,

K1 � m0r
s
2D
ÿ1�m0�eÿ2t0=m0 �11a�
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and

K2 � m0D
ÿ1�m0�eÿt0=m0 : �11b�

Before attempting a Fourier decomposition of the non-singular component of the intensity, we

make use of the addition theorem3 for the Legendre polynomials and express the scattering law as

p� cosY� �
XL
m�0
�2ÿ d0;m�

XL
l�m

blP
m
l �m 0�Pm

l �m� cos �m�f 0 ÿ f�� �12�

where

Pm
l �m� �

�l ÿm�!
�l �m�!
� �1=2

�1ÿ m2�m=2 dm

dmm
Pl�m� �13�

denotes a normalized associated Legendre function. Using Eq. (12), we rewrite Eq. (8) as

m
@

@t
I��t; m;f� � I��t; m; f� � $

4p

XL
m�0
�2ÿ d0;m�

XL
l�m

blP
m
l �m�

�
Z 1

ÿ1

Z 2p

0

Pm
l �m 0�I��t; m 0;f 0� cos �m�f 0 ÿ f�� df 0 dm 0 � S�t; m;f� �14�

where now, after noting Eqs. (5), (6), (10) and (12), we write the inhomogeneous term as

S�t; m;f� � S0�t� � S1�t; m;f� �15�
with

S1�t; m;f� �$
4
Dÿ1�m0�

XL
m�0
�2ÿ d0;m�

XL
l�m

blP
m
l �m0�Pm

l �m�

� �eÿt=m0 � �ÿ1�lÿmrs2eÿ�2t0ÿt�=m0 � cos �m�fÿ f0��: �16�
Introducing a ®nite Fourier decomposition, we substitute

I��t; m;f� � 1

2

XL
m�0
�2ÿ d0;m�Im� �t; m� cos �m�fÿ f0�� �17�

into Eq. (14) to ®nd, form = 0, 1, . . . ,L,

m
@

@t
Im� �t; m� � Im� �t; m� �

$

2

XL
l�m

blP
m
l �m�

Z 1

ÿ1
Pm
l �m 0�Im� �t; m 0� dm 0 �Qm�t; m� �18�

where

Qm�t; m� � 2S0�t�d0;m �$
2
Dÿ1�m0�

XL
l�m

blP
m
l �m0�Pm

l �m��eÿt=m0 � �ÿ1�lÿmrs2eÿ�2t0ÿt�=m0 �: �19�

To establish the boundary conditions subject to which we must solve Eq. (18), we substitute Eq. (17)

into Eqs. (9) to ®nd, form = 0, 1, . . . , L,

Im� �0; m� � 2rd1K1d0;m � rs1I
m
� �0;ÿm� � 2rd1d0;m

Z 1

0

I m
� �0;ÿm 0�m 0 dm 0 �20a�

and

Im� �t0;ÿm� � 2�rd2K2 � T�m��d0;m � rs2I
m
� �t0; m� � 2rd2d0;m

Z 1

0

I m
� �t0; m 0�m 0 dm 0 �20b�
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for m $ (0, 1]. At this point, we are ready to develop our spherical-harmonics solution to the set of
problems de®ned by Eqs. (18)±(20).

4 . A SPHERICAL-HARMONICS SOLUTION

In order to solve the collection of Fourier-component problems de®ned by Eqs. (18)±(20) we
use a form of the solution to the moments of the homogeneous version of Eq. (18) that was
reported in Ref. 4 and a new particular solution that was worked out by Siewert and
McCormick in a work5 on polarization that contains the scalar case considered here as the ®rst
component in a Stokes-vector formulation. In view of Refs. 4 and 5, our presentation here is
brief. First of all, we note that, for N odd,

Im� �t; m� �
XM
l�m

2l � 1

2
Pm
l �m�

XJ
j�1
�Aje

ÿt=xj � �ÿ1�lÿmBje
ÿ�t0ÿt�=xj � gml �xj� � Imp �t; m�; �21�

where

Imp �t; m� �
XM
l�m

2l � 1

2
Pm
l �m�

XJ
j�1

Cj

xj
�Aj�t� � �ÿ1�lÿmBj�t�� gml �xj� �22�

is a particular solution, satis®es the ®rst N + 1 moments of Eq. (18), i.e.Z 1

ÿ1
Pm
m�a�m� m

@

@t
Im� �t; m� � Im� �t; m� ÿ

$

2

XL
l�m

blP
m
l �m�

Z 1

ÿ1
Pm
l �m 0�Im� �t; m 0� dm 0 ÿQm�t; m�

" #
dm � 0

�23�
for a=0,1, . . . , N. Here M=m+N, J= (N+1)/2, and we use the normalized Chandrasekhar
polynomials,2,6 with the starting value

gmm�x� � �2mÿ 1�!!��2m�!�ÿ1=2; �24�
that satisfy, for lem,

hlxgml �x� � ��l � 1�2 ÿm2�1=2gml�1�x� � �l 2 ÿm2�1=2gmlÿ1�x� �25�
where

hl � 2l � 1ÿ$bl; for 0 � l � L; �26a�
and

hl � 2l � 1; for l > L: �26b�
In addition, the eigenvalues {xj} are the positive zeros of gmM+1(x), and the constants {Aj} and
{Bj} are to be determined from the boundary conditions. In regard to the particular solution
given by Eq. (22), we note that the constants {Cj} are given by

Cj � 2
XM
l�m

hl �gml �xj��2
 !ÿ1

�27�

and that

Aj�t� �
Z t

0

Z 1

ÿ1
Xj�m�Qm�x; m� dm

� �
eÿ�tÿx�=xj dx �28a�

and

Bj�t� �
Z t0

t

Z 1

ÿ1
Yj�m�Qm�x; m� dm

� �
eÿ�xÿt�=xj dx �28b�
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where

Xj�m� �
XM
l�m

2l � 1

2
Pm

l �m�gml �xj� �29a�

and

Yj�m� �
XM
l�m

2l � 1

2
�ÿ1�lÿmPm

l �m�gml �xj�: �29b�

As we wish to use the Mark conditions7 to ®nd the unknown constants {Aj} and {Bj} in

Eq. (21), we ®rst let {mi} denote the J positive zeros of Pm
M+1(m). Then we substitute Eq. (21)

into Eqs. (20) evaluated at m = mi, for i= 1, 2, . . . , J, to ®ndXJ
j�1
�Xj�mi� ÿ rs1Yj�mi� ÿ 2rd1d0;m �Yj�Aj �

XJ
j�1

eÿt0=xj �Yj�mi� ÿ rs1Xj�mi� ÿ 2rd1d0;m �Xj�Bj � R1�mi� �30a�

andXJ
j�1
�Xj�mi� ÿ rs2Yj�mi� ÿ 2rd2d0;m �Yj�Bj �

XJ
j�1

eÿt0=xj �Yj�mi� ÿ rs2Xj�mi� ÿ 2rd2d0;m �Xj�Aj � R2�mi� �30b�

where

�Xj �
Z 1

0

Xj�m�mdm and �Yj �
Z 1

0

Yj�m�m dm: �31a and b�

In addition, the known right-hand sides of Eqs. (30) are de®ned as

R1�m� � 2rd1K1d0;m ÿ Imp �0; m� � rs1I
m
p �0;ÿm� � 2rd1d0;m

Z 1

0

I m
p �0;ÿm 0�m 0 dm 0 �32a�

and

R2�m� � 2�rd2K2 � T�m��d0;m ÿ Imp �t0;ÿm� � rs2I
m
p �t0; m� � 2rd2d0;m

Z 1

0

I m
p �t0; m 0�m 0 dm 0 �32b�

or, more explicitly,

R1�mi� � 2rd1K1d0;m �
XJ
j�1

Cj

xj
Bj�0��ÿYj�mi� � rs1Xj�mi� � 2rd1d0;m �Xj� �33a�

and

R2�mi� � 2�rd2K2 � T�mi��d0;m �
XJ
j�1

Cj

xj
Aj�t0��ÿYj�mi� � rs2Xj�mi� � 2rd2d0;m �Xj�: �33b�

It is clear that to complete the expression given by Eq. (21) we have to solve the system of linear

algebraic equations de®ned by Eqs. (30). Considering that we solved that system of equations to

®nd the constants {Aj} and {Bj} that are required in Eq. (21), we now go on to establish our

®nal representation for the Im
*
(t,m) that are required in Eq. (17). As mentioned previously, we

use Eq. (21) only to compute the moments of Im
*
(t,m), and so, following and generalizing other

works,8±11 we go back to Eq. (18) and solve for Im
*
(t,m) with the assumption that we know the

right-hand side of that equation. We thus write

I m
� �t; m� � I m

� �0; m�eÿt=m �M�t; m� �34a�
and
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Im� �t;ÿm� � Im� �t0;ÿm�eÿ�t0ÿt�=m �M�t;ÿm� �34b�
for m $ (0, 1]. Here

M�t; m� � 1

m

Z t

0

B�x; m�eÿ�tÿx�=m dx �35a�

and

M�t;ÿm� � 1

m

Z t0

t
B�x;ÿm�eÿ�xÿt�=m dx �35b�

where, for m $ (0, 1],

B�x;2m� � $
2

XL
l�m

blP
m
l �2m�

Z 1

ÿ1
Pm
l �m 0�Im� �x; m 0� dm 0 �Qm�x;2m�: �36�

In order to complete Eqs. (34) we must ®nd the surface quantities Im
*
(0, m) and Im

*
(t0, ÿm) for

m $ (0,1]. Thus we consider the system of equations obtained from Eq. (34a) evaluated at t = t0,
Eq. (34b) evaluated at t = 0 and Eqs. (20), viz.

Im� �t0; m� �Im� �0; m�eÿt0=m �M�t0; m�; �37a�
Im� �0;ÿm� �Im� �t0;ÿm�eÿt0=m �M�0;ÿm�; �37b�

Im� �0; m� �rs1Im� �0;ÿm� � 2rd1�K1 � J1�d0;m �37c�
and

Im� �t0;ÿm� � rs2I
m
� �t0; m� � 2�rd2�K2 � J2� � T�m��d0;m �37d�

for m $ (0, 1]. Here we use

J1 �
Z 1

0

I 0
��0;ÿm�m dm �38a�

and

J2 �
Z 1

0

I 0
��t0; m�m dm: �38b�

We can solve Eqs. (37) to ®nd, for m $ (0, 1],

Im� �0; m� � Dÿ1�m��2rd1L1d0;m � rs1M�0;ÿm� � rs1e
ÿt0=m�2�rd2L2 � T�m��d0;m � rs2M�t0; m�

�	 �39a�
and

Im� �t0;ÿm� � Dÿ1�m��2�rd2L2 � T�m��d0;m � rs2M�t0; m� � rs2e
ÿt0=m�2rd1L1d0;m � rs1M�0;ÿm��

	
�39b�

where L1=J1+K1 and L2=J2+K2. We note that J1 and J2 are still unknown, but we can inte-
grate Eqs. (21) and (22) to obtain

J1 �
XN
l�0

2l � 1

2
Dl

XJ
j�1
��ÿ1�lAj � Bje

ÿt0=xj � Cj

xj
Bj�0�� g0l �xj� �40a�

and

J2 �
XN
l�0

2l � 1

2
Dl

XJ
j�1
��ÿ1�lBj � Aje

ÿt0=xj � Cj

xj
Aj�t0�� g0l �xj� �40b�
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where

Dl �
Z 1

0

Pl�m�m dm: �41�

At this point, we note that once we ®nd explicit expressions for the quantities M(t, m) and
M(t,ÿm) that appear in Eqs. (34), including the speci®c values M(t0, m) and M(0,ÿm) required
in Eqs. (39), our ®nal results for Im

*
(t, m) and Im

*
(t,ÿm) are completely determined. To this end,

we can substitute Eqs. (21) and (22) into Eq. (36) and perform the required integrations, to ®nd
that Eqs. (35) yield, for t $ [0, t0] and m $ (0, 1],

M�t; m� � Gm�t; m� �$
2
�Um�t; m� � Xm�t; m�� �42a�

and

M�t;ÿm� � Gm�t;ÿm� �$
2
�Um�t;ÿm� � Xm�t;ÿm��: �42b�

Here we let K= min{M, L} so that we can write

Um�t; m� �
XK
l�m

blP
m
l �m�

XJ
j�1

xj�AjC�t : m; xj� � �ÿ1�lÿmBje
ÿ�t0ÿt�=xj S�t : m; xj��gml �xj� �43a�

and

Um�t;ÿm� �
XK
l�m

blP
m
l �m�

XJ
j�1

xj��ÿ1�lÿmAje
ÿt=xj S�t0 ÿ t : m; xj� � BjC�t0 ÿ t : m; xj��gml �xj� �43b�

where

C�t : m; x� � eÿt=m ÿ eÿt=x

mÿ x
�44a�

and

S�t : m; x� � 1ÿ eÿt=meÿt=x

m� x
: �44b�

In addition, if we let

Um
j �z� �

Z 1

ÿ1
Xj�m�Qm�z; m� dm �45a�

and

Vm
j �z� �

Z 1

ÿ1
Yj�m�Qm�z; m� dm; �45b�

then we can write

Xm�t; m� �
XK
l�m

blP
m
l �m�

XJ
j�1

Cj

��ÿ1�lÿmS�t : m; xj�Bj�t�

�
Z t

0

�Um
j �z�C�tÿ z : m; xj� � �ÿ1�lÿmVm

j �z�eÿ�tÿz�=mS�z : m; xj�� dz
	
gml �xj� �46a�

and

Xm�t;ÿm� �
XK
l�m

blP
m
l �m�

XJ
j�1

Cj

��ÿ1�lÿmS�t0 ÿ t : m; xj�Aj�t�

�
Z t0

t
�Vm

j �z�C�zÿ t : m; xj� � �ÿ1�lÿmUm
j �z�eÿ�zÿt�=mS�t0 ÿ z : m; xj��dz

	
gml �xj�: �46b�
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To complete Eqs. (42), we ®rst use Eq. (19) in

Gm�t; m� � 1

m

Z t

0

Qm�x; m�eÿ�tÿx�=m dx �47a�

and

Gm�t;ÿm� � 1

m

Z t0

t
Qm�x;ÿm�eÿ�xÿt�=m dx �47b�

to ®nd

Gm�t; m� � d0;m
2

m

Z t

0

S0�x�eÿ�tÿx�=m dx� Lm�t; m� �48a�

and

Gm�t;ÿm� � d0;m
2

m

Z t0

t
S0�x�eÿ�xÿt�=m dx� Lm�t;ÿm� �48b�

where

Lm�t; m� � $
2
m0D

ÿ1�m0�
XL
l�m

blP
m
l �m�Pm

l �m0��C�t : m; m0� � �ÿ1�lÿmrs2eÿ�2t0ÿt�=m0S�t : m; m0�� �49a�

and

Lm�t;ÿm� �$
2
m0D

ÿ1�m0�
XL
l�m

blP
m
l �m�Pm

l �m0�

� �rs2eÿt0=m0C�t0 ÿ t : m; m0� � �ÿ1�lÿmeÿt=m0S�t0 ÿ t : m; m0��: �49b�
Continuing, we substitute Eq. (19) into Eqs. (28) to ®nd

Aj�t� � 2d0;m

Z t

0

S0�x�eÿ�tÿx�=xj dx� amj �t� �50a�

and

Bj�t� � 2d0;m

Z t0

t
S0�x�eÿ�xÿt�=xj dx� bmj �t� �50b�

where

amj �t� �
$

2
Dÿ1�m0�m0xj�Ej�m0�C�t : m0; xj� � rs2Fj�m0�eÿ�2t0ÿt�=m0S�t : m0; xj�� �51a�

and

bmj �t� �
$

2
Dÿ1�m0�m0xj�Fj�m0�eÿt=m0S�t0 ÿ t : m0; xj� � rs2Ej�m0�eÿt0=m0C�t0 ÿ t : m0; xj��: �51b�

Here

Ej�m� �
XK
l�m

blP
m
l �m�gml �xj� �52a�

and

Fj�m� �
XK
l�m

bl�ÿ1�lÿmPm
l �m�gml �xj�: �52b�

Finally in order to complete Eqs. (46), we can use Eq. (19) in Eqs. (45), to obtain, after noting
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Eqs. (52),

Um
j �z� � 2S0�z�d0;m �$

2
Dÿ1�m0��Ej�m0�eÿz=m0 � rs2Fj�m0�eÿ�2t0ÿz�=m0 � �53a�

and

Vm
j �z� � 2S0�z�d0;m �$

2
Dÿ1�m0��Fj�m0�eÿz=m0 � rs2Ej�m0�eÿ�2t0ÿz�=m0 �: �53b�

As our spherical-harmonics solutions for the Fourier-component problems are completely
de®ned, we now move on to consider some numerical calculations.

5 . NUMERICAL RESULTS

Since our preferred method of computing the required eigenvalues {xj} is discussed, for example,
in Ref. 4, and since we have reported in Ref. 6 an accurate and e�cient way of computing the
Chandrasekhar polynomials { gml (xj)}, we have here no particularly di�cult computations to do.
Having solved numerically the (well-conditioned) system of linear algebraic equations given by
Eqs. (30), we have simply to evaluate the ®nal expressions to ®nd the non-singular component of
the intensity. We note that, in general, we can use a Gauss-quadrature scheme to evaluate integrals
involving the assumed given inhomogeneous source term S0(t); however, for the speci®c test cases
considered here, we were able to perform all of the required integrations analytically.

For our ®rst calculation we consider the problem solved in Ref. 1 with the FN method. Here
the scattering law is given by L = 8, with b0=1, b1=2.00916, b2=1.56339, b3=0.67407,
b4=0.22215, b5=0.04725, b6=0.00671, b7=0.00068 and b8=0.00005. Other parameters used to
de®ne this calculation are: $= 0.9, t0=4.0, m0=0.5, and rs1=rd1=rs2=rd2=0.25. In addition,
the problem here has T(m) = 0.4 and

S0�t� � S0 � S1�t=t0� � S2�t=t0�2 � S3�t=t0�3 �54�
with S0=0.01, S1=0.008, S2=0.0064 and S3=ÿ 0.0064. We show in Tables 1±3 the results,

Table 1. First problem: the non-singular component I
*
(t, m, f) for fÿ f0=0
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Table 2. First problem: the non-singular component I
*
(t, m, f) for fÿf0=p/2

Table 3. First problem: the non-singular component I
*
(t, m, f) for fÿf0=p
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obtained by use of the spherical-harmonics method with N typically between 99 and 499, we
found for the non-singular component of the intensity. We note that Tables 1±3 are in essen-
tially perfect agreement with the calculations reported by Devaux, Siewert and Yuan in Ref. 1.

In regard to radiative-transfer problems formulated for use in the ®eld of atmospheric
sciences, it is common to have scattering processes that require many terms in a Legendre
expansion of the phase function. And so, as a second computational problem, we consider a
more challenging set of basic data. To have a speci®c scattering law for testing our solution
technique, and to avoid having to provide a table of the coe�cients {bl}, we use L = 299 with
the binomial scattering law12

p� cosY� � L� 1

2L
�1� cosY�L �55�

which can be represented exactly with L + 1 Legendre coe�cients that can be computed with
b0=1 and13

bl �
2l � 1

2l ÿ 1

� �
L� 1ÿ l

L� 1� l

� �
blÿ1: �56�

Continuing to de®ne our problem, we use $= 0.99, t0=2.0, m0=0.3, rs1=0.1, rd1=0.2, rs2=0.3
and rd2=0.4. In addition, we use here

T�m� � 1� m� m2 �57�
and

S0�t� � sin �pt=t0�: �58�
In order to have some con®dence that the results listed in Tables 4±6 for the non-singular com-
ponent of the intensity are correct to within plus or minus one in the last place given, we have
typically used values of N between 299 and 499 in our spherical-harmonics solution.

Table 4. Second problem: the non-singular component I
*
(t, m, f) for fÿf0=0
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Table 5. Second problem: the non-singular component I
*
(t, m, f) for fÿf0=p/2

Table 6. Second problem: the non-singular component I
*
(t, m, f) for fÿf0=p
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6. THE SPECIAL CASE OF $= 1 AND m = 0

In order to complete our analysis, we make a couple of observations about modi®cations that
are required in our spherical-harmonics solution for the special case $= 1. First of all, we note
that no modi®cations are required for the case m>0, and so our discussion here is relevant only
to the case $= 1 and m= 0. Since we discuss here only this special case, we suppress the
superscript that we used in previous sections to denote the Fourier index.

As was noted in Ref. 4, the Chandrasekhar polynomial gN+1(x) is a polynomial only of
degree Nÿ 1 when $= 1, and so we ®nd only Jÿ 1 positive eigenvalues that are ®nite (see
Ref. 4 to ®nd our method of computing these eigenvalues). As the missing (positive) eigenvalue
has become in®nite for $= 1, we follow Ref. 4 and express the solution to the moments of
Eq. (18) as

I��t; m� � 1

2
A�t0 ÿ t� 3m=h1� � 1

2
B�tÿ 3m=h1�

�
XN
l�0

2l � 1

2
Pl�m�

XJ
j�2
�Aje

ÿt=xj � �ÿ1�lBje
ÿ�t0ÿt�=xj � gl�xj� � Ip�t; m�; �59�

where Ip(t, m) is a particular solution. Of course, the constants A and B appearing in Eq. (59)
are arbitrary, as are the constants Aj and Bj for j = 2, 3, . . . , J.

It is clear from Eq. (22) that the particular solution we have used for all other cases must also
be modi®ed here. Considering Eqs. (22) and (59), we propose that the desired particular
solution, for the case $= 1 with m = 0, be written in the form

Ip�t; m� � 1

2
A�t��t0 ÿ t� 3m=h1� � 1

2
B�t��tÿ 3m=h1�

�
XN
l�0

2l � 1

2
Pl�m�

XJ
j�2

Cj

xj
�Aj�t� � �ÿ1�lBj�t��gl�xj� �60�

where A�t� and B�t� are functions to be determined. Here we continue to use Aj�t� and Bj�t� as
de®ned by Eqs. (28), and

Cj � 2
XN
l�2

hl�gl�xj��2
 !ÿ1

: �61�

If we substitute Eq. (60) into Eq. (18), take the appropriate moments and use the identity (valid
only for $= 1)

�1� �ÿ1�a�l�hl
XJ
j�2

Cjga�xj�gl�xj� � 2da;l; for a; l � 2; 3; . . . ;N; �62�

that was reported in Ref. 14, then we ®nd that Eq. (60) will be the desired particular solution if
the functions A�t� and B�t� are de®ned by

A�t� � 1

t0

Z t

0

�h1xQ0�x� �Q1�x�� dx �63a�

and

B�t� � 1

t0

Z t0

t
�h1�t0 ÿ x�Q0�x� ÿQ1�x�� dx �63b�

where

Ql�t� � �2l � 1�
Z 1

ÿ1
Pl�m�Q�t; m� dm: �64�
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7. CONCLUDING REMARKS

To conclude this work, we would like to make note of some of the improvements we have
made in regard to the use of the spherical-harmonics method for solving a general class of
radiative-transfer problems. First of all, we note that the particular solution5 we have used here
for the case $ $ (0, 1) is considered especially useful. In fact, even for the case of no re¯ections
and no internal source of radiation, the particular solution used here is not singular, as is the
one used by Chandrasekhar2 when m0 happens to be exactly one of the eigenvalues basic to the
spherical-harmonics method. We note that the singularity in Chandrasekhar's particular solution
was resolved in Ref. 4, but the particular solution used here does not have the singularity at all.
We note also that a general particular solution is worked out here in Section 6 for the special
case of $= 1 and m = 0.

Before this work, we were of the opinion that there was very little di�erence in the compu-
tational accuracy obtained (in, say, high order) with the use of the Mark or the Marshak
boundary conditions. However, having implemented the Mark boundary conditions into our
general code, we have seen, for various values (m>0) of the Fourier index m, that the use of the
Mark boundary conditions yielded considerably better results for the intensities than using
Marshak boundary conditions for the same order of approximation. We may report on this
observation in more detail at a later date.
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