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Abstract

The FN method for solving atmospheric radiative-transfer problems is reviewed. In particular, a new
choice of basis functions and collocation points that was found to perform very well for a class of
problems characterized by highly anisotropic scattering (a standing challenge to the method) is reported,
along with some improved computational techniques. # 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

The FN method was introduced in the ®eld of atmospheric radiative transfer in 1978 by
Siewert [1], who solved the azimuthally symmetric equation of transfer for a homogeneous
atmospheric layer subject to speci®ed radiation intensities incident on both boundaries.
Essentially, the FN method, as applied to radiative transfer in homogeneous plane-parallel

atmospheres, begins by reducing the integro-di�erential equation of transfer and associated
boundary conditions to a system of singular integral equations and constraints for the
radiation intensities that emerge from the top and the bottom of the atmosphere. Next, these
unknown exiting intensities are approximated by a set of basis functions, and a resulting
system of linear algebraic equations, obtained by collocation, is solved to establish the
coe�cients of the approximation. Once the exiting intensities become available, a similar
procedure can be used to derive a system of singular integral equations and constraints relating
the intensity at any position inside the atmosphere to the exiting intensities. Again, the interior
radiation intensities are approximated by a set of basis functions, and a system of linear
algebraic equations is obtained for the coe�cients of the approximation. The related matrix of
coe�cients turns out to be position independent, and thus one LU factorization is su�cient for
computing the intensities at any desired number of interior points [2,3].
The extension of the method for studying inhomogeneous atmospheres modeled by a

number, say K, of homogeneous layers in multilayer geometry is straightforward. Of course, in
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addition to satisfying the boundary conditions, here the intensity has to be continuous across
the Kÿ 1 layer interfaces. There are two di�erent computational approaches that can be used
to implement the FN solution for this problem. In the direct approach [4], all layers are
considered simultaneously, resulting in a system of 2(N+ 1)K linear algebraic equations, to be
solved for the coe�cients of the FN approximations to the exiting and interface intensities. In
the iterative approach [5], the problem is solved one layer at a time, and the results are iterated
along the layers by means of a sweep technique. More speci®cally, initial guesses are made for
the unknown intensities incident on the surfaces of each layer, the LU factorizations of K
matrices (one matrix per layer) of order 2(N+ 1) are computed and stored, and a sequence of
spatial sweeps through the layers is performed in order to update the surface intensities, until
convergence within a prescribed tolerance is achieved. Starting with the top layer, a sweep runs
downward through all the other layers and then upward, back to the top layer. In terms of
computational work, each sweep requires the solution of 2 Kÿ 1 linear systems of order
2(N+ 1), using the stored LU factorizations. In both approaches, once the exiting and
interface intensities have been determined, the interior intensities for each atmospheric layer
can be computed as described for the single-layer case.
In 1980 the FN method was extended by Devaux and Siewert [6] in order to solve

azimuthally asymmetric problems. A generalization of the Fourier decomposition approach of
Chandrasekhar [7] was used to reduce the problem to a series of problems without azimuthal
dependence [6]. However, since in Ref. [6] the powers ma, a = 0,1, . . . ,N, multiplied by the
factor (1ÿ m2)m/2, where m denotes the Fourier index, were used as basis functions, the linear
systems turned out to be badly conditioned for N> 15, so that only problems de®ned by few-
term phase functions could be adequately solved with this version of the method. This
di�culty was overcome in a subsequent work [8], through the use of the shifted-Legendre basis
Pa(2mÿ 1), a = 0,1, . . . ,N, multiplied by (1ÿ m2)m/2, and a collocation scheme based on the
zeros of the Chebyshev polynomials. In 1985, this version of the method was used to generate
benchmark results [9] for various haze and cloud problems posed by the Radiation
Commission of the International Association of Meteorology and Atmospheric Physics [10].
However, in order to get good results for the cloud problems, which were de®ned by a phase
function that required 300 terms in a Legendre expansion to be well represented, a linear
equation solver based on the singular-value decomposition technique had to be used in place of
the standard Gauss elimination technique [9]. More recently, while trying to implement the
method for solving azimuthally asymmetric cloud problems (the cloud problems studied in
Ref. [9] are azimuthally symmetric), we have discovered that the method, as used in Ref. [9], is
not computationally viable for solving that class of problems. In addition, after performing an
extensive analysis of newly generated results for the haze problems solved in Ref. [9], we
concluded that the accuracy of the method for the intermediate and high order components in
a Fourier decomposition of the intensity for these problems, is not as good as thought in the
past. Although the magnitude of these components was found to be relatively small, so that
the six-®gure results reported for the radiation intensity in Ref. [9] are still valid, we were not
happy with this situation and decided to reconsider the aspects of the method that were not
working as desired. As a result of our study, we report in this paper several improvements that
we have introduced in the method, in order to make it work for azimuthally asymmetric
radiative-transfer problems with highly anisotropic scattering.
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Finally, we would like to mention that the FN method has also been developed for solving
radiative-transfer problems with polarization [11], but this class of problems will not be
considered here.

2. Formulation of the problem

We let I(t, m, f) denote the intensity (radiance) of the radiation ®eld and utilize the equation
of transfer [7] for a plane-parallel medium to model our atmosphere. We thus write

m
@

@t
I�t;m;f� � I�t; m;f� � $

4p

�1
ÿ1

�2p
0

p�cosY�I�t;m 0;f 0�df 0dm 0 �1�

where t $ (0, t0) is the optical variable and m $ [ÿ1,1] and f $ [0,2p] are, respectively, the cosine
of the polar angle (as measured from the positive t axis) and the azimuthal angle which
describe the direction of propagation of the radiation. In addition, $ $ [0,1] is the albedo for
single scattering, and we assume that the phase function p(cos Y) can be represented by a ®nite
Legendre polynomial expansion in terms of the scattering angle Y, viz.

p�cosY� �
XL
l�0

blPl�cosY�; �2�

where the coe�cients are such that b0=1 and vblv < 2 l+ 1, 0 < lRL.
We also assume that the atmosphere is illuminated uniformly on the top by a solar beam

with a direction speci®ed by (m0, f0), and so we seek a solution to Eq. (1) that satis®es the
boundary conditions

I�0;m;f� � pd�mÿ m0�d�fÿ f0� �3�
and

I�t0;ÿm;f� � 0; �4�
for m $ (0,1] and f $ [0,2p].
Following Chandrasekhar in Ref. [7], we write the intensity as

I�t;m;f� � I0�t; m;f� � I��t; m;f�; �5�
where the unscattered component I0(t,m,f) is the solution to Eqs. (1), (3) and (4) for the case
$= 0 and I��t; m;f� is the scattered component of the solution. By solving Eqs. (1), (3) and
(4) for the case $= 0, we ®nd that the unscattered component is given by

I0�t; m;f� � pd�mÿ m0�d�fÿ f0�eÿt=m �6�
and

I0�t;ÿm;f� � 0; �7�
for m $ (0,1] and f $ [0,2p]. We now substitute Eq. (5) into Eqs. (1), (3) and (4), and deduce,
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after noting Eqs. (6) and (7), that the scattered component I��t;m;f� must satisfy

m
@

@t
I��t;m;f� � I��t;m;f� � $

4p

�1
ÿ1

�2p
0

p�cosY�I��t; m 0;f 0�df 0dm 0 �Q�t;m;f�; �8�

for t $ (0,t0), m $ [ÿ1,1] and f $ [0,2p], and the boundary conditions

I��0; m;f� � I��t0;ÿm;f� � 0; �9�
for m $ (0,1] and f $ [0,2p]. Here, the known inhomogeneous term is given by

Q�t; m;f� � $
4p

�1
ÿ1

�2p
0

p�cosY�I0�t;m 0;f 0�df 0dm 0: �10�

Fourier decompositions have long been used [7] as a convenient way of treating the azimuthal

dependence of radiative-transfer problems. Here, we can use the cosine decomposition

I��t;m;f� � 1

2

XL
m�0
�2ÿ d0;m�I m� �t;m� cos�m�fÿ f0�� �11�

along with the addition theorem for the Legendre polynomials [12],

p�cosY� �
XL
m�0
�2ÿ d0;m�

XL
l�m

blP
m
l �m 0�Pm

l �m� cos�m�f 0 ÿ f��; �12�

where

Pm
l �m� �

�lÿm�!
�l�m�!
� �1=2

�1ÿ m2�m=2 dm

dmm
Pl�m� �13�

denotes a normalized associated Legendre function, to deduce that the problem formulated by

Eqs. (8)±(10) can be reduced to the problem of solving, for m= 0,1, . . . ,L,

m
@

@t
I m� �t;m� � I m� �t; m� �

$

2

XL
l�m

blP
m
l �m�

�1
ÿ1

Pm
l �m 0�I m� �t; m 0�dm 0 �Qm�t; m�; �14�

where

Qm�t; m� � $
2
eÿt=m0

XL
l�m

blP
m
l �m0�Pm

l �m�; �15�

subject to the boundary conditions

I m� �0; m� � I m� �t0;ÿm� � 0; �16�
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for m $ (0,1]. It is clear that once we solve the problems formulated by Eqs. (14)±(16) for
m= 0,1, . . . ,L, we can compute the scattered component of the intensity with Eq. (11).
Finally, we note that since our basic formulation of the problem di�ers from that used in

previous works on the subject [6,8,9], we intend to be very explicit in our presentation.

3. Singular integral equations and constraints

We now show how we can reduce the problem formulated by Eqs. (14)±(16), ®rst to a
system of singular integral equations and constraints for the exiting Fourier components
I m� (0,ÿm) and I m� (t0,m), m $ (0,1], and then to a system of singular integral equations and
constraints relating I m� (t,m), for t $ (0,t0) and m $ [ÿ1,1], to the exiting Fourier components
I m� (0,ÿm) and I m� (t0,m), m $ (0,1]. As discussed in two previous reviews of the FN method [2,3],
three di�erent ways of accomplishing this derivation have been reported. The ®rst [13] is based
on the Placzek lemma [14] and the singular-eigenfunction technique [15,16], while the
second [17] relies only on the singular-eigenfunction technique. Here, we use the third
way [18,19], which is based on an integral-transform technique.
We start by changing m to ÿm in Eq. (14), multiplying the resulting equation by exp(ÿt/s),

where s is a complex parameter, and integrating over t from a to b, where a and b are
arbitrary but obey the restriction 0R a < bR t0, to obtain

smBm�m; s� ÿ �mÿ s�
�b
a

eÿt=sI m� �t;ÿm�dt �
$s

2

XL
l�m
�ÿ1�lÿmblPm

l �m��Im�;l�s�

� sm0e
ÿa=seÿa=m0S�bÿ a : s;m0�Pm

l �m0��: �17�
Here we de®ne

S�x : x; Z� � 1ÿ eÿx=xeÿx=Z

x� Z
; �18�

Bm�m; s� � I m� �a;ÿm�eÿa=s ÿ I m� �b;ÿm�eÿb=s �19�
and

Im�;l�s� �
�b
a

eÿt=sI m�;l�t�dt; �20�

where

I m�;l�t� �
�1
ÿ1

Pm
l �m�I m� �t; m�dm: �21�

Next, restricting s out of the real interval [ÿ1,1], we multiply Eq. (17) by (mÿ s)ÿ1Pk
m(m) and

integrate over m from ÿ1 to 1 to obtain, for k = 0,1, . . . ,
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�ÿ1�kÿmIm�;k�s� � s

�1
ÿ1

mPm
k �m�Bm�m; s� dm

mÿ s
ÿ$s

2

XL
l�m
�ÿ1�lÿmblXm

l;k�s�

� �Im�;l�s� � sm0e
ÿa=seÿa=m0S�bÿ a : s;m0�Pm

l �m0��; �22�
where

Xm
l;k�s� �

�1
ÿ1

Pm
l �m�Pm

k �m�
dm

mÿ s
: �23�

De®ning the normalized Chandrasekhar polynomials [20] with the starting value

gmm�x� � �2mÿ 1�!!��2m�!�ÿ1=2 �24�
and the recurrence relation, for lrm,

�l2 ÿm2�1=2gmlÿ1�x� ÿ hlxgml �x� � ��l� 1�2 ÿm2�1=2gml�1�x� � 0; �25�
where, for l= 0,1, . . . ,L,

hl � 2l� 1ÿ$bl �26�
and, for l>L,

hl � 2l� 1; �27�
we now multiply Eq. (22) by bkgk

m(s) and sum the resulting equation from k = m up to k = L
to obtainXL

l�m
�ÿ1�lÿmblF m

l �s�Im�;l�s� � s

�1
ÿ1

mGm�s;m�Bm�m; s� dm
mÿ s

ÿ sm0

� eÿa=seÿa=m0S�bÿ a : s; m0�
XL
l�m
�ÿ1�lÿmblPm

l �m0��Fm
l �s� ÿ gml �s��: �28�

Here, we de®ne

Gm�s; m� �
XL
l�m

blg
m
l �s�Pm

l �m� �29�

and

Fm
l �s� � gml �s� �

$s

2

�1
ÿ1

Gm�s; m�Pm
l �m�

dm
mÿ s

: �30�

By noting that F l
m(s) satis®es, for lrm, the same recurrence relation satis®ed by the associated

Legendre function Pl
m(s) and by working out an explicit result for Fm

m(s), we can show that

Fm
l �s� � �1ÿ s2�ÿm=2Lm�s�Pm

l �s�; �31�
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where

Lm�s� � 1� s

�1
ÿ1

Cm�m� dm
mÿ s

; �32�

with

Cm�m� � $
2
�1ÿ m2�m=2Gm�m; m�; �33�

is the well-known dispersion function [16,21,22]. Considering Eq. (31), we can now write

Eq. (28) as

�1ÿ s2�ÿm=2Lm�s�
XL
l�m
�ÿ1�lÿmblPm

l �s�Im�;l�s� � s

�1
ÿ1

mGm�s; m�Bm�m; s� dm
mÿ s

ÿ sm0e
ÿa=seÿa=m0S�bÿ a : s; m0�

XL
l�m
�ÿ1�lÿmblPm

l �m0�Dm
l �s�; �34�

where

Dm
l �s� � �1ÿ s2�ÿm=2Lm�s�Pm

l �s� ÿ gml �s�: �35�
In order to avoid the occurrence of essential singularities at the origin of the complex plane,

we ®nd it convenient to multiply Eq. (34) by exp(a/s) and consider the resulting equation only

for Rsr 0. Similarly, we multiply Eq. (34) with s changed to ÿs by exp(ÿb/s) and consider the

resulting equation only for Rsr 0. We thus ®nd, for Rsr 0,

�1ÿ s2�ÿm=2Lm�s�I m�s� �
�1
ÿ1

mGm�s;m��I m� �a;ÿm� ÿ I m� �b;ÿm�eÿ�bÿa�=s�
dm

mÿ s

ÿ m0e
ÿa=m0S�bÿ a : s;m0�

XL
l�m
�ÿ1�lÿmblPm

l �m0�Dm
l �s�; �36�

and

�1ÿ s2�ÿm=2Lm�s�J m�s� �
�1
ÿ1

mGm�s; m��I m� �b; m� ÿ I m� �a; m�eÿ�bÿa�=s�
dm

mÿ s

ÿ m0e
ÿa=m0C�bÿ a : s; m0�

XL
l�m

blP
m
l �m0�Dm

l �s�; �37�

where

I m�s� � 1

s

XL
l�m
�ÿ1�lÿmblP m

l �s�
�b
a

eÿ�tÿa�=sI m�;l�t�dt; �38�
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J m�s� � 1

s

XL
l�m

blP
m
l �s�

�b
a

eÿ�bÿt�=sI m�;l�t�dt �39�

and

C�x : x; Z� � eÿx=x ÿ eÿx=Z

xÿ Z
: �40�

We note that the dispersion function Lm(s) is analytic in the complex plane cut from ÿ1 to 1
along the real axis, and that it has Qm pairs of zeros2nb

m, b= 0,1, . . . ,Qmÿ1, which are all real,
bounded numbers [21,23] with vnbmvr1, except when �o= 1 and m= 0, for which case one pair
of zeros becomes unbounded [24]. In the following, we consider that $ 6� 1 when m= 0; the
modi®cations required in our general development to handle the special case $= 1 and m= 0
will be discussed in a section of this paper speci®cally devoted to this matter. Thus, if we now
use Eqs. (36) and (37) for s = nb

m, b= 0,1, . . . ,Qmÿ1, we obtain�1
ÿ1

mGm�nmb ; m�
�
I m� �a;ÿm� ÿ I m� �b;ÿm�eÿ�bÿa�=n

m
b
� dm
nmb ÿ m

� m0e
ÿa=m0S�bÿ a : nmb ;m0�Gm�ÿnmb ; m0� �41�

and �1
ÿ1

mGm�nmb ; m�
�
I m� �b; m� ÿ I m� �a; m�eÿ�bÿa�=n

m
b
� dm
nmb ÿ m

� m0e
ÿa=m0C�bÿ a : nmb ; m0�Gm�nmb ;m0�:

�42�
We can also let s4 n $ [0,1] in Eqs. (36) and (37) and use the Plemelj formulas [25] to obtain

�1ÿ n2�ÿm=2lm�n��I m� �a;ÿn�ÿI m� �b;ÿn�eÿ�bÿa�=n��$2 ÿ
�1
ÿ1

mGm�n;m��I m� �a;ÿm�
ÿI m� �b;ÿm�eÿ�bÿa�=n

� dm
nÿ m

� $m0
2

eÿa=m0S�bÿ a : n; m0�Gm�ÿn;m0�;
�43�

and

�1ÿ n2�ÿm=2lm�n��I m� �b; n�ÿI m� �a; n�eÿ�bÿa�=n��$2 ÿ
�1
ÿ1

mGm�n; m��I m� �b; m�
ÿI m� �a; m�eÿ�bÿa�=n

� dm
nÿ m

� $m0
2

eÿa=m0C�bÿ a : n;m0�Gm�n; m0�; �44�

where

lm�n� � 1� nÿ
�1
ÿ1

Cm�m� dm
mÿ n

�45�
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and the symbol
�
- indicates that the integration is to be evaluated in the Cauchy principal-value

sense.

Having derived a system of singular integral equations [Eqs. (43) and (44)] and constraints

[Eqs. (41) and (42)] relating the Fourier component I m� (t,m), m $ [ÿ1,1], at two arbitrary

positions t = a and t = b with a < b, we can now obtain our desired system of singular

integral equations and constraints for I m� (0,ÿ m) and I m� (t0,m), m $ (0,1], by simply letting a = 0

and b = t0 in Eqs. (41)±(44) and by making use of the boundary conditions expressed by

Eq. (16). We ®nd, for b= 0,1, . . . ,Qmÿ1,�1
0

mGm�nmb ;m�I m� �0;ÿm�
dm

nmb ÿ m
� eÿt0=n

m
b

�1
0

mGm�ÿnmb ; m�I m� �t0;m�
dm

nmb � m
� Em�0;ÿnmb � �46�

and �1
0

mGm�nmb ;m�I m� �t0; m�
dm

nmb ÿ m
� eÿt0=n

m
b

�1
0

mGm�ÿnmb ;m�I m� �0;ÿm�
dm

nmb � m
� Em�t0; nmb �; �47�

where, in general,

Em�x;ÿx� � m0e
ÿx=m0S�t0 ÿ x : x; m0�Gm�ÿx; m0� �48�

and

Em�x; x� � m0C�x : x;m0�Gm�x; m0�: �49�
Similarly, we ®nd, for n $ [0,1],

�1ÿ n2�ÿm=2lm�n�I m� �0;ÿn��
$

2
ÿ
�1
0

mGm�n; m�I m� �0;ÿm�
dm

nÿ m

�$
2
eÿt0=n

�1
0

mGm�ÿn; m�I m� �t0; m�
dm

n� m
� $

2
Em�0;ÿn� �50�

and

�1ÿ n2�ÿm=2lm�n�I m� �t0; n��
$

2
ÿ
�1
0

mGm�n;m�I m� �t0; m�
dm

nÿ m

�$
2
eÿt0=n

�1
0

mGm�ÿn;m�I m� �0;ÿm�
dm

n� m
� $

2
Em�t0; n�: �51�

Assuming that Eqs. (46), (47), (50) and (51) have been solved for I m� (0,ÿm) and I m� (t0, m),
m $ (0,1], in the manner to be shown in Section 4, we now proceed to derive a system of

singular integral equations and constraints relating the Fourier component I m� (t,m), m $ [ÿ1,1],
at any interior point of the atmosphere to I m� (0,ÿm) and I m� (t0, m), m $ (0,1]. We start by letting

a = t and b = t0 in Eq. (41) and a = 0 and b = t in Eq. (42) to ®nd, for b= 0,1, . . . ,Qmÿ1,

R.D.M. Garcia, C.E. Siewert / International Journal of Engineering Science 36 (1998) 1623±1649 1631



�1
ÿ1

mGm�nmb ; m�I m� �t;ÿm�
dm

nmb ÿ m
� Em�t;ÿnmb � ÿ eÿ�t0ÿt�=n

m
b

�1
0

mGm�ÿnmb ;m�I m� �t0; m�
dm

nmb � m

�52�
and �1

ÿ1
mGm�nmb ; m�I m� �t;m�

dm
nmb ÿ m

� Em�t; nmb � ÿ eÿt=n
m
b

�1
0

mGm�ÿnmb ;m�I m� �0;ÿm�
dm

nmb � m
: �53�

Finally we let a = t and b = t0 in Eq. (43) and a = 0 and b = t in Eq. (44) to ®nd, for
n $ [0,1],

�1ÿ n2�ÿm=2lm�n�I m� �t;ÿn��
$

2
ÿ
�1
ÿ1

mGm�n; m�I m� �t;ÿm�
dm

nÿ m

�$
2
Em�t;ÿn� ÿ$

2
eÿ�t0ÿt�=n

�1
0

mGm�ÿn; m�I m� �t0; m�
dm

n� m
�54�

and

�1ÿ n2�ÿm=2lm�n�I m� �t; n� �
$

2
ÿ
�1
ÿ1

mGm�n; m�I m� �t; m�
dm

nÿ m

� $
2
Em�t; n� ÿ$

2
eÿt=n

�1
0

mGm�ÿn; m�I m� �0;ÿm�
dm

n� m
: �55�

Eqs. (52)±(55) constitute our system of singular equations and constraints to be solved for
I m� (t,m), t $ (0,t0) and m $ [ÿ1,1].

4. The FN solution

The FN method is an approximate, but concise and accurate, way of solving systems of
singular integral equations and constraints of the type formulated in Section 3. We note that in
this section we continue to assume that $ 6� 1 when m= 0; our discussion of the modi®cations
required to handle this special case is deferred to the next section of this paper.
We begin our presentation of the method by discussing its use for solving the system of

singular integral equations and constraints given by Eqs. (46), (47), (50) and (51) for the
boundary unknowns I m� (0,ÿm) and I m� (t0, m), m $ (0,1]. First, we introduce the approximations,
for m $ (0,1],

I m� �0;ÿm� �
$

2

XN
a�0

ama F
m
a �m� �56�

and
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I m� �t0; m� �
$

2

XN
a�0

bma F
m
a �m�; �57�

where {aa
m} and {ba

m} are unknown coe�cients, and {Fa
m(m)} is a set of basis functions that will

be speci®ed in a forthcoming section on computational methods, into Eqs. (46), (47), (50) and
(51) to obtainXN

a�0
ama B

m
a �x� � eÿt0=x

XN
a�0

bma A
m
a �x� � 2Em�0;ÿx� �58�

and XN
a�0

bma B
m
a �x� � eÿt0=x

XN
a�0

ama A
m
a �x� � 2Em�t0; x�; �59�

for x = {nb
m}[ [0,1]. Here, we de®ne the A functions as

Am
a �x� � $

�1
0

mGm�ÿx; m�Fm
a �m�

dm
x� m

; �60�

for x = {nb
m}[ [0,1], and the B functions as

Bm
a �nmb � � $

�1
0

mGm�nmb ; m�Fm
a �m�

dm
nmb ÿ m

�61�

and, for n $ [0,1],

Bm
a �n� � 2�1ÿ n2�ÿm=2lm�n�Fm

a �n� �$ÿ
�1
0

mGm�n;m�Fm
a �m�

dm
nÿ m

: �62�

Next, we note that there are 2(N+ 1) unknowns in Eqs. (58) and (59), i.e. the coe�cients aa
m

and ba
m, for a= 0,1, . . . ,N, but the number of equations can be thought of as in®nite, since x

can take on any value in [0,1]. To overcome this di�culty we use collocation, i.e. we impose
that Eqs. (58) and (59) be satis®ed for {xmb }, a set of N+ 1 points composed of Qm points that
are the positive zeros of the dispersion function and N+ 1ÿQm points in [0,1]. A discussion
of collocation schemes, in particular the one we intend to use here, will be presented in the
section of this paper devoted to computational methods. Thus, on using Eqs. (58) and (59) for
x = xb

m, b= 0,1, . . . ,N, we obtain two coupled linear systems of order N+ 1 for the unknowns
{aa

m} and {ba
m}, viz.

Ba�D�t0�Ab � 2E1�0� �63�
and

Bb�D�t0�Aa � 2E2�t0�: �64�
Here we use the de®nitions
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B �

Bm
0 �xm0 � Bm

1 �xm0 � � � � Bm
N�xm0 �

Bm
0 �xm1 � Bm

1 �xm1 � � � � Bm
N�xm1 �

..

. ..
. . .

. ..
.

Bm
0 �xmN� Bm

1 �xmN� � � � Bm
N�xmN�

0BBBBBB@

1CCCCCCA; �65�

A �

Am
0 �xm0 � Am

1 �xm0 � � � � Am
N�xm0 �

Am
0 �xm1 � Am

1 �xm1 � � � � Am
N�xm1 �

..

. ..
. . .

. ..
.

Am
0 �xmN� Am

1 �xmN� � � � Am
N�xmN�

0BBBBBB@

1CCCCCCA; �66�

a �

am0
am1

..

.

amN

0BBBBBB@

1CCCCCCA and b �

bm0
bm1

..

.

bmN

0BBBBBB@

1CCCCCCA: �67�

We also de®ne, in general,

D�x� � diagfeÿx=xm0 ; eÿx=xm1 ; . . . ; eÿx=x
m
Ng; �68�

E1�x� �

Em�x;ÿxm0 �
Em�x;ÿxm1 �

..

.

Em�x;ÿxmN�

0BBBBBB@

1CCCCCCA and E2�x� �

Em�x; xm0 �
Em�x; xm1 �

..

.

Em�x; xmN�

0BBBBBB@

1CCCCCCA: �69�

In addition, we note that, for simplicity, we have omitted in our notation of the quantities

de®ned by Eqs. (65)±(69) the superscript m that characterizes the Fourier index.

We now report our way of solving the coupled systems for a and b expressed by Eqs. (63)

and (64). In Ref. [9], by adding and subtracting Eqs. (63) and (64), we were able to reformulate

this problem as the problem of solving two decoupled systems of order N+ 1 for a + b and

aÿ b. However, if we analyze the behavior of the equations that represent the result of these

operations [9] in the limit of t041, we can conclude that, for a su�ciently thick layer, the

approach of Ref. [9] is not capable of yielding accurate results for the exiting intensities at the

bottom of the atmosphere. Of course, an alternative would be to reformulate the systems given
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by Eqs. (63) and (64) as one system of order 2(N+ 1), which was the approach used before

Ref. [9] appeared. Nevertheless, in order to keep the advantage of solving two linear systems of

order N+ 1 instead of one of order 2(N+ 1), we prefer to introduce an approach that we

have devised in order to overcome this di�culty. To explain our new way of solving Eqs. (63)

and (64), we ®rst assume that B is invertible. We note that no proof is available of this

assumption, but all numerical evidence collected so far indicates that this is true. We then

multiply Eqs. (63) and (64) on the left by Bÿ1 to obtain

a � 2Bÿ1E1�0� ÿ Bÿ1D�t0�Ab �70�

and

b � 2Bÿ1E2�t0� ÿ Bÿ1D�t0�Aa: �71�

If we now substitute Eqs. (70) and (71) into each other and de®ne, in general,

C�x� � Bÿ1D�x�A; �72�
we ®nd

M�t0�a � Bÿ1E1�0� ÿ C�t0�Bÿ1E2�t0� �73�
and

M�t0�b � Bÿ1E2�t0� ÿ C�t0�Bÿ1E1�0�; �74�

where, in general,

M�x� � 1

2
�Iÿ C2�x��: �75�

Clearly, both of the Eqs. (73) and (74) are well behaved for t0 4 1 and so, having con®rmed

that our proposed scheme is computationally sound for various t0 $ (0,1) and $ $ (0,1), even

for $ very close to 1, say 1ÿ$= 10ÿ8, we recommend its adoption as an alternative to the

scheme of Ref. [9].

Once Eqs. (73) and (74) are solved for a and b, Eqs. (56) and (57) could, in principle, be

used to compute our FN approximations to I m� (0,ÿm) and I m� (t0, m), m $ (0,1]. However, we

have found that by post processing Eqs. (56) and (57) with the singular integral equations

expressed by Eqs. (50) and (51) we obtain improved approximations for I m� (0,ÿm) and

I m� (t0, m), m $ (0,1], which converge faster and more uniformly in m as N increases [26]. A

simple derivation of the post processed formulas is in order. First, we take n= m $ (0,1] in

Eqs. (50) and (51) and rearrange the resulting equations to obtain
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I m� �0;ÿm� � �1ÿ lm�m��I m� �0;ÿm�

�$
2
�1ÿ m2�m=2

�
Em�0;ÿm� ÿ ÿ

�1
0

m 0Gm�m;m 0�I m� �0;ÿm 0�
dm 0

mÿ m 0

ÿeÿt0=m
�1
0

m 0Gm�ÿm;m 0�I m� �t0;m 0�
dm 0

m� m 0

�
�76�

and

I m� �t0; m� � �1ÿ lm�m��I m� �t0; m� �
$

2
�1ÿ m2�m=2

�
Em�t0;m�

ÿ ÿ
�1
0

m 0Gm�m; m 0�I m� �t0;m 0�
dm 0

mÿ m 0
ÿ eÿt0=m

�1
0

m 0Gm�ÿm;m 0�I m� �0;ÿm 0�
dm 0

m� m 0

�
:

�77�
Then, we can use the approximations expressed by Eqs. (56) and (57) for I m� (0,ÿm) and
I m� (t0, m), m $ (0,1], in the right-hand sides of Eqs. (76) and (77) and the de®nitions given by
Eqs. (60) and (62) to ®nd our post processed results, viz.

I m� �0;ÿm� �
$

2

XN
a�0

ama F
m
a �m� �

$

4
�1ÿ m2�m=2

� 2Em�0;ÿm� ÿ
XN
a�0

ama B
m
a �m� ÿ eÿt0=m

XN
a�0

bma A
m
a �m�

" #
�78�

and

I m� �t0; m� �
$

2

XN
a�0

bma F
m
a �m� �

$

4
�1ÿ m2�m=2

� 2Em�t0;m� ÿ
XN
a�0

bma B
m
a �m� ÿ eÿt0=m

XN
a�0

ama A
m
a �m�

" #
; �79�

for m $ (0,1]. If we compare Eqs. (78) and (79) to Eqs. (56) and (57) and recall that the method
requires that Eqs. (58) and (59) be satis®ed at the collocation points {xmb }, it is clear that the
post processed results are simply the non post processed results added to correction terms that
vanish for the values of m that coincide with the collocation points embedded in the
continuum.
We now turn our attention to the solution of the system of singular integral equations and

constraints expressed by Eqs. (52)±(55) for the Fourier component I m� (t,m), t $ (0,t0) and
m $ [ÿ1,1]. We begin by using the approximations, for m $ [0,1],

I m� �t;ÿm� �
$

2

XN
a�0

cma �t�Fm
a �m� �80�
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and

I m� �t;m� �
$

2

XN
a�0

d m
a �t�Fm

a �m� �81�

in Eqs. (52)±(55), to obtainXN
a�0

cma �t�Bm
a �x� ÿ

XN
a�0

d m
a �t�Am

a �x� � 2Em�t;ÿx� ÿ eÿ�t0ÿt�=x
XN
a�0

bma A
m
a �x� �82�

and XN
a�0

d m
a �t�Bm

a �x� ÿ
XN
a�0

cma �t�Am
a �x� � 2Em�t; x� ÿ eÿt=x

XN
a�0

ama A
m
a �x�; �83�

for x = {nb
m} [ [0,1]. Following the approach used for solving Eqs. (58) and (59), i.e. requiring

that Eqs. (82) and (83) be satis®ed at the set of collocation points {xmb }, we ®nd the linear

systems of order N+ 1:

Bc�t� ÿ Ad�t� � 2F1�t� �84�
and

Bd�t� ÿ Ac�t� � 2F2�t�; �85�
where we de®ne the matrices B and A as in Eqs. (65) and (66), the vectors of unknowns as

c�t� �

cm0 �t�
cm1 �t�

..

.

cmN�t�

0BBBBBB@

1CCCCCCA and d�t� �

d m
0 �t�

d m
1 �t�
..
.

d m
N�t�

0BBBBBB@

1CCCCCCA; �86�

and the right-hand-side vectors as

F1�t� � E1�t� ÿ 1
2D�t0 ÿ t�Ab �87�

and

F2�t� � E2�t� ÿ 1
2D�t�Aa: �88�

Clearly, we can decouple the linear systems given by Eqs. (84) and (85) in much the same way

as we did for the systems given by Eqs. (63) and (64). We obtain the linear systems of order

N+ 1,

M�0�c�t� � Bÿ1F1�t� � C�0�Bÿ1F2�t� �89�
and
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M�0�d�t� � Bÿ1F2�t� � C�0�Bÿ1F1�t�; �90�
where C(0), according to Eqs. (68) and (72), is simply Bÿ1A and M(0) is given by Eq. (75) with
x= 0. As M(0) does not depend on t and we consider that a LU factorization of B that
allows us to compute, in a straightforward manner, all the products involving Bÿ1 in Eqs. (89)
and (90) has been performed while solving Eqs. (73) and (74), it is clear that the solution of the
linear systems given by Eqs. (89) and (90) for c(t) and d(t), for any number of interior points,
requires only one extra LU factorization, that of M(0).
Once the solutions to Eqs. (89) and (90) for speci®ed interior points are obtained, Eqs. (80)

and (81) could be used to compute our FN approximations to the Fourier components at these
interior points. However, as done for the exiting Fourier components, here we also wish to
perform a post processing of Eqs. (80) and (81) in order to improve our results. We obtain,
from Eqs. (54) and (55) with n = m $ [0,1], Eqs. (56), (57), (80) and (81),

I m� �t;ÿm� �
$

2

XN
a�0

cma �t�Fm
a �m� �

$

4
�1ÿ m2�m=2

�
2Em�t;ÿm�

ÿ
XN
a�0

cma �t�Bm
a �m� �

XN
a�0

d m
a �t�Am

a �m� ÿ eÿ�t0ÿt�=m
XN
a�0

bma A
m
a �m�

�
�91�

and

I m� �t;m� �
$

2

XN
a�0

d m
a �t�Fm

a �m� �
$

4
�1ÿ m2�m=2

�
2Em�t;m�

ÿ
XN
a�0

d m
a �t�Bm

a �m� �
XN
a�0

cma �t�Am
a �m� ÿ eÿt=m

XN
a�0

ama A
m
a �m�

�
; �92�

for m $ [0,1]. Again, we see that our post processed results can be written as the non post
processed results plus correction terms that vanish for the values of m that coincide with the
collocation points in the continuum.

5. The special case $$$= 1 and m= 0

As discussed in Section 3, the dispersion function Lm(s) has one pair of unbounded zeros
when $= 1 and m= 0, and so in this section we describe the modi®cations that are required
in our general development to handle this special case [9]. In order to simplify our notation, we
do not use in this section the superscript m that characterizes the Fourier index, with the
understanding that by default it is equal to 0.
We ®rst consider that the zeros of the dispersion function are ordered such that n0>n1> . . .

>nQ ÿ 1. Next we note that, since for �o= 1 and m= 0 the Chandrasekhar polynomials
gl (x)4 0 as x41, for l >0, we can show that both Eqs. (41) and (42) reduce, for b= 0, to
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�1
ÿ1

m�I��b; m� ÿ I��a;m��dm � m0�eÿa=m0 ÿ eÿb=m0 �: �93�

It is thus clear that one additional equation is needed to replace the missing equation. To this
end, we multiply Eq. (14) with $= 1 and m= 0 by m and integrate over m from ÿ1 to 1 to
obtain

d

dt

�1
ÿ1

m2I��t; m�dm� h1
3

�1
ÿ1

mI��t; m�dm � b1
3
m0e
ÿt=m0 : �94�

In addition, if we integrate Eq. (14) with $= 1 and m= 0 over m from ÿ1 to 1 we obtain

d

dt

�1
ÿ1

mI��t;m�dm� m0e
ÿt=m0

� �
� 0: �95�

Clearly, the term between brackets in Eq. (95) must be a constant, and so, denoting this
constant as F, we are allowed to write, for any t $ [0,t0],

F � m0e
ÿt=m0 �

�1
ÿ1

mI��t;m�dm; �96�

which is just a mathematical statement of the constant ¯ux condition in a conservative
atmosphere. In particular, if we note the boundary conditions expressed by Eq. (16) we see
that Eq. (96) yields, for t = 0,

F � m0 ÿ
�1
0

mI��0;ÿm�dm; �97�

and, for t= t0,

F � m0e
ÿt0=m0 �

�1
0

mI��t0; m�dm: �98�

Using the result expressed by Eq. (96), we can now integrate Eq. (94) over t from a to b to
obtain�1

ÿ1
m2�I��b; m� ÿ I��a; m��dm� h1

3
�bÿ a�F � m20�eÿa=m0 ÿ eÿb=m0 �; �99�

an equation that can be used, along with Eq. (93), to replace Eqs. (41) and (42) for b= 0
when $= 1 and m= 0.

We now let a = 0 and b = t0 in Eqs. (93) and (99) and note Eq. (16) to obtain a pair of
constraints that we can use as a replacement of Eqs. (46) and (47) for b= 0 when $= 1 and
m= 0, viz.�1

0

m�I��0;ÿm� � I��t0;m��dm � m0�1ÿ eÿt0=m0 � �100�
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and �1
0

m2�I��t0;m� ÿ I��0;ÿm��dm � m20�1ÿ eÿt0=m0 � ÿ h1
3
t0F; �101�

with F represented either by Eq. (97) or by Eq. (98). However, instead of using Eqs. (100) and

(101), we prefer to use here two linear combinations of these equations, in order to preserve

the cross symmetry exhibited by Eqs. (46) and (47) for the general case. We thus multiply

Eq. (100) by h1t0/3, use Eq. (97) to represent F, and subtract Eq. (101) from the resulting

equation to obtain�1
0

m m� h1
3
t0

� �
I��0;ÿm�dm ÿ

�1
0

m2I��t0; m�dm � h1
3
t0m0 ÿ m20�1ÿ eÿt0=m0 �: �102�

Similarly, we multiply Eq. (100) by h1t0/3, use Eq. (98) to represent F, and add the resulting

equation to Eq. (101) to obtain�1
0

m m� h1
3
t0

� �
I��t0;m�dm ÿ

�1
0

m2I��0;ÿm�dm � m20�1ÿ eÿt0=m0 � ÿ h1
3
t0m0e

ÿt0=m0 : �103�

Eqs. (102) and (103) along with Eqs. (46) and (47) for b= 1,2, . . . ,Qÿ 1 are the constraints

that we impose on I�(0,ÿm) and I�(t0, m), m $ (0,1], when $= 1 and m= 0. By introducing the

FN approximations given by Eqs. (56) and (57) in Eqs. (102) and (103), we ®nd the equations

that replace Eqs. (58) and (59) for x = n0, viz.XN
a�0

aaBa�t0� �
XN
a�0

baAa�0� � 2E1�0� �104�

and XN
a�0

baBa�t0� �
XN
a�0

aaAa�0� � 2E2�t0�: �105�

Here we de®ne, in general,

Aa�x� � ÿ
�1
0

m mÿ h1
3
x

� �
Fa�m�dm; �106�

Ba�x� �
�1
0

m m� h1
3
x

� �
Fa�m�dm; �107�

E1�x� � m0 m0 ÿ
h1
3
x

� �
eÿt0=m0 ÿ m0 m0 ÿ

h1
3
t0

� �
eÿx=m0 �108�

and

R.D.M. Garcia, C.E. Siewert / International Journal of Engineering Science 36 (1998) 1623±16491640



E2�x� � m0 m0 �
h1
3
�t0 ÿ x�

� �
�1ÿ eÿx=m0 � ÿ h1

3
xm0e

ÿx=m0 : �109�

It is clear that if we de®ne, for the special case we are considering here,

B �

B0�t0� B1�t0� � � � BN�t0�
B0�x1� B1�x1� � � � BN�x1�

..

. ..
. . .

. ..
.

B0�xN� B1�xN� � � � BN�xN�

0BBBBB@

1CCCCCA; �110�

A �

A0�0� A1�0� � � � AN�0�
A0�x1� A1�x1� � � � AN�x1�

..

. ..
. . .

. ..
.

A0�xN� A1�xN� � � � AN�xN�

0BBBBB@

1CCCCCA; �111�

D�x� � diagf1; eÿx=x1; . . . ; eÿx=xNg; �112�

E1�x� �

E1�x�
E�x;ÿx1�

..

.

E�x;ÿxN�

0BBBBB@

1CCCCCA and E2�x� �

E2�x�
E�x; x1�

..

.

E�x; xN�

0BBBBB@

1CCCCCA; �113�

then our linear systems of order N+ 1 for the coe�cients {aa} and {ba} can be written here in

the same form as in Section 4 [Eqs. (63) and (64)]. We thus conclude that the procedure

developed in Section 4 for solving Eqs. (63) and (64) can also be used in this case.

We now develop our alternatives to the two constraints on the interior Fourier component

I�(t, m), m $ [ÿ1,1], expressed by Eqs. (52) and (53) for b= 0. We ®rst let a = t and b = t0 in

Eq. (93) and use Eqs. (16) and (98) to write our ®rst constraint as�1
ÿ1

mI��t;ÿm�dm � m0e
ÿt=m0 ÿ F: �114�

Next, we let a = 0 and b = t in Eq. (99) and use Eq. (16) to write our second constraint as�1
ÿ1

m2I��t; m�dm � m20�1ÿ eÿt=m0 � ÿ h1
3
tF�

�1
0

m2I��0;ÿm�dm: �115�

Here, we also prefer to work with linear combinations of Eqs. (114) and (115), so that we are

allowed to use an approach similar to that of Section 4. We thus add Eq. (115) to (114)
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multiplied by h1t0/3 to obtain, after we use Eq. (98) to de®ne F in the resulting expression,�1
ÿ1

m m� h1
3
t0

� �
I��t;ÿm�dm � E1�t� �

�1
0

m mÿ h1
3
t

� �
I��t0; m�dm: �116�

Similarly, we subtract Eq. (114) multiplied by h1t0/3 from Eq. (115) to obtain, after we use
Eq. (97) to de®ne F in the resulting expression,�1

ÿ1
m m� h1

3
t0

� �
I��t; m�dm � E2�t� �

�1
0

m mÿ h1
3
�t0 ÿ t�

� �
I��0;ÿm�dm: �117�

Eqs. (116) and (117) along with Eqs. (52) and (53) for b= 1,2, . . . ,Qÿ 1 are the constraints we
impose on I�(t,m), m $ [ÿ1,1], when $= 1 and m= 0. By introducing the FN approximations
given by Eqs. (80) and (81) in Eqs. (116) and (117), we ®nd the equations that replace
Eqs. (82) and (83) for x = n0, viz.XN

a�0
ca�t�Ba�t0� ÿ

XN
a�0

da�t�Aa�t0� � 2E1�t� ÿ
XN
a�0

baAa�t� �118�

and XN
a�0

da�t�Ba�t0� ÿ
XN
a�0

ca�t�Aa�t0� � 2E2�t� ÿ
XN
a�0

aaAa�t0 ÿ t�: �119�

It is now apparent that if we denote as A(x) the matrix that we obtain by changing from 0 to x
the argument in the ®rst row of the matrix A de®ned by Eq. (111), we can, for the case $= 1
and m= 0, write our systems of linear algebraic equations for the coe�cients {ca(t)} and
{da(t)} as:

Bc�t� ÿ A�t0�d�t� � 2F1�t� �120�
and

Bd�t� ÿ A�t0�c�t� � 2F2�t�; �121�
where B is de®ned as in Eq. (110), and the right-hand-side vectors are de®ned as

F1�t� � E1�t� ÿ 1
2D�t0 ÿ t�A�t�b �122�

and

F2�t� � E2�t� ÿ 1
2D�t�A�t0 ÿ t�a: �123�

Clearly, Eqs. (120) and (121) can be decoupled as done for Eqs. (84) and (85) in Section 4. The
result can be written in the form of Eqs. (89) and (90) except that A(t0) replaces A in the
de®nitions of C(0) and M(0) and, in addition, A(t) and A(t0ÿt) replace A in the de®nitions of
F1(t) and F2(t), respectively. As for the general case, considering that a LU factorization of B
has been performed in order to solve the linear systems for a and b, we need to perform only
one additional LU factorization to be able to solve the linear systems for c(t) and d(t), for any
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number of interior points. Finally, here we have also con®rmed computationally, for various
t0 $ (0,1), that our scheme for solving the resulting linear systems is well behaved for t041.

6. Computational methods

In this section, we wish to discuss some computational aspects relevant to our reported FN

solution. We begin by specifying our choice of the basis functions {Fa
m(m)} used in the FN

approximations given by Eqs. (56), (57), (80) and (81). As discussed in the Introduction, two
sets of basis functions widely used in the past, namely the power basis and the shifted-
Legendre basis, did not perform well for the class of problems we are addressing in this paper.
After some searching, we found that the even associated Legendre functions could be used with
con®dence for all required values of the Fourier index, and so we write, for a = 0,1, . . . ,N,

Fm
a �m� � Pm

m�2a�m�: �124�
Another di�culty showed up when we had to select a collocation scheme for solving Eqs. (58),
(59), (82) and (83). From all the schemes that have been reported in the literature [2], only one
was successful in producing well-conditioned systems of linear equations for the coe�cients of
the FN approximations, when used in conjunction with the basis functions de®ned by Eq. (124).
Our selected collocation scheme is a slight variant of a scheme introduced by McCormick and
Sanchez [27] and consists of the positive discrete eigenvalues nb

m, b= 0,1, . . . ,Qmÿ 1 and the
positive zeros of the Chandrasekhar polynomial gm+2N*+2

m (x) with magnitudes of less than one.
The value of N* that de®nes the order of the Chandrasekhar polynomial is, in principle, given
by N*=N, but we can have N*<N, since sometimes more than N+ 1ÿQm zeros of
gm+2N+2
m (x) appear in (0,1); when this occurs the value of N* has to be reduced successively by
1 until exactly N+ 1ÿQm collocation points are obtained in (0,1). We should also mention
that, in order to obtain well-conditioned systems of equations for intermediate and large values
of the Fourier index, we introduced a scaling that consists in dividing each equation by the
Euclidean norm of the corresponding row of the associated B matrix. Thus, our prescription
for an accurate determination of the coe�cients of the FN approximations involves a mix of
three ingredients: a basis composed of the even associated Legendre functions, a collocation
scheme that uses the zeros of a Chandrasekhar polynomial in the continuum and a scaling of
the linear algebraic equations.
We now turn our attention to the computation of the functions Aa

m(x) and Ba
m(x) de®ned by

Eqs. (60)±(62). First we note that particularly accurate and e�cient methods are reported in
the literature for computing the zeros of the dispersion function [23] and the zeros of the
Chandrasekhar polynomials [28] that de®ne the set of collocation points for which we need to
compute these functions. Taking into account our choice of basis functions given by Eq. (124),
we ®nd that the functions Aa

m(x) and Ba
m(x) are given here by

Am
a �x� � $

�1
0

mGm�ÿx; m�Pm
m�2a�m�

dm
x� m

; �125�

for x = {nb
m} [ [0,1],
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Bm
a �nmb � � $

�1
0

mGm�nmb ; m�Pm
m�2a�m�

dm
nmb ÿ m

�126�

and

Bm
a �n� � 2�1ÿ n2�ÿm=2lm�n�Pm

m�2a�n� �$ÿ
�1
0

mGm�n; m�Pm
m�2a�m�

dm
nÿ m

; �127�

for n $ [0,1]. If we now consider s = nb
m, b= 0,1, . . . ,Qmÿ1, in Eqs. (30) and (31), we ®nd that

gml �nmb � �
$nmb
2

�1
ÿ1

Gm�nmb ;m�Pm
l �m�

dm
nmb ÿ m

; �128�

for lr m. Similarly, if we let s 4 n $ [0,1] in Eqs. (30) and (31) and use the Plemelj formulas,
we ®nd that

gml �n� � �1ÿ n2�ÿm=2lm�n�Pm
l �v� �

$n
2
ÿ
�1
ÿ1

Gm�n; m�Pm
l �m�

dm
nÿ m

�129�

for lr m. Using Eqs. (128) and (129) for l = m+ 2a and noting Eqs. (125)±(127), we can
readily show that the A and B functions are related by

Bm
a �x� � Am

a �x� � 2
hm�2a

2m� 4a� 1

� �
gmm�2a�x�; �130�

for x = {nb
m}[ [0,1]. In this work, we have implemented two di�erent Gaussian integration

techniques to compute the required A functions. With the A functions available, we computed
the Chandrasekhar polynomials as discussed below and then used Eq. (130) to obtain the
required B functions.
Our ®rst and more conventional technique for computing the A functions consists in using a

standard Gauss±Legendre quadrature [29] in the interval [0,1] for performing the integral in
Eq. (125). An accuracy study was done in order to determine the number of quadrature points
to be used in the calculation. Our second technique is based on the use of the linear-divisor
modi®cation algorithm [30] to generate the quadrature rule associated with the weighting
function 1/(x + m) that appears in the integrand of Eq. (125). Since the computation of the A
functions with this rule amounts to integrate the polynomial mGm(ÿx, m)Pm+2a

m (m) for
a = 0,1, . . . ,N, the required number of quadrature points for performing these integrals exactly
(aside from round-o�/truncation errors) is known in advance. It turns out that our ®rst
integration technique usually requires more quadrature points than the second to attain a
desired degree of accuracy, but it has the advantage that the same rule can be used for all of
the collocation points while the second technique requires a speci®c rule for each collocation
point.
In regard to the computation of the Chandrasekhar polynomials, we note that some years

ago we proposed a method [20] that we believed to be accurate in all situations for computing
these polynomials in high order and high degree. However, for some of the Fourier
components of the test problem that is described in Section 7, we have detected the occurrence
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of zeros of the Chandrasekhar polynomials in (0,1) that change only slightly as the order of

the polynomial is increased. As we have found that the method of Ref. [20] is not capable of

computing accurately the Chandrasekhar polynomials for these zeros, we had to devise a

modi®ed procedure (discussed below) that works well even in this situation. Since the behavior

of these zeros is very similar to the behavior of the zeros of the Chandrasekhar polynomials

with magnitudes greater than one that approach the discrete eigenvalues as the order of the

polynomial approaches in®nity, we call these nearly stationary zeros in (0,1) pseudo discrete

eigenvalues. We plan to report on this subject in more detail at a later date. Noting that in this

work we require gl
m(x) for l= m, m+ 1, . . . , M =max{L, m+ 2N}, where the argument x

belongs to the set of collocation points or is any m $ [0,1], we now discuss our modi®ed

procedure for computing these polynomials. First, we note that when x is a discrete eigenvalue

our original procedure [20] works well; therefore modi®cations are required only for x $ [0,1].

We begin by considering the case MR m+ 2N*+2, where N*RN as discussed in the

beginning of this section. When x is a collocation point, i.e. one of the positive zeros of

gm+2N*+2
m (x), we use basically the same procedure used in Ref. [20] for computing the

Chandrasekhar polynomials when the argument is a discrete eigenvalue. The only di�erence is

that here the backward calculation for the ratios Gl
m(x) = gl+1

m (x)/gl
m(x) is started with

Gm+2N*+1
m (x) = 0 and is stopped when the ratios computed by perturbed and unperturbed

calculations performed in parallel di�er by more than a speci®ed tolerance two times

consecutively. Then the calculation is switched to forward recursion of Eq. (25) as in Ref. [20].

This calculation is also performed in perturbed and unperturbed modes and is stopped if the

di�erence between the results of the two modes exceeds the speci®ed tolerance three times

consecutively. When this occurs, the calculation is completed by solving a linear system as in

Ref. [20]. Having ®nished the calculation for all of the collocation points in (0,1), we can

compute the Chandrasekhar polynomials for any m $ [0,1], as required in Eqs. (78), (79), (91)

and (92), by using the Darboux formula reported in Ref. [20] to relate the Chandrasekhar

polynomials for m to the Chandrasekhar polynomials for the collocation point in (0,1) closest

to m.
To complete our description of the modi®cations required in the procedure of Ref. [20], we

now consider the case M>m+ 2N*+2. We ®rst de®ne L*=2[(M + 1ÿm)/2], where we use

[x] to denote the integer part of x, and ®nd the positive zeros of gm+L*
m (Z), which we denote as

Zj
m, j= 1,2, . . . ,L*/2. Then, for any x $ [0,1] we use the Darboux formula reported in Ref. [20]

to relate the Chandrasekhar polynomials for x to the Chandrasekhar polynomials for the value

of Zj
m closest to x, that we assume have been previously computed using the procedure de®ned

in the foregoing paragraph.

Finally, to close this section, we recall that for the case $= 1 and m= 0 we require the

functions Aa(x) and Ba(x) de®ned by Eqs. (106) and (107). With the choice of basis functions

given by Eq. (124) and the de®nition

Da;b �
�1
0

P2a�m�mb�1dm; �131�

we can write Eqs. (106) and (107) as
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Table 1
The scattered component I�(t,m,f) for f = 0

m t = 0 t = 3.2 t = 6.4 t = 12.8 t = 32 t = 48 t = 64

ÿ1.0 1.5693(ÿ2) 4.3109(ÿ3) 1.9173(ÿ3) 4.1771(ÿ4) 4.6929(ÿ6) 1.1176(ÿ7)
ÿ0.9 3.1461(ÿ2) 4.4831(ÿ3) 1.9566(ÿ3) 4.3218(ÿ4) 4.8971(ÿ6) 1.1667(ÿ7)
ÿ0.8 5.5820(ÿ2) 5.1302(ÿ3) 2.1107(ÿ3) 4.5717(ÿ4) 5.1688(ÿ6) 1.2317(ÿ7)
ÿ0.7 9.4452(ÿ2) 6.0688(ÿ3) 2.3347(ÿ3) 4.9108(ÿ4) 5.5193(ÿ6) 1.3153(ÿ7)
ÿ0.6 1.5445(ÿ1) 7.3441(ÿ3) 2.6338(ÿ3) 5.3502(ÿ4) 5.9630(ÿ6) 1.4209(ÿ7)
ÿ0.5 2.4801(ÿ1) 9.0382(ÿ3) 3.0209(ÿ3) 5.9062(ÿ4) 6.5166(ÿ6) 1.5527(ÿ7)
ÿ0.4 3.9563(ÿ1) 1.1271(ÿ2) 3.5139(ÿ3) 6.5996(ÿ4) 7.2002(ÿ6) 1.7154(ÿ7)
ÿ0.3 6.3352(ÿ1) 1.4211(ÿ2) 4.1372(ÿ3) 7.4564(ÿ4) 8.0377(ÿ6) 1.9146(ÿ7)
ÿ0.2 1.0302 1.8099(ÿ2) 4.9226(ÿ3) 8.5090(ÿ4) 9.0581(ÿ6) 2.1572(ÿ7)
ÿ0.1 1.7320 2.3293(ÿ2) 5.9120(ÿ3) 9.7976(ÿ4) 1.0296(ÿ5) 2.4516(ÿ7)
ÿ0.0 2.3726 3.0378(ÿ2) 7.1611(ÿ3) 1.1372(ÿ3) 1.1795(ÿ5) 2.8077(ÿ7)
0.0 3.0378(ÿ2) 7.1611(ÿ3) 1.1372(ÿ3) 1.1795(ÿ5) 2.8077(ÿ7) 3.3135(ÿ9)
0.1 4.0795(ÿ2) 8.7454(ÿ3) 1.3295(ÿ3) 1.3606(ÿ5) 3.2381(ÿ7) 5.9127(ÿ9)
0.2 6.6734(ÿ2) 1.0774(ÿ2) 1.5644(ÿ3) 1.5793(ÿ5) 3.7578(ÿ7) 7.5577(ÿ9)
0.3 9.3951(ÿ2) 1.3434(ÿ2) 1.8517(ÿ3) 1.8437(ÿ5) 4.3856(ÿ7) 9.3298(ÿ9)
0.4 1.1178(ÿ1) 1.6980(ÿ2) 2.2036(ÿ3) 2.1634(ÿ5) 5.1449(ÿ7) 1.1342(ÿ8)
0.5 1.2305(ÿ1) 2.1367(ÿ2) 2.6351(ÿ3) 2.5510(ÿ5) 6.0650(ÿ7) 1.3687(ÿ8)
0.6 1.2015(ÿ1) 2.5786(ÿ2) 3.1619(ÿ3) 3.0218(ÿ5) 7.1827(ÿ7) 1.6467(ÿ8)
0.7 1.0525(ÿ1) 2.8953(ÿ2) 3.7887(ÿ3) 3.5957(ÿ5) 8.5450(ÿ7) 1.9805(ÿ8)
0.8 8.3308(ÿ2) 2.9775(ÿ2) 4.4833(ÿ3) 4.2974(ÿ5) 1.0212(ÿ6) 2.3849(ÿ8)
0.9 5.8123(ÿ2) 2.7511(ÿ2) 5.1401(ÿ3) 5.1579(ÿ5) 1.2261(ÿ6) 2.8790(ÿ8)
1.0 2.4544(ÿ2) 1.8366(ÿ2) 5.2268(ÿ3) 6.2035(ÿ5) 1.4792(ÿ6) 3.4874(ÿ8)

Table 2
The scattered component I�(t,m,f) for f = p/2

m t = 0 t = 3.2 t = 6.4 t = 12.8 t = 32 t = 48 t = 64

ÿ1.0 1.5693(ÿ2) 4.3109(ÿ3) 1.9173(ÿ3) 4.1771(ÿ4) 4.6929(ÿ6) 1.1176(ÿ7)
ÿ0.9 1.8133(ÿ2) 4.6440(ÿ3) 2.0201(ÿ3) 4.3649(ÿ4) 4.8983(ÿ6) 1.1668(ÿ7)
ÿ0.8 2.1015(ÿ2) 5.0558(ÿ3) 2.1548(ÿ3) 4.6141(ÿ4) 5.1700(ÿ6) 1.2317(ÿ7)
ÿ0.7 2.4440(ÿ2) 5.5644(ÿ3) 2.3263(ÿ3) 4.9350(ÿ4) 5.5202(ÿ6) 1.3153(ÿ7)
ÿ0.6 2.8399(ÿ2) 6.1899(ÿ3) 2.5408(ÿ3) 5.3403(ÿ4) 5.9631(ÿ6) 1.4210(ÿ7)
ÿ0.5 3.3005(ÿ2) 6.9544(ÿ3) 2.8059(ÿ3) 5.8449(ÿ4) 6.5156(ÿ6) 1.5527(ÿ7)
ÿ0.4 3.8125(ÿ2) 7.8841(ÿ3) 3.1310(ÿ3) 6.4670(ÿ4) 7.1976(ÿ6) 1.7154(ÿ7)
ÿ0.3 4.3707(ÿ2) 9.0094(ÿ3) 3.5274(ÿ3) 7.2284(ÿ4) 8.0331(ÿ6) 1.9145(ÿ7)
ÿ0.2 4.9155(ÿ2) 1.0365(ÿ2) 4.0084(ÿ3) 8.1554(ÿ4) 9.0507(ÿ6) 2.1571(ÿ7)
ÿ0.1 5.2813(ÿ2) 1.1991(ÿ2) 4.5902(ÿ3) 9.2799(ÿ4) 1.0285(ÿ5) 2.4515(ÿ7)
ÿ0.0 3.6615(ÿ2) 1.3926(ÿ2) 5.2918(ÿ3) 1.0641(ÿ3) 1.1779(ÿ5) 2.8076(ÿ7)
0.0 1.3926(ÿ2) 5.2918(ÿ3) 1.0641(ÿ3) 1.1779(ÿ5) 2.8076(ÿ7) 3.3135(ÿ9)
0.1 1.6204(ÿ2) 6.1348(ÿ3) 1.2284(ÿ3) 1.3584(ÿ5) 3.2379(ÿ7) 5.9127(ÿ9)
0.2 1.8815(ÿ2) 7.1431(ÿ3) 1.4269(ÿ3) 1.5764(ÿ5) 3.7575(ÿ7) 7.5576(ÿ9)
0.3 2.1553(ÿ2) 8.3390(ÿ3) 1.6663(ÿ3) 1.8398(ÿ5) 4.3852(ÿ7) 9.3297(ÿ9)
0.4 2.3931(ÿ2) 9.7301(ÿ3) 1.9551(ÿ3) 2.1583(ÿ5) 5.1444(ÿ7) 1.1342(ÿ8)
0.5 2.5576(ÿ2) 1.1284(ÿ2) 2.3032(ÿ3) 2.5442(ÿ5) 6.0643(ÿ7) 1.3687(ÿ8)
0.6 2.6419(ÿ2) 1.2916(ÿ2) 2.7212(ÿ3) 3.0130(ÿ5) 7.1818(ÿ7) 1.6467(ÿ8)
0.7 2.6571(ÿ2) 1.4521(ÿ2) 3.2191(ÿ3) 3.5844(ÿ5) 8.5438(ÿ7) 1.9804(ÿ8)
0.8 2.6203(ÿ2) 1.6004(ÿ2) 3.8034(ÿ3) 4.2834(ÿ5) 1.0210(ÿ6) 2.3849(ÿ8)
0.9 2.5483(ÿ2) 1.7297(ÿ2) 4.4747(ÿ3) 5.1424(ÿ5) 1.2259(ÿ6) 2.8790(ÿ8)
1.0 2.4544(ÿ2) 1.8366(ÿ2) 5.2268(ÿ3) 6.2035(ÿ5) 1.4792(ÿ6) 3.4874(ÿ8)
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Aa�x� � h1
3
xDa;0 ÿ Da;1 �132�

and

Ba�x� � h1
3
xDa;0 � Da;1: �133�

It is a simple matter to show, with the help of some elementary properties of the Legendre

polynomials, that the integrals required in Eqs. (132) and (133) are given explicitly by

Da;0 � �ÿ1�a�1 1

�2aÿ 1��2a� 1�
� � �2a� 1�!!

�2a� 2�!!
� �

�134�

and

Da;1 � 1
3 d0;a � 2

5 d1;a
ÿ �

: �135�

Table 3
The scattered component I�(t,m,f) for f = p

m t = 0 t = 3.2 t = 6.4 t = 12.8 t = 32 t = 48 t = 64

ÿ1.0 1.5693(ÿ2) 4.3109(ÿ3) 1.9173(ÿ3) 4.1771(ÿ4) 4.6929(ÿ6) 1.1176(ÿ7)
ÿ0.9 2.1743(ÿ2) 5.1121(ÿ3) 2.1061(ÿ3) 4.4106(ÿ4) 4.8994(ÿ6) 1.1668(ÿ7)
ÿ0.8 3.7822(ÿ2) 5.6234(ÿ3) 2.2545(ÿ3) 4.6649(ÿ4) 5.1712(ÿ6) 1.2317(ÿ7)
ÿ0.7 4.6109(ÿ2) 6.1326(ÿ3) 2.4165(ÿ3) 4.9756(ÿ4) 5.5211(ÿ6) 1.3153(ÿ7)
ÿ0.6 4.8097(ÿ2) 6.6837(ÿ3) 2.5999(ÿ3) 5.3563(ÿ4) 5.9633(ÿ6) 1.4210(ÿ7)
ÿ0.5 5.5274(ÿ2) 7.2900(ÿ3) 2.8107(ÿ3) 5.8212(ÿ4) 6.5147(ÿ6) 1.5527(ÿ7)
ÿ0.4 6.6011(ÿ2) 7.9645(ÿ3) 3.0552(ÿ3) 6.3860(ÿ4) 7.1952(ÿ6) 1.7153(ÿ7)
ÿ0.3 9.2217(ÿ2) 8.7247(ÿ3) 3.3401(ÿ3) 7.0695(ÿ4) 8.0285(ÿ6) 1.9145(ÿ7)
ÿ0.2 1.6293(ÿ1) 9.5903(ÿ3) 3.6723(ÿ3) 7.8939(ÿ4) 9.0434(ÿ6) 2.1571(ÿ7)
ÿ0.1 1.3044(ÿ1) 1.0586(ÿ2) 4.0600(ÿ3) 8.8855(ÿ4) 1.0274(ÿ5) 2.4514(ÿ7)
ÿ0.0 8.6109(ÿ2) 1.1742(ÿ2) 4.5125(ÿ3) 1.0075(ÿ3) 1.1764(ÿ5) 2.8074(ÿ7)
0.0 1.1742(ÿ2) 4.5125(ÿ3) 1.0075(ÿ3) 1.1764(ÿ5) 2.8074(ÿ7) 3.3135(ÿ9)
0.1 1.3093(ÿ2) 5.0411(ÿ3) 1.1501(ÿ3) 1.3563(ÿ5) 3.2376(ÿ7) 5.9127(ÿ9)
0.2 1.4704(ÿ2) 5.6589(ÿ3) 1.3207(ÿ3) 1.5735(ÿ5) 3.7572(ÿ7) 7.5576(ÿ9)
0.3 1.6540(ÿ2) 6.3808(ÿ3) 1.5248(ÿ3) 1.8359(ÿ5) 4.3848(ÿ7) 9.3297(ÿ9)
0.4 1.8276(ÿ2) 7.2201(ÿ3) 1.7690(ÿ3) 2.1532(ÿ5) 5.1439(ÿ7) 1.1342(ÿ8)
0.5 1.8952(ÿ2) 8.1616(ÿ3) 2.0615(ÿ3) 2.5375(ÿ5) 6.0636(ÿ7) 1.3687(ÿ8)
0.6 1.8127(ÿ2) 9.1387(ÿ3) 2.4125(ÿ3) 3.0043(ÿ5) 7.1809(ÿ7) 1.6467(ÿ8)
0.7 1.6980(ÿ2) 1.0121(ÿ2) 2.8352(ÿ3) 3.5732(ÿ5) 8.5427(ÿ7) 1.9804(ÿ8)
0.8 1.5915(ÿ2) 1.1172(ÿ2) 3.3500(ÿ3) 4.2696(ÿ5) 1.0209(ÿ6) 2.3849(ÿ8)
0.9 1.5655(ÿ2) 1.2610(ÿ2) 4.0040(ÿ3) 5.1273(ÿ5) 1.2258(ÿ6) 2.8790(ÿ8)
1.0 2.4544(ÿ2) 1.8366(ÿ2) 5.2268(ÿ3) 6.2035(ÿ5) 1.4792(ÿ6) 3.4874(ÿ8)
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7. Numerical results and concluding remarks

In order to give some speci®c numerical results, we report in Tables 1±3 our FN results for
the scattered component I��t;m;f� for a problem de®ned by $= 0.9, t0=64, m0=0.2, f0=0
and coe�cients bl, l= 0,1, . . . ,L= 299, tabulated in Refs. [9, 28] for the cloud C1 phase
function de®ned in Ref. [10]. The numerical results reported in Tables 1±3 were obtained by
using N = 699 for the Fourier components 0RmR 25, N= 599 for 26RmR 50, N= 499 for
51R mR 70, N= 399 for 71R mR 100, N= 299 for 101R mR 150 and N= 199 for 151R
mR299, and are thought to be accurate in general to within 21 in the last ®gure shown;
moreover these results were con®rmed using an improved version of the spherical-harmonics
(PN) method with Mark boundary conditions [31]. It is clear from these tables that as the
scattered radiation propagates deeper into the cloud layer it becomes more and more
azimuthally symmetric.
Finally, to conclude this work, we report a couple of observations we have made in regard

to the performance of the method. First, we have con®rmed our previous observation [3] that
the FN method converges faster (i.e. with fewer terms in the approximation) and more
uniformly in m than the PN method, for a given level of precision. On the other hand, we note
that the current version of the FN method is computationally less e�cient, in high order, than
the PN method. This is in a great part because of the time spent by the code in numerical
integrations used to compute the A functions de®ned by Eq. (125). For example, when an
approximation of order Nr 299 is used for solving the considered problem, about 90% of the
total execution time is spent in the calculation of these functions. Clearly, this aspect of the
method needs to be improved. Our second observation has to do with the fact that, for some
other problems that we tried, we found that the post processing technique de®ned by Eqs. (78),
(79), (91) and (92) failed to give accurate results. We were able to resolve this problem by
reformulating our post processing technique, but since there are some speci®c points of the
new technique that we still need to sort out, we plan to report our improved post processing
prescription at a later date.
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