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AbstractÐThe FN method is used to develop a solution to a class of nongrey problems in
the theory of radiative transfer. The model considered allows for scattering with complete
frequency redistribution (completely noncoherent scattering) and continuum absorption. In
addition to a general formulation, a speci®c solution is developed for an inhomogeneous
source term (Planck function) that varies linearly with optical depth in a semi-in®nite med-
ium. Test problems based on Doppler and Lorentz pro®les of the line-scattering coe�cient
are considered, and numerical results (thought to be correct to ®ve signi®cant ®gures) are
given for the frequency-dependent intensity exiting the medium and for the source function
within the medium. For comparison purposes, a previously reported solution that is
expressed in terms of Chandrasekhar's H function is evaluated numerically. # 1998 Elsevier
Science Ltd. All rights reserved

1. INTRODUCTION

Some 25 years or so ago, McCormick and Siewert1 used an expansion in terms of singular
eigenfunctions2 to solve analytically a class of nongrey problems in radiative transfer that was
based on the equation of transfer written, after Hummer,3 as

m
@

@t
Ix�t, m� � �f�x� � b��Sx�t� ÿ Ix�t, m�

� �1�

where Sx(t) is the source function,

�f�x� � b�Sx�t� � 1

2
$f�x�

�1
ÿ1

f�x 0�
�1
ÿ1
Ix 0 �t, m 0�dm 0dx 0 � �rb� �1ÿ$�f�x��B�t�, �2�

and B(t) is the Planck function. We note that tr0 is the optical variable and m $ [ÿ1, 1] is the
cosine of the polar angle (as measured from the positive t axis) that describes the direction of
propagation of the radiation. In addition, $ $ [0, 1] is the albedo for single scattering, b>0 is
the ratio of the continuum absorption coe�cient to the average line coe�cient, r is the ratio of
the continuum source function to the Planck function and f(x) is the line-scattering pro®le. We
note that while some of the quantities we compute here remain valid in the limit b 4 0, other
quantities, as we shall see, do not. In fact the case b = 0 requires special attention since for
some speci®c line-scattering pro®les certain integrals we use fail to exist for this case.

For a speci®ed Planck function B(t) we seek a solution of Eq. (1) subject to the boundary
condition that no radiation is entering the medium, i.e.

Ix�0, m� � 0 �3�
for m $ (0,1].

In addition to providing a formulation to the problem we consider here, Hummer3 developed
some asymptotic results, reported a solution based on a discrete-ordinates method and provided
some of the ®rst numerical results for this challenging class of problems. We note also that
Ivanov4 and colleagues have reported numerous works devoted to analytical and computational
aspects of this problem; Ref. 4 in particular provides an excellent entry into this body of work.
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In this paper we ®rst report an H-function calculation and an evaluation of the analytical
results given in Ref. 1 for Ix(0,ÿ m), m $ (0, 1], and Sx(0). Then, in order to establish some nu-
merical results valid on the surface and within the medium, we use the FN method to compute
the radiation intensity exiting the surface, Ix(0,ÿ m) for m $ (0, 1] and the source function Sx(t)
for tr0.

Although the development in Ref. 1 is general in regard to the given Planck function and
line-scattering pro®le f(x), we focus our numerical work here on a linear form of the Planck
function

B�t� � B0 � B1t �4�
where the constants {B0, B1} are considered given, and the Doppler

f�x� � 1���
p
p eÿx

2 �5a�

and the Lorentz

f�x� � 1

p�1� x2� �5b�

scattering pro®les.

2 . SUMMARY OF A PREVIOUS WORK

As the considered problem was solved explicitly in Ref. 1, we wish here simply to summarize
the basic elements of Ref. 1 that serve as a starting point for the current work. First of all, a
change of the angular variable by x = mgx with

gx � �f�x� � b�ÿ1 �6�
allows us to rewrite Eq. (1) as

x
@

@t
Ix�t, x� � Ix�t, x� � 1

2
$f�x�

�g
ÿg

�
Mx 0

f�x 0�Ix 0 �t, x 0�dx 0dx 0 �Qx�t� �7�

where

Qx�t� � �rb� �1ÿ$�f�x��B�t� �8�
is an inhomogeneous source term, and where g = sup gx. Since the considered pro®les f(x) van-
ish at in®nity it is clear that g = 1/b. In addition, the set Mx is de®ned such that x $ Mx if and
only if [f(x) + b]vxvR1.

As was pointed out in Ref. 1, the desired solution can be written as

Ix�t, x� � I p
x�t, x� � f�x�G�t, x� ÿ �I p

x�0, x� � f�x�G�0, x��eÿt=x �9a�
and

Ix�t,ÿ x� � I p
x�t,ÿ x� � f�x�G�t,ÿ x� �9b�

for x $ (0,g). Here I p
x�t,x� is a particular solution of Eq. (7) corresponding to a speci®ed inhomo-

geneous source term Qx(t), and the function G(t,x) is a solution (that vanishes as t tends to in-
®nity) of

x
@

@t
G�t, x� � G�t, x� �

�g
ÿg
C�x 0�G�t, x 0�dx 0 �10�

such that

C�x�G�0, x� � G�x�, x 2 �0, g�: �11�
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Here

C�x� � $
2

�
Mx

f2�x�dx �12�

and

G�x� � ÿ$
2

�
Mx

f�x�I p
x�0, x�dx: �13�

In Ref. 1, McCormick and Siewert used classical eigenfunction methods and an H function
similar to those discussed by Chandrasekhar5 to establish the desired solution of the G problem
de®ned by Eqs. (10) and (11); in particular, they expressed the emerging intensity and the source
function on the surface as

Ix�0,ÿ x� � I p
x�0,ÿ x� � f�x�G�0,ÿ x� �14�

and

Sx�0� � gx lim
xÿ40

Ix�0,ÿ x� �15�

where

G�0,ÿ x� � H�x�
�g
0

x 0G�x 0�H�x 0� dx 0

x 0 � x
: �16�

Here the function H(x) satis®es, in addition to a singular-integral equation, the nonlinear inte-
gral equation

H�z� � 1� zH�z�
�g
0

C�z 0�H�z 0� dz 0

z 0 � z
, z 2 �0, g�: �17�

We note that our notation here di�ers slightly from that of Ref. 1 in that we have included a
factor $ with the previous de®nitions of G(t, x) and G(x).

It is clear that to complete the de®nition of the desired solution we require a particular sol-
ution that corresponds to the inhomogeneous source term de®ned by Eqs. (4) and (8). In Ref. 1
an appropriate particular solution was expressed as

I p
x�t, x� �

�
B0 � B1�tÿ x���Lf�x� � rb� �18�

where

L � $K � 1ÿ$ �19a�
and

$K � 1

L�1�
�g
ÿg
�rbD�x� � �1ÿ$�C�x��dx �19b�

with

L�1� � 1ÿ
�g
ÿg
C�x�dx �20�

and

D�x� � $
2

�
Mx

f�x�dx: �21�

Next we can substitute Eq. (18) into Eq. (13) to ®nd

G�x� � �LC�x� � rbD�x���B1xÿ B0� �22�
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which can then be used in Eq. (16) so that we can express the required solution for G(0,ÿ x) as

G�0,ÿ x� � B1

�
LU1�x� � rbX1�x�

�ÿ B0

�
LU0�x� � rbX0�x�

� �23�
for x $ (0, g). Here the functions U(x) and X(x) are independent of r, B0 and B1. Clearly

U0�x� � H�x�
�g
0

x 0C�x 0�H�x 0� dx 0

x 0 � x
, �24�

U1�x� � H�x�
�g
0

x 02C�x 0�H�x 0� dx 0

x 0 � x
, �25�

X0�x� � H�x�
�g
0

x 0D�x 0�H�x 0� dx 0

x 0 � x
�26�

and

X1�x� � H�x�
�g
0

x 02D�x 0�H�x 0� dx 0

x 0 � x
: �27�

We note that the integrals de®ning the U functions can be expressed in terms of the H func-
tion and moments of the H function; however, since we intend eventually to evaluate the X
functions by numerical integration, we choose to evaluate the U functions in the same way. We
proceed now to consider two speci®c choices of the line-scattering pro®le and to report some
numerical results.

3 . NUMERICAL RESULTS FOR THE DOPPLER AND LORENTZ PROFILES

As we now intend to report some numerical results, we focus our attention on the two special
choices of the scattering-line pro®le listed in Eqs. (5), and so to continue we require the func-
tions C(x) and D(x) de®ned by Eq. (12) and Eq. (21) and the constant L de®ned by Eqs. (19).

Considering ®rst the case of the Doppler pro®le, we ®nd we can substitute Eq. (5a) into
Eq. (12) to obtain

C�x� �
�
C0, x 2 �0, g0�,
C0erfc�

���
2
p

m�x��, x 2 �g0, g�, �28�

where erfc(z) is the complementary error function, and where

m�x� �
������������������������������������
ln

�
x���

p
p �1ÿ bx�

�s
, x 2 �g0, g�: �29�

In addition

C0 � $
4

���
2

p

r
�30�

and

g0 �
���
p
p

1� b
���
p
p : �31�

In a similar manner we substitute Eq. (5a) into Eq. (21) to ®nd

D�x� �
�
D0, x 2 �0, g0�,
D0erfc�m�x��, x 2 �g0, g�, �32�
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with

D0 � $
2
: �33�

In regard to the constant L, we ®nd we can use Eqs. (19) to ®nd

L � 1ÿ$ �$r�1ÿW�b ���
p
p ��

1ÿ$W�b ���
p
p � �34�

with

W�z� � 2���
p
p

�1
0

exp�ÿ2x2�
exp�ÿx2� � z

dx: �35�

Considering now the case of the Lorentz pro®le as de®ned by Eq. (5b), we ®nd that the func-
tion C(x) can be expressed as

C�x� �
C0, x 2 �0, g0�,

C0

�
1ÿ 2

p

�
m�x�

1�m2�x� � tanÿ1m�x�
��

, x 2 �g0, g�,

8><>: �36�

where

m�x� �
����������������������������
x�1� bp� ÿ p
p�1ÿ bx�

s
, x 2 �g0, g�: �37�

In addition we now have

C0 � $
4p

�38�

and

g0 �
p

1� bp
: �39�

For the function D(x) we ®nd

D�x� �
D0, x 2 �0, g0�,

D0

�
1ÿ 2

p
tanÿ1m�x�

�
, x 2 �g0, g�,

8><>: �40�

where again,

D0 � $
2
: �41�

To complete this case we express the constant L as

L � 1ÿ$ � r$f

1ÿ$ �$f
�42�

with

f �
��������������
bp

1� bp

s
: �43�

It is clear that the ®rst thing we must do in order to evaluate the established results, viz.
Eqs. (24)±(27) of the previous section, is to compute the H function. Since we wish simply to
solve Eq. (17) by iteration our ®rst decision concerns the type of quadrature scheme we use to
represent the integral term. We have done two things: ®rst of all for ``large'' values of the con-
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stant b, say br0.01, we used a Gauss±Legendre scheme in each of the two intervals [0, g0] and
[g0, g] and encountered no di�culties. On the other hand, for ``small'' values of b, say b < 0.01,

we did encounter a loss of accuracy that became more and more signi®cant as b4 0 in using

our ®rst quadrature scheme for these cases. After some experimentation with a Gauss±Laguerre

quadrature scheme, we found good results by mapping the variable z $ [g0,g] into the variable

u $ [0,1] by way of the transformation

u�z� � eÿam�z�, z 2 �g0, g�, �44�
with u(g) = 0, and then using a Gauss±Legendre scheme on the original ®rst interval [0, g0] and
on the second interval transformed to [0,1]. After some (casual) experimentation with the par-

ameter a in Eq. (44) we found that while some value of a $ [1,2] worked well for the Doppler

case, a much smaller value, say a $ [10ÿ3,10ÿ2], was better for the Lorentz case.

In regard to a listing of some of our numerical results, we note ®rst of all that we have not

found any H-function or other results related to our Tables 1 and 2 for either the Doppler or

the Lorentz pro®le when b>0. And so naturally (since no expert code writers were involved in

this work) we hope our con®dence in these results will prove justi®ed. For the case b = 0 we

found that Ivanov and Nagirner6 reported quite a few years ago an excellent computation and

tabulation of the H function for the case of a Doppler pro®le. To test our quadrature schemes

we repeated and con®rmed the computations of Ref. 6 for selected (di�cult) cases. For the case

of the Lorentz pro®le, we used Warming's7 H-function calculations, again for the case b = 0, to

establish some con®dence in our H-function results. It has to be said that these early works of

Ivanov,4 Ivanov and Nagirner,6 and Warming7 are very good in that much care was taken with

the computations and signi®cant asymptotic analysis was incorporated into the numerical work.

In addition to extending these calculations reported in Refs. 4, 6 and 7 to the interesting cases

of Doppler and Lorentz pro®les with b>0, our goal here has been to get good numerical results

without having to do any asymptotic analysis, so that when we take on a version of this

problem that includes polarization e�ects we will not (hopefully) have to face a great deal of

asymptotic analysis in order to obtain good results.

We have found that Eqs. (25)±(27) become di�cult to evaluate accurately (even having

already good results for the H function) as b tends to zero. Of course this is not surprising

Table 1. Basic functions for a Doppler pro®le with 1ÿ$= 10ÿ6 and b = 10ÿ4
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since, in fact, the integrals in those equations do not exist for a Doppler or Lorentz line-scatter-
ing pro®le with b = 0. In order to report some numerical results we choose a meaningful (but
not impossibly di�cult) case, viz., 1ÿ$= 10ÿ6 and b = 10ÿ4, and so we list in Tables 1 and 2
our results for the U and X functions, along with our results for the H function, that we believe
accurate to plus or minus one unit in the last digit given.

4. THE FN METHOD FOR SURFACE QUANTITIES

While solutions to half-space problems based on isotropic-scattering models can usually be
solved concisely in terms of H functions, similar analysis generally becomes considerably more
di�cult for problems in ®nite media or for problems with anisotropic scattering phase functions.
Anticipating using the FN method8,9 to solve more general problems in the area of noncoherent
scattering in ®nite media (including polarization e�ects), we wish to test the method in the cur-
rent setting. We seek again, as in Section 2, a solution that vanishes at in®nity of

x
@

@t
G�t, x� � G�t, x� �

�g
ÿg
C�x 0�G�t, x 0�dx 0 �45�

such that

C�x�G�0, x� � G�x�, x 2 �0, g�: �46�
To start we follow Ref. 8, change x to ÿx and rewrite Eq. (45) as

ÿx @
@t

G�t,ÿ x� � G�t,ÿ x� � G�t� �47�
where

G�t� �
�g
ÿg
C�x�G�t, x�dx: �48�

Next we multiply Eq. (47) by exp(ÿt/s), Rs>0 and s ( [0, g], and integrate over t from zero to
in®nity to ®nd (after an integration by parts)

Table 2. Basic functions for a Lorentz pro®le with 1ÿ$= 10ÿ6 and b = 10ÿ4
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�1
0

eÿt=sG�t,ÿ x�dt � s

sÿ x
G*�s� �

sx
sÿ x

G�0,ÿ x� �49�

where

G*�s� �
�1
0

eÿt=sG�t�dt: �50�

We now multiply Eq. (49) by C(x) and integrate the resulting equation over x from ÿg to g to
obtain

L�s�G*�s� � s

�g
0

xC�x�G�0,ÿ x� dx
xÿ s

� s

�g
0

xG�x� dx
x� s

�51�

after we have used Eq. (11) and where

L�s� � 1� s

�g
ÿg
C�x� dx

xÿ s
: �52�

If in Eq. (51) we let s4 Z $ (0, g) from above (+) and below (ÿ) the real axis, we can use the
Plemelj formulas10 to ®nd

l�Z�G*�Z� � Zÿ
� g
0

xC�x�G�0,ÿ x� dx
xÿ Z

2piZC�Z��G*�Z� � ZG�0,ÿ Z�� � Z
�g
0

xG�x� dx
x� Z

�53�

where we use the symbol ÿ� to denote that integrals are to be evaluated in the Cauchy principal-
value sense, and where

l�Z� � 1� Zÿ
� g
ÿg
C�x� dx

xÿ Z
: �54�

Finally upon eliminating G*(Z) between the two versions of Eq. (53), we ®nd we can write

l�Z�G�0,ÿ Z� ÿ ÿ
� g
0

xC�x�G�0,ÿ x� dx
xÿ Z

�
�g
0

xG�x� dx
x� Z

, Z 2 �0, g�: �55�

It is apparent that Eq. (55) is a singular-integral equation for the unknown function G(0,ÿ x),
x $ (0, g).

In regard to possible zeros of L(s), we have con®rmed a result reported by Ivanov,4 viz., that
l(g)>1ÿ$, and so we can use the argument principle and the fact that C(x)r0 to con®rm
(since b>0) another result quoted by Ivanov: the function L(s) has no zeros in the complex
plane cut from ÿg to g along the real axis.

It is clear that a solution to Eq. (55) will yield the desired solution to our problem, and so
here we do not actually require the H function. However, in order to provide an alternative way
to express the solution to the G problem, and since H satis®es a singular-integral equation of
the same form as Eq. (55), viz.,

l�Z�H�Z� ÿ ÿ
� g
0

xC�x�H�x� dx
xÿ Z

�
������������
L�1�

p
, Z 2 �0, g�, �56�

we also use the FN method to compute the H function. We note in regard to Eq. (56) that

L�1� � 1ÿ$W�b ���
p
p � �57a�

for the Doppler pro®le and that

L�1� � 1ÿ$�1ÿ f � �57b�
for the Lorentz pro®le. We recall that W(z) is de®ned by Eq. (35) and f by Eq. (43).

Noting the de®nition of G(x) as given by Eq. (22), we conclude that everything we require
here can be expressed in terms of the ®ve problems (k= 1,2, . . . ,5)
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l�Z�Nk�Z� ÿ ÿ
� g
0

xC�x�Nk�x� dx
xÿ Z

� Rk�Z�, Z 2 �0, g�, �58�

with

Rk�Z� �
�g
0

xkC�x� dx
x� Z

, k � 1, 2, �59�

Rk�Z� �
�g
0

xkÿ2D�x� dx
x� Z

, k � 3, 4, �60�

and R5(Z)=
������������
L�1�p

. With these de®nitions it is clear that the results listed in Tables 1 and 2 fol-
low from the identi®cations Ukÿ1(x) = Nk(x), k= 1,2, Xkÿ3(x) = Nk(x), k= 3,4, and
H(x) = N5(x). To avoid too much notation, we suppress the subscripts in Eq. (58) and consider
the general form

l�Z�N�Z� ÿ ÿ
� g
0

xC�x�N�x� dx
xÿ Z

� R�Z�, Z 2 �0, g�: �61�

It should be noted that if we wished only to compute the H function we could use the fact that
H(0) = 1 to rewrite Eq. (56) as

l�Z�H�Z� ÿ Zÿ
� g
0

C�x�H�x� dx
xÿ Z

� 1, Z 2 �0, g�, �62�

which could be a better form, especially as L(1) 4 0.
At this point, rather than seek an analytical solution of Eq. (61), we wish to use the FN

method8,9 to develop an approximate (but su�ciently accurate) solution; we therefore propose
the approximation

N�x� �
XN
a�0

aaFa�x�, x 2 �0, g�, �63�

where {Fa(x)} is a set of approximating functions (to be speci®ed later) and {aa} is a set of con-
stants to be determined. If we substitute Eq. (63) into Eq. (61) and consider the resulting
equation at a set of distinct points {Zi} we obtain a system of linear algebraic equations to deter-
mine the required constants, viz.,XN

a�0
aaBa�Zi� � R�Zi�, i � 1, 2, . . . ,N � 1: �64�

Here we have de®ned

Ba�Z� � l�Z�Fa�Z� ÿ ÿ
� g
0

xC�x�Fa�x� dx
xÿ Z

, Z 2 �0, g�: �65�

Once we have speci®ed a set of functions {Fa(x)} and determined the constants {aa} we can,
of course, obtain our ®rst approximate solution from Eq. (63). On the other hand, we can also
go back to Eq. (61) to obtain a ``post-processed'' result. To see this we ®rst rewrite Eq. (61) as

N�Z� � R�Z� � ÿ
� g
0

xC�x�N�x� dx
xÿ Z

� �1ÿ l�Z��N�Z�, Z 2 �0, g�: �66�

We now substitute Eq. (63) into the r.h.s. of Eq. (66) and thus express our ``post-processed''
result as

N�x� � R�x� �
XN
a�0

aaCa�x� �67�
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where

Ca�x� �
�g
0

C�x�
�
xFa�x� ÿ xFa�x�

xÿ x
� xFa�x�

x� x

�
dx: �68�

To complete this formulation we note that, for this ®rst work on using the FN method for the

considered class of problems, we intend to evaluate the functions Ba(Z) and Ca(x) by numerical

integration. While the form of Eq. (68) is considered convenient for numerical integration, we

prefer, for this purpose, to rewrite Eq. (65) as

Ba�Z� � Fa�Z� ÿ
�g
0

C�x�
�
xFa�x� ÿ ZFa�Z�

xÿ Z
� ZFa�Z�

x� Z

�
dx: �69�

In order to proceed with our FN solution we must now choose the functions {Fa(x)} and a

collocation scheme. In the past9 good results have been obtained for various radiative-transfer

problems by using a version of the FN method based on the use of shifted Legendre polynomials

as expansion functions and a collocation scheme de®ned by the zeros of the Chebyche� poly-

nomials.

We thus ®rst propose to use

Fa�x� � Pa�2bxÿ 1� �70�
and

Zi �
g
2

�
1� cos

�
p
2

�
2i ÿ 1

N � 1

���
, i � 1, 2, . . . ,N � 1, �71�

to de®ne the linear system given by Eq. (64). Having chosen the functions de®ned by Eq. (70),

we have to admit that the solution is going to fail in principle for the excluded case of b = 0,

and it is also going to fail numerically for some su�ciently small b. It is clear that we must

decide how well we can do this calculation using these approximating functions as the parameter

b becomes small.

We started this numerical study by considering b = 0.5, and we found with N= 99 results

for all of the functions listed in Tables 1 and 2 that agreed to ®ve signi®cant ®gures with the

results obtained by evaluating the exact expressions. Continuing, we considered smaller values

of b and found that we could still get results good to ®ve signi®cant ®gures for b as small as

10ÿ3. For smaller values of b our results began to deteriorate, and so we started a search for

another set of expansion functions and a collocation scheme that could improve the FN method

for small b.
Having had some success using the transformations

u�z� � z=g0, z 2 �0, g0�, �72a�
and

u�z� � eÿam�z�, z 2 �g0, g�, �72b�
with u(g) = 0, to de®ne a quadrature scheme for solving the nonlinear H equation and evaluat-

ing Eqs. (24)±(27), we now introduce a set of (discontinuous) functions de®ned as

Fa�z� �
�

Pa�2z=g0 ÿ 1�, z 2 �0, g0�,
0, z 2 �g0, g�, �73a�

for a = 0,1,2,..., N1 and

Fa�z� �
(

0, z 2 �0, g0�,
PaÿN1ÿ1�2eÿa�m�z��

b ÿ 1�, z 2 �g0, g�,
�73b�

with Fa�g� � PaÿN1ÿ1�ÿ1�, for a = N1+1, N1+2, . . . , N. Of course the integer N1 in Eqs. (73)
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must be speci®ed; we have used N1=[m(Nÿ 1)/10] with m= 1, 2 or 3, typically. We note that
in Eq. (73b) we have two ``scaling factors'' a and b.

To have a collocation scheme we can use for all values of b we have used the zeros of the
Chebyche� polynomials and transformations, similar to those given by Eqs. (72), on the variable
Z in Eq. (61) so as to obtain

Zi �
g0
2

�
1� cos

�
p
2

�
2i ÿ 1

N1 � 1

���
�74a�

for i= 1, 2, . . . , N1+1 and

ZN1�1�i � mÿ1
��
ÿ ln

�
1

2
� 1

2
cos

�
p
2

�
2i ÿ 1

N ÿN1

���
=a

�1=b�
�74b�

for i= 1,2, . . . , NÿN1. At this point we note that although the notation used in Eqs. (73) and
Eqs. (74) may appear unnecessarily complicated, that notation allows us to use our general for-
mulation of the FN method without introducing any additional equations or concepts.

We have carried out many numerical experiments with the expansion functions and colloca-
tion scheme de®ned by Eqs. (73) and Eqs. (74) and have generally found excellent results. For
example, with 1ÿ$= 10ÿ6 we found results for the functions listed in Tables 1 and 2 that
agreed with results obtained from the exact formulation to ®ve signi®cant ®gures for b as small
as 10ÿ7 for both the Doppler and the Lorentz pro®les.

In regard to the scaling factors {a, b} used in Eq. (73b) and Eq. (74b), we note that we have
typically used a $ [1,1.5] with b $ [0.8,1.0] for the Doppler case and a $ [10ÿ3,10ÿ2] with
b $ [0.6,1.0] for the Lorentz case. Again we have done only some casual experimentation with
these two scaling factors, but we have seen that the results can vary greatly on the choice of
these quantities. We have also seen that the choice required for {a, b}, in order to obtain good
results, depends mostly on the physical parameter b.

Since we wished here to be able to investigate easily various sets of expansion functions
{Fa(x)} we have used only numerical integration to evaluate the required functions Ba(Z) and
Ca(x), and so, perhaps by developing and using recursion formulas to evaluate these quantities
we can still improve the numerical results.

5 . THE FN METHOD FOR THE SOURCE FUNCTION

It is clear from Eq. (2) and Eq. (7) that the source function Sx(t) can be computed from

Sx�t� � gx lim
xÿ40

Ix�t,ÿ x�, �75�

or, after we use Eq. (9b),

Sx�t� � gx lim
xÿ40

�
I p
x�t,ÿ x� � f�x�G�t,ÿ x�� �76�

or, after we use Eq. (18),

Sx�t� � gx�B0 � B1t��Lf�x� � rb� � gxf�x� lim
xÿ40

G�t,ÿ x�: �77�

So to compute the source function, and thus to complete this work, we now wish to use the
FN method to compute

S�t� � lim
xÿ40

G�t,ÿ x�, t > 0: �78�

A set of singular-integral equations for G(t,ÿ x) and G(t, x) for x $ (0,g) can be derived8 from
Eq. (47) in much the same way as Eq. (55) was derived. This time we carry out two separate
integral transformations: in one case we multiply Eq. (47) by exp(ÿt/s) and integrate over t
from t to in®nity, and in the other case we multiply by the same factor and integrate over t

The FN method for spectral-line formation 271



from zero to t. As the development here follows closely what we did in the previous section of

this paper (see also Ref. 8), we omit some steps and write

l�Z�G�t,ÿ Z� ÿ ÿ
� g
0

xC�x�G�t,ÿ x� dx
xÿ Z

ÿ
�g
0

xC�x�G�t, x� dx
x� Z

� 0 �79a�

and

l�Z�G�t, Z� ÿ ÿ
� g
0

xC�x�G�t, x� dx
xÿ Z

ÿ
�g
0

xC�x�G�t,ÿ x� dx
x� Z

� eÿt=ZK�Z� �79b�

for Z $ (0, g) and t>0. Here

K�Z� � l�Z�G�0, Z� ÿ ÿ
� g
0

xC�x�G�0, x� dx
xÿ Z

ÿ
�g
0

xC�x�G�0,ÿ x� dx
x� Z

: �80�

We choose to decompose G(t, Z) into scattered and unscattered components, and so we sub-

stitute

G�t, x� � G�0, x�eÿt=x � G*�t, x�, �81�
for x $ (0, g), into Eqs. (79) to ®nd

l�Z�G�t,ÿ Z� ÿ ÿ
� g
0

xC�x�G�t,ÿ x� dx
xÿ Z

ÿ
�g
0

xC�x�G*�t, x� dx
x� Z

� T1�t, Z� �82a�

and

l�Z�G*�t, Z� ÿ ÿ
� g
0

xC�x�G*�t, x� dx
xÿ Z

ÿ
�g
0

xC�x�G�t,ÿ x� dx
x� Z

� T2�t, Z� �82b�

for Z $ (0, g) and t>0. Here

T1�t, Z� �
�g
0

xG�x�eÿt=x dx
x� Z

�83a�

and

T2�t, Z� �
�g
0

xG�x�C�t:x, Z�dxÿ eÿt=Z
�g
0

xC�x�G�0,ÿ x� dx
x� Z

�83b�

where

C�t:x, Z� � eÿt=x ÿ eÿt=Z

xÿ Z
: �84�

Following the procedure we used in the previous section to decompose G(x) and G(0,ÿ x)
into four basic components, we do the same thing here for G(t,ÿ x) and G*(t, x), and so we

consider the set of equations

l�Z�Nk�t,ÿ Z� ÿ ÿ
� g
0

xC�x�Nk�t,ÿ x� dx
xÿ Z

ÿ
�g
0

xC�x�N*
k
�t, x� dx

x� Z
� R1, k�t, Z� �85a�

and

l�Z�N*
k
�t, Z� ÿ ÿ

� g
0

xC�x�N*
k
�t, x� dx

xÿ Z
ÿ
�g
0

xC�x�Nk�t,ÿ x� dx
x� Z

� R2, k�t, Z� �85b�

where

R1, k�t, Z� �
�g
0

xkC�x�eÿt=x dx
x� Z

, k � 1, 2, �86a�
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R1, k�t, Z� �
�g
0

xkÿ2D�x�eÿt=x dx
x� Z

, k � 3, 4, �86b�

R2, k�t, Z� �
�g
0

xkC�x�C�t:x, Z�dxÿ eÿt=Z
�g
0

xC�x�Nk�x� dx
x� Z

, �86c�

for k= 1, 2, and

R2, k�t, Z� �
�g
0

xkD�x�C�t:x, Z�dxÿ eÿt=Z
�g
0

xC�x�Nk�x� dx
x� Z

, �86d�

for k = 3, 4. We note that the functions Nk(x), for k = 1, 2, 3 and 4, are the surface quantities
established in Section 4, viz., solutions to Eq. (61).

Here again, we suppress the explicit notation and consider

l�Z�N�t,ÿ Z� ÿ ÿ
� g
0

xC�x�N�t,ÿ x� dx
xÿ Z

ÿ
�g
0

xC�x�N *�t, x� dx
x� Z

� R1�t, Z� �87a�

and

l�Z�N *�t, Z� ÿ ÿ
� g
0

xC�x�N *�t, x� dx
xÿ Z

ÿ
�g
0

xC�x�N�t,ÿ x� dx
x� Z

� R2�t, Z� �87b�

for Z $ (0, g) and t>0.
To establish our FN solution, we substitute the approximations

N�t,ÿ x� �
XN
a�0

ca�t�Fa�x�, x 2 �0, g�, �88a�

and

N *�t, x� �
XN
a�0

da�t�Fa�x�, x 2 �0, g�, �88b�

into Eqs. (87) and note Eq. (65); we then consider the resulting equations at the collocation
points {Zi} to obtain XN

a�0
�ca�t�Ba�Zi� ÿ da�t�Aa�Zi�� � R1�t, Zi� �89a�

and XN
a�0
�da�t�Ba�Zi� ÿ ca�t�Aa�Zi�� � R2�t, Zi� �89b�

for i= 1, 2, . . . , N + 1. Here we have de®ned

Aa�z� �
�g
0

xC�x�Fa�x� dx
x� z

, z 2 �0, g�: �90�

We note that since the coe�cient matrix in the linear system de®ned by Eqs. (89) is indepen-
dent of t, only one LU factorization of the coe�cient matrix is required to have the desired sol-
ution for any value of t.

Of course once we have solved the linear system to ®nd the coe�cients ca(t) and da(t) we can
compute our ®rst results from Eqs. (88). We can also rewrite Eqs. (87) as

N�t,ÿ Z� � R1�t, Z� � ÿ
� g
0

xC�x�N�t,ÿ x� dx
xÿ Z

�
�g
0

xC�x�N *�t, x� dx
x� Z

� �1ÿ l�Z��N�t,ÿ Z�
�91a�
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and

N *�t, Z� � R2�t, Z� � ÿ
� g
0

xC�x�N*�t, x� dx
xÿ Z

�
�g
0

xC�x�N�t,ÿ x� dx
x� Z

� �1ÿ l�Z��N*�t, Z� �91b�

and substitute Eqs. (88) into the r.h.s. of these equations to ®nd, after noting Eq. (68) and
Eq. (90), the ``post-processed'' results, viz.,

N�t,ÿ x� � R1�t, x� �
XN
a�0

�
ca�t�Ca�x� ÿ da�t�Aa�x�

� �92a�

and

N *�t, x� � R2�t, x� �
XN
a�0

�
da�t�Ca�x� ÿ ca�t�Aa�x�

� �92b�

for x $ (0, g) and t>0.
It is clear that Eqs. (88) or Eqs. (92) de®ne G(t, x) and G(t,ÿ x) for x $ (0,g) and t>0, and so

the complete solution for Ix(t, m) can be considered as established. We have now only to evalu-
ate our solution numerically and to check out the achieved accuracy. For numerical purposes,
we choose to evaluate the source function as given by Eq. (77), and since everything in that
equation is known except for S(t), as de®ned by Eq. (78), we need compute only S(t). If we
write

S�t� � B1

�
LU1�t� � rbX1�t�

�ÿ B0

�
LU0�t� � rbX0�t�

� �93�
then we can make the identi®cations

Ukÿ1�t� � Nk�t, 0�, k � 1, 2, �94a�
and

Xkÿ3�t� � Nk�t, 0�, k � 3, 4, �94b�
where, in general,

N�t, 0� � R1�t, 0� �
XN
a�0

�
ca�t�Ca�0� ÿ da�t�Aa�0�

�
: �95�

For a ®rst test of our source-function calculation we return to Ref. 3 and note that in that
work Hummer expressed the total source function in the form

Sx�t� � f�x�gxSL�t� � rbgxB�t� �96�
where SL(t) is the line-source function and B(t) is the Planck function. Thus for the considered
case of a linear Planck function we can write

SL�t� � �B0 � B1t�L� lim
xÿ40

G�t,ÿ x�: �97�

To compare with some of Hummer's3 results, we considered the case of Doppler pro®le with
B0=1 and B1=0, and we have computed

p0�t� � SL�t�=SL�0�, r � 0, �98a�
and

p1�t� � SL�t�=SL�0�, r � 1: �98b�
Of course we can express p0(t) and p1(t) in terms of the basic functions of this section. We

®nd

p0�t� �
�
1ÿU0�t�

�
=
�
1ÿU0�0�

� �99a�
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and

p1�t� �
�
L
�
1ÿU0�t�

�ÿ bX0�t�
	
=
�
L
�
1ÿU0�0�

�ÿ bX0�0�
	
: �99b�

We have used the approximating functions and collocation scheme de®ned by Eqs. (73) and
Eqs. (74) to recompute p0(t) and p1(t) for the various cases, viz., 1ÿ$= 10ÿ6 with b $ [0,10ÿ3],
considered by Hummer.3 We note that Hummer's results3 are listed with three signi®cant ®gures
and that we found agreement with those results.

Table 3. Results for a Doppler pro®le with 1ÿ$= 10ÿ6 and b= 10ÿ4

Table 4. Results for a Lorentz pro®le with 1ÿ$= 10ÿ6 and b= 10ÿ4
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To report some general numerical results we list in Tables 3 and 4 our basic functions for the
case 1ÿ$= 10ÿ6 with b = 10ÿ4 for both the Doppler and the Lorentz pro®les. These results
(obtained with N= 299) are thought to be correct to plus or minus 1 unit in the last digits
given.

6. CONCLUDING REMARKS

We note ®rst of all that using the nonlinear H equation, we found no di�culty in accurately
evaluating the functions H(x) and U0(x) for any of the considered values of b; however, we did
®nd a loss of accuracy in computing the functions U1(x), X0(x) and X1(x) as b became very small
Ðnot a surprising observation since those functions do not even exist for the Doppler or
Lorentz line-scattering pro®les for the case of b = 0.

Having completed this, our ®rst work on using the FN method for investigating the problem
of spectral-line formation by completely noncoherent scattering, we are of the opinion that the
method can be used to solve well this class of problems. As is typical in the use of the FN

method, we found here the choice of a set of expansion functions {Fa(x)} and an accompanying
collocation scheme to be somewhat of an ``art form'', but ®nally we believe the two schemes we
have used, one for ``large'' values of b and another for ``small'' values of b are good ones for
this application. We have found b = 10ÿ3 to be a good transitional value since we were able to
obtain excellent results for this value of b from each of the two schemes.

It is expected that in future work we will seek ways to evaluate the basic functions of the FN

method, viz., Ba(x), Ca(x) and Aa(x), that are faster and more accurate than the numerical inte-
gration methods we have used here. More attention will also be given to deciding how to de®ne
the scaling factors {a, b} used in Eq. (73b) and Eq. (74b). We also intend to extend this current
calculation to the case of a ®nite medium, and it is anticipated that we will go on to spectral-
line problems that also include polarization e�ects.11,12
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