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Abstract —An integral transform technique and thg, Fethod are used to develop solutions to a class of
multigroup radiation-transport problems. The multigroup model considered allows an anisotropic scat-
tering law and transfer from any group to any group. Computational aspects of the developed solution are
discussed, and especially accurate numerical results are reported for two test cases.

I. INTRODUCTION ary for one of the groups were reported in these works
with only one figure.

While multigroup transport theory has a long his-  We note that early attempts to solve the test prob-
tory in the nuclear engineering communisee, for ex- lem of Ref. 11 with the ANISN codewere not success-
ample, Refs. 1 and)2attention has mostly been focusedful**>** nor were similar attempts with another standard
on cases where there is only downscattering or weak ugg, code'* The kinds of difficulties observed in these
scattering’> Even though elaborate schemes for improv-studies are clearly displayed in Fig. 2 of Ref. 14. In this
ing the convergence rate of iterative solutions of upscatteigure, one can see that the scalar flux computed with
problems have been proposed® we believe that vari- ANISN for group 3 of the six-group problem intro-
ous multigroup codes currently in use are still largely in-duced in Ref. 11 underestimates the true scalar flux by
efficient for problems that involve strong upscattering. ~200% near the boundary of incidence. The same be-

To provide an alternative procedure to iterating ovehavior was observed in other test problefimcluding a
the groups, a spherical-harmonics method that solves dstrongly coupled two-group problerand when the two-
rectly the vector equation of transfer has recently beedimensional discrete ordinates codes DOT and TWO-
developed and reported in the radiative-transfer literaTRAN were used? More recently, it was observéd
ture!* We note also that Kelley? has constructed a ver- that the use of a relaxation factonput parameter RYF
sion of the discrete ordinates method that has been uséal dealing with the upscatter convergence in ANISN
to obtain numerical results for the six-group test prob-can greatly improve the results for the six-group prob-
lem introduced in Ref. 11. Kelley’s results for the grouplem near the boundary of incidence, but at the expense
fluxes and currents for the considered problem agreedf reduced efficiency; in addition, the results at or near
with Siewert’s results' to within +1 in the fifth signif-  the other boundary still show big discrepancies. Thus,
icant figure for all considered points interior to the sur-regardless of the geometry, the treatment of the energy
faces of the one-dimensional layer. On the other handlependence of transport problems by iterative tech-
the fluxes at the boundaries of the layer were reported iniques in discrete ordinates codes seems to be problem-
Refs. 11 and 12 with no more than three significant fig-atic for calculations that require good energy resolution
ures; in particular, the flux and current on the right boundin the thermal range.
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THE Fy METHOD FOR MULTIGROUP TRANSPORT THEORY WITH UPSCATTERING 195

Here, to provide a compact computational method II. SINGULAR INTEGRAL EQUATIONS
that yields high-quality results on the boundafias well AND CONSTRAINTS
as for the interior of a plane-parallel layer, we general-
ize our previous worksee, for example, Refs. 16 through
19) on theF method to the case of fully coupled multi-
group transport theory.

We consider the multigroup transport equation writ-

In this section we use an integral transform procedure
to reduce the problem formulated by E¢®.and(4) to a
linear system of singular integral equations and constraints
for two vector quantitie€Y andg) that are related in a sim-
ple way to the angular-flux vectors at two arbitrary loca-

ten as tionsinthe layer. We next specialize this system so that the
d resulting solution can be used to determine the exiting
e V(z,u) + S¥(z, 1) angular-flux vector®(0,—u) and¥ (7, u) for u € (0,1].

Assuming that the exiting angular-flux vectors have been
L 1 found, we then go backto the original system and show how
> P|(M)T|f P(u)¥(z,u")du’ (1) touse it for computing the interior angular-flux vector
1=0 -t ¥ (7, ) for anyr € (0,7,) andu € [—1,1].
for z € (0,z,) and u € [—1,1]. Here the Legendre In_the manner_of Ref. 18, we pegin ourderivatipn by
polynomials are denoted B (), and the transfer ma- changingu to —u in Eq. (3), multiplying the resulting
trices T, are such that particle transféy, for exam- equation by exp-/s), and integrating over from 7 =
ple, scattering antbr fission between and within all ator=0b, with0=a<b = 7,. We find, after an inte-
energy groups is allowed. In addition, the elementgration by parts,

N

Pz, ), 0(Z, ), . .. b (2, u) of the M-vector¥(z, w) . s L

are the group angular fluxes; the elemesitss,, .. .,Sy (ul —sZ)¥*(s,—u) + > > (=D'P(n)C ¥ (s)
of the diagonalS matrix are the group total cross sec- 1=0

tions expressed in cit; zis the position variable mea- = usB(u,s) , (5)

sured in cm; angk is the direction cosine, with respect

o ; . o where
to the positivez axis, that defines the direction of par-

ticle motion. B(u,s) = ¥(a,—pe ¥ —¥(b,-ue ™, (6)
Along with Eqg. (1), we consider boundary condi- b
tions of the form T*(s,—u) = f Y(r,—u)e /sdr (7)
Y(0,u) = Fa(p) 23 hg
e ) b e " (8)
W (s) = J W (r)e "Sdr 8
W(20,~p) = Fa(p) (2b) | a

for w € (0,1]. Here F,(x) and F,(u) are considered forl=0,1,... L. Herewe have also introduced the notation

given. 1

To use dimensionless units, we introduce an optical Y(7) = J P(w)®(r,u)du . 9
variabler = zs,,;, and an optical thicknessg, = z,Sin, -t
wheres,,, is the minimum of the sefs }, and rewrite We consider now that & [—1,1] so that we can rewrite

Egs.(1) and(2) as Eq.(5) as
J . s S .
"o (7, u) +3¥(r, 1) ¥r(s,—p) + > D(u,s) 20(_l)apa(ﬂ)ca‘l'a(5)
T a=
1L 1 = usD(u,s)B(u,s) , (10
= §|EOP|(M)CJ P(u)®(r,u")du’ , (3)  where
= -1
D(u,s) = (ul —s3)7* . (13)
for 7 € (0,7o) andp & [~1,1], and At this point we multiply Eq.(10) by P,(u), for | =
v(O0,u) = Fi(w) (48 0,1,...L, and integrate over alk to obtain
S L
and UL NCRP
\I’(T01_/*'L) = FZ(/'L) 1 (4b) 1 “
for u € (0,1]. Here the diagonal matrif has entries X | P(u)D(u,s)P. () duC, ¥ (s) = Li(s) ,
0, = S /Smin» @and the dimensionless transfer matrices are -
defined byC, = T, /Shin- (12
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196 GARCIA and SIEWERT

where We note that in this work we use the notatidigxs) to
1 indicate thaio; x is the argument of th&th component
T(s) = SJ uP ()D(,)B(u,s) du . (13)  of A, whenA represents a vector, or the argument of the
-1 i'th diagonal element oA, whenA represents a diago-

nal matrix. Clearly, the definition given by E¢R4) re-
fers to the latter case. It follows that we can use Q)
e{o rewrite Eq.(19) as

Multigroup versionsG,(¢) of the Chandrasekhar
polynomials were defined in Ref. 20 by the starting valu

Go(£) =1 (14) L
and the three-term recursion formula Q(s)X(s) = SEOG' (s)C
ENG (&) = (1 +DG11(8) +1G-1() (15 1
for | = 0. Here X flMF’l(M)D(M,S)B(,u,S) du , (25

h| = (2' + 1)2 - C|, for 1 =0,1,...L , (168) where

and X(8) = 3 (-1)'R(S)C%(9) (26)
s)= > (— S s) .
h =@ +1)3 , forl>L . (16h) =) ' o
Now we introduce a set of matric&; (¢) relevant to the At this point we find it convenient to change the in-
adjoint problem: We define these matrices by the start€gration variable in Eq23) so that we can write
ing value Q) Sfl G (5 x3)0(X) dx (27)
s)=1+ = S, X%)O(X) — 7
Go(é) = | (17) 2J, X—s
and the three-term recursion formula where
~ L
ENGI(€) = 1 +1DG[1(6) +1G (&) (19 G'(sx%) = 3 6/(5)CiP(x3) (28)
for | = 0, where the tilde is use@hroughout this work -
to denote the transpose operation. and where
We now multiply Eq.(12) by G.T(S)Q and sum the ®(x) = diag{...,0;(x),...} (29

resulting equation overto obtain with 6, (x) = 1 forx € [-1/0;,1/0,] andé, (x) = 0, other-

wise. By making a similar change of variable in the right-

L L
% _ ~T
I;)(_l)IM'(S)C'q" (s) = ;oG' (S)CTi(s) , (19 hand side of Eq(25), we can rewrite that equation as

1 dx
where Q(s)X(s) = sf XxGT(s,x2)20(X)B(XZ,s) P
- s &L -t B
Mi(s) = Gi(9) + 2 3, GL(9C, (30)
1 Rather than consider thatcan take values in both
X f P, (w)D(u,s)P(w) du . (200  the left and right half planes, we prefer to write E80)
—1 twice and consider only values ®in the right half plane.
_ . We thus let
Multiplying Eq. (20) by (2l + 1)s and using the three-
i 1
term recursion formula Y(ab:s) = = X(s)e¥s (319
@2 +DupP () = (1 +1DPua(p) +1P_a(p)  (22) S
for the Legendre polynomials, we can now show that 21d
M, (s) = Q(s)P(s3) , (22) H(ab:s) = - X(—s)e
s
where (31b
s . 1 and consider
Q(s)=1+= GTSCfD ,S)P () d
(s 2 2 C1SIC | Dl sPi(u) dy Q(5)Y(a,b:s) = Ry(S) + Ra(9) (32a)
(23)  and
and Q(s)B(a,b:s) = R3(s) + R4(s) (32b)
P (s%) = diagf...,Pi(as),...} . (24 for Ws> 0. Here
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THE Fy METHOD FOR MULTIGROUP TRANSPORT THEORY WITH UPSCATTERING 197

R.(s) = f xGT(s,x2)30(x)[¥(a,—x3) — ¥(b,—x3)e (P~3/5] dx , (333
0 X—§
R —fl Gt 3)30(x)[¥(a,x3) — ¥(b,x3)e P~/ d 33b)
2(8) = Ox (5,—X%)30(x)[¥(a,x%) — ¥(b,x%)e ]X+S, (33b)
R3(9s) =fo XGT(s,x2)30(X)[¥(b,x3) — ¥(a,x3)e P~/5] Xd_xs , (330
and
R.(s) :fo xGT(s,—x3)30 (x)[¥(b,—x3) — ¥(a,—x3)e P~ /5] x(j:(s . (33d)

Following Ref. 18, we now lesapproachr € (0,1), butr & {1/0;}, from the upper half plane and from the lower
half plane and use the Plemelj formutaso find from Egs.(32)

o(v)Y(a,b:v) =r.(v) + Ry(v) , (343
w(v)B(a,b:v) =r3(r) + Ry(v) , (34b)
1GT(v,v2)0(»)Y(a,b:v) = G (v,v3)30(v)[¥(a,—»3) — ¥(b,—v3)e -] | (359
and
1GT(v,v2)0(v)EB(a,b:v) = G'(r,v2)20(v)[¥(b,v3) — ¥(a,v3)e P3/7] | (35b)
Here
o) =1+ g flef(u,xz)@)(x) Xix,, , (36)
1 dx
riv) = )( xGT(v,x2)20(X)[¥(a,—x3) — ¥(b,—x3)e P~a/7] < , (373
0 — vV
and
1 o dx
rs(v) = J( XGT(v,x2)20(x)[¥(b,x3) — ¥(a,x3)e P-/7] < , (37b)
0 -V

where the symbdf is used to indicate that the integral is to be evaluated in the Cauchy principal-value sense. We note
that in using the Plemelj formulas to deduce E@<), we have excluded the “endpoints” 0 afida, }; however, in
subsequent equations these endpoint restrictions can effectively be removed.

To satisfy Eqs(35), we let, forx &€ (0,1],

3O(X)¥(a,—x3) =30(X)¥(b,—x3)e P 3%+ 2@ (x)Y(a,b:Xx) (38a
and
30 (X)¥(b,x3) = 30(x)¥(a,x3)e P3% + 1@(x)E(a,b:X) (38b
which can be substituted into Eq84) to yield

1 1
o(r)Y(a,b:v)+ = ][ xGT(v,x3)0(x)Y(a,b:x)
2 Jo

v —X
1 1 dx

+ = e‘(b‘f’“/”f xGT(v,—x2)0®(X)E(a,b:x) —— = Ti(a,b:v) (393
2 0 v+ X
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1 ! dx
w(v)E(a,b:v)JrE )( xGT(v,x2)®(x)E(a,b:x)
0 V=
1 1
+ = e“’a)/”J xGT(v,—x2)0(x)Y(a,b:Xx) =T,(ab:v) (39b)
2 0 v+ X
for v € [0,1]. We can use the definitions
e*T/X _ e*T/y and
Clrixy) = — 73 (403 S(r:x3-Ly) = diag{...,S(r:x/a,y),...} . (43D
and In addition to the values of the transform variable
- s=v € [0,1], we also consider a discrete spectrum in
_ 1—e e ™ the right half planes=v;, v, € [0,1],j =1,2,... R, de-
S(’T . X,y) = Y+ y (40b) f|ned by ] ]
to write detQ(v;)) =0 . (44)
) Thus, if we letM (v;) be a vector in the null space of
T.(a,b:¢) , i
1 ) Q(v), i.e.,
=f X[GT(£,~x3)30(X) (2, x3)S(b — a:x,&) M) Q) =0, (45)
0 we can deduce from Eqé32) the additional equations
+ G(£,x3)320(x)¥(b,—Xx3) 1 . dx
X C(b—a:x,&)]dx (413 EM(”")L xG'(v,x2)0(x)Y(a,b: x) —
and 1
T,(ab:é) e TIIMG)
. L dx
=f X[GT(¢,—x3)20(X)¥(b,—x2)S(b — a: x,&) X J XG'(v;,—x2)@(x)E(a,b:x) +X
0 0 Vj
+ GT(£,x3)30(X)¥(a, X3
(£,x3)380)¥( ) =M () Ti(a,b:y)) (469
X C(b—a:x,&)]dx . (41b) and
We note that Eq941) can also be written as 1 1
L, [ EM(vj)f XG'(v;,x3)0(x)E(a,b:x) p—
Ti(ab:é) = > G/(£)C =™ f HP () 0 '
1=0 0 1 by
X [(-1)'S(b—a: uS~%€)¥(ap) toe T TIMGy)
+ Cb—a: u3 Lé)w(b,—u)ld 1
(b= a:uz™ e, ~p)]du x f xG' (v, ~x2)@(X)Y (a,b:X)
(426) 0 4 + X
and =M(¥)Ta(a,b:y) (46b)

L _ 1
To(ab:¢) = lzz()csﬁ(g)clz—lfo uPi ()

X[(-D'S(b—a:pus™%&)¥(b,—u)
+Cb—a:uz™1é)¥(awldu ,
(42b)
where

C(r:x3Lly) =diag{...,C(r:x/ai,y),...} (43a

forj=1,2,...N.
At this point, we note that the unknown vectors
Y(a,b: ) andE(a,b: u) in Egs.(39) and(46) are re-
lated to the angular-flux vectors at the positi@andb,
as can be seen from Eg88). Moreover, on the right-
hand sides of Eq$39) and(46), we require the incom-
ing angular-flux vector®(a, w) and¥(b, —u), u € (0,1],
which are only known foa = 0 andb = 7, as specified
by Egs.(4). Itis thus clear that we must start our solution
by specializing Eqs(39) and(46) to the casa = 0 and
b = 7,. We find, forv € [0,1],
NUCLEAR SCIENCE AND ENGINEERING
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THE Fy METHOD FOR MULTIGROUP TRANSPORT THEORY WITH UPSCATTERING 199

0,7q: 1-)(1 Gt 0.7 dx E ‘ro/VJl Gt 0.7 dx
()Y (0,79:v) + > T XGT (v, x3)0(X)Y(0,79:X) pp—— + 2e . XGT(r,—x3)0O(X)E(0,7: X) S x
=K,(0:v) (479
and
. 1 fl T . dX 1 —TO/Vfl T .
o(v)B(0,75:v) + > ) XGT(v,x2)0O(X)E (0,79 X) T x + Ee ) XG'(v,—x3)0(X)Y (0,79: X) o~
= Kz(TO:V) ’ (47b)
and, forj =1,2,... N,
}M flGT 3)0O(X)Y (0,75 dx +1 ~7o/v M| flGT —x3)0(x)E(0,7q:
5 (v)) OX (7], X2)0(x) Y (0,70: X) b — x 29 M (7)) . XG'(vj,—x3)0(x)E(0,70:X) "
=M (»))K1(0:7)) (4849
and
oM JlGT OB (0.70:%) — 2 + Lemomm flG* x%)0()Y (07 %) —
2 (v)) ) XG'(v},x2)0O(X)E(0,79:X) b 2e iM (7)) . XG'(v;,—x2)0(X)Y(0,70: X) ——
=M (v)Ka(ro:7)) , (48b)
where, in general,
1
Kir:&) = J XGT(&,—x2)2O(X)F1(Xx2)e *S(1q — 7: X, &) dx
0
1
+ J XGT(&,x3)20(X)Fo(x3)C(1o — 7:%,&) dX (499
0
and
1
Ko(r:€&) = f XGT(&,—x3)30(X)Fy(x3)e o~ D/XG(7: x, &) dx
0
1
+f XGT(£,x3)30(X)F1(x3)C(7:x,&) dx . (49b)
0

Equations(47) and (48) define a set of linear singular-integral equations and integral constraints for the vectors
Y (0,75: ) and E(0,75: u) for w € (0,1]. Our intention, therefore, is to solve in some approximate manner
Egs.(47) and (48) and then to compute the desired exiting angular fluxes from

V(0,—u) = e ¥rF,(u) + %271Y(0,TOZ,U,271) (509
and
1
U(7o,u) = € ¥ EF(u) + > SYEO,70: u=71) (50b)

for u € (0,1]. We note that these expressions were derived by changing the angular variable andse€iagdb =
To in EQs.(38) and by making use of the boundary conditions given by E4js.In addition, the matrix exponential
used in Egs(50) is defined as

e ™/ =diag{...,e 7H ..} . (51)
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200 GARCIA and SIEWERT

Now, to find the interior angular-flux vecto¥(r,u), 7 € (0,7,) andu € [—1,1], we first consider Eq9.39a and
(464 with a = 7 andb = 7, and Eqs(39b) and(46b) with a = 0 andb = 7. We find, forv € [0,1],

. 1')(1 GT . i }fl GT 07: i
o(V)Y (7,79 V) + > XGT(v,x3)O(X)Y (7,79: X) S . XG'(v,—x3)0(x)E (0,7 : X) ——

0 2
1 1 d
=Kyr:v) — Ee‘(TO‘T)/”fO xGT(v,—x2)®(x)E(O,TO:X)ﬁ< (528
and
o(r)EQO,7:v) + 1 J[lXGT(V x3)0®(x)B(0,7:X) dx — }leGT(v —X2)0O(X)Y (7,79 X)
T 2 0 ' v v —X 2 0 ' Hhor V+X
1 —1/ ! T
=Ky(r:v) — Ee fo XGT(v,—x3)0(x)Y (0,79: X) iy (52b)
and, forj = 1,2,... N,
Iu flef 5)0(0Y (rmpix) —— — L flGT ~x3)8(x)E(0,7:
> () Ox (vj,x2)0O(x) (T,TO.X)Vj_X > () Ox (vj,—xZ)0(X) (,T.X)Vj+x
1 1
=M (¥)Ky(7:y)) — —e‘(TO‘”/”iM(vj)f XG'(v;,—x2)@(X)E(0,70:X) (533
2 0 Vi
and
1-M flGT 3)0(Xx)E(0,7: dx —}M flGT —X3)0(X)Y :
> () ox (7], x2)0(x) (’T'X)vj—x > () 0x (vj,—xZ)O(X) (T,TO.X)Vj+X
1 1
=M (y)Ka(r:y)) — EeT/”JM(Vj)fO XGT(VJ-,—XE)Q(X)Y(O,TO:X) v + X (53b)

We note that once Eq$47) and (48) are solved, the
vectorsY (0,74: n) andE (0,74 : 1) become available, and
so the right-hand sides of Eq&2) and (53) are com-
pletely determined. Therefore, we can also solve in an  TheF, method?is a collocation technique for solv-
approximate manner the set of linear singular-integraing linear systems of singular-integral equations and con-
equations and integral constraints defined by E§8  straints in an approximate, but accurate, manner. As the
and (53) for the unknown vector (7,75: #) and  method has been comprehensively reviewed in the liter-
E(0,7:u). We can then compute the interior angularature?***no additional review is given here. However,
fluxes from the expressions, far € [0,1], we do note that Kelle3? has discussed convergence as-

1 pects of the method in the context of multigroup theory
W(r,—p) = e IR, (u) + =37 (7,79 uS7Y) applied to an isotropically scattering half-space.

2 To start our solution of the boundary system defined
(548 by Egs.(47) and (48), we approximateY (0,74: ) and

B (0,79: w), for u € (0,1], by the finite-dimensional rep-

lll. THE Fy METHOD

and X
resentations
V(r,pu) = e "¥rF () + 12715(0 T e N
i A RS Y(070:p) =2 3, @o(w)ae (558)

. . - (54.b) and
which can be derived by settirg= 7 andb = 74 in N
Eq.(38a,a= 0andb= rin Eq.(38b), and by changing HO,m0ipm) =2 ®, (b, (55b)
the angular variable in the resulting equations. a=0

NUCLEAR SCIENCE AND ENGINEERING VOL. 130 OCT. 1998



THE Fy METHOD FOR MULTIGROUP TRANSPORT THEORY WITH UPSCATTERING 201

where{®_ ()} is a set of basis functions to be specified.and
Oncethevectora, } and{b_} have been determined, we

can use Eq955) in Egs.(50) to find the desired results: B.(v) = 20, (1)@ (v) —

N
V(0,~p) = e OMHFy(p) +37 D @, (u3 Y,
a=0

(56a

and

N
\I’(To,/.L) = e_Toz/MFl(M) + 2_1 2 q)a(/*’l’z_l)ba
a=0

(56b)

for u € (0,1]. Here, in accordance with our previously

defined notation,
@, (n37h) =diagf..., 0. (u/0i),...} . (57)

If we now substitute Eq955) into Egs.(47) and (48),
we find

go[Ba@)aa +e A (E)b,] = V4(0:€) (583

and
go[Ba(g)ba + eiTO/gAa(é‘:)aa] = VZ(TO: é‘:) ’ (58b)

foré=v;,j=12,...
defined theM-dimensional row vectors

Au(y) =M (¥) I;}—l)'é?(v,»)c.zfl

N,oré =v €[0,1]. Here, we have

> Gl(v)Ci3t
1=0

1
X ]( wP (w)D(p, )@, (n= 1) du |
0

(60b)

forv €[0,1]. In addition, we have also used in E¢59)
the general definitions, fg8 = 1 or 2,

Vp(r:§) = E(§)Kg(7:8) (61)

where, for§ =v;,j=1,2,... 8, E(y)) =
E=ve(0,1,E() =1.

To generate a finite system of linear algebraic equa-
tions from which to obtain the requiredvV@N + 1) un-
knowns, i.e., tht1(N + 1) elementsob,,, =0,1,... N
and theM (N + 1) elements ob,,, « = 0,1,... N, we use
collocation. If we writeX = k; M + k5, wherek, andk,
are nonnegative integefwith k, < M), and let¢ take
on the values; = v, 8 =1,2,... 8, andé,; € [0,1],
B=N+1N+2,...N+N+1-ky,inEgs.(58), we
obtain a system of i (N + 1) + 2k, linear algebraic equa-
tions. Clearly, the number of equations exceeds the num-
ber of unknowns by R,, and so, in general, the system
will be overdetermined, unleds, = 0. As we prefer to
have a collocation strategy that yields always a square
system, we follow the lines of a previous work on thg
method for radiative transfer with polarizatifrand de-
fine the projection matrices

M (»;) and, for

. Ps=1, B=12,...X, (629
X fo pP()D(p, =) @, (nZ71) du for the discrete spectrum and
(599 Pe=1, B=X+1LX+2,...X+N-k;, (62b
and for all points in the continuum except the last one. We
L assume, for simplicity, that the collocation points in the
B.(v) = —M(»;) 2 V])CI 3, continuum are ordered by increasing magnitudes, so that
=0 the last of these points is closest to 1. Thus, to obtain a
1 square system, we associate with this poifitla— k,) X
% = D(, )@, (u3 1) du | M projection matrixP;, 8 =X + N+ 1 — k,, defined in
J; PR (D () @ p2) du a way that the elements of roware unity for columns
i,i +1,...,i +k,and zero otherwise. For example, when
(590 k, = 0, this projection matrix is simply the identity ma-
forj=1,2,...N, and theM X M matrices trix, and wherk, = M — 1, it reduces to a row vector of
dimensionM with all elements equal to unity. With these
A, (v) = 2 (—1)'G v)C 51 g;zfmmons, we can now solve the square system formed
1 N
X f uP (w)D(p, =)@, (nZ=™1) du Ps EO[BQ(Eﬁ)aa +e /A ()b, ] = PgV1(0:&p)
0 a=
(60a (63a
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and for u € [0,1], to compute ouFy approximations to the
interior angular fluxes.

N
Pﬁ ZO[Ba(fﬁ)ba + eiTO/EBAa(gﬁ)aa] = PBVZ(TO§B) 1
(63b) IV. COMPUTATIONAL METHODS

forp=1,2,...N+ N+ 1-k,, to find the vectorga,}
and{b,} required in Eqs(56).

Once we solve Eqg63), we can turn our attention
to the calculation of the interior angular-flux vector
¥(7,u) for anyr € (0,7,) andu € [—1,1]. First, we
introduce the approximations

To implement ouf solution to the considered multi-
group problem, we must first compute, j = 1,2,... 8,
the zeros of def (¢) in the right half plane cut frorf0,1].
Here we use a procedure similar to that of Siewert and
Thomas?° and so we begin by writing the transpose of
Eq.(23), for Né =0 buté & [0,1], as

N
. —_ ~ L ~
Y (7701 1) =2 2 @l w)Cul7) (643 D) =1+¢3QEnCCE) . (67)
and where
. _ N 1 1
R Qen =3 [ DR (69
for w € [0,1], into Egs.(52) and(53) and use the same -
collocation strategy used for the boundary system to op2alisfies
tain the square system 2l +1)&32Q,(€3)

N _ _
Pﬁ EO[B“@B)C“(T) _ Aa(fﬁ)da(T)] - (l + 1)Q|+1(§2) + |Q|71(§2) 5|,0| (69)

for | = 0. If we now subtract Eq.18) multiplied on the

e N left by Q,(£3) from Eq.(69) multiplied on the right by
= PaVy(1:&5) — € 0" V5P zoAa(fﬁ)ba G/ (¢) and sum the resulting equation frdm= 0 up to
| = L, we obtain an alternative representation §b¢ ),
(653  namely,
and 06) = (L+D[QL1(¢3)GL(€) — QUES)GL (8] .
N
Ps 3} [Ba(£5)da(r) = Aulép)cu(7)] (79

Similarly, we can subtract Eq18) multiplied on the left
by P, (£3)) from

— . — o 7/ég &
PoValr: ) =€ Pp 2 Aul)an (85D ) p(e3) = (14 DRA(ES) + 1P 1(€3)

for the unknown vectorg,,(7)} and{d_(7)}. Clearly, as (71
the matrix of coefficients related to the linear system demultiplied on the right byG, (¢) and sum the result from
fined by Egs.(65) does not depend on a single lower- | =0 up tol = L to find

upper(LU) decomposition of this matrix is sufficient for .

finding {c,(7)} and{d_(7)} for any number of positions X 1
inside the layer. Finally, once these vectors become avaiﬁ;, R(EZ)CGI(E)
able, we can substitute Eq$4) into Eqgs.(54) and use

the resulting expressions, i.e., = (L+D[P1(£2)GL(¢) — PL(ER)GL4(8)] .

V(r,—p) = e TIEF, () (72)
N In addition, we can subtract E¢71) multiplied on the
+371D @, (u3 b)c,(r) (66a left by Q,(£3) from Eq.(69) multiplied on the right by

a=0 P, (¢£3) and sum the result from= 0 up tol = L to find

and | = (L+D[Qu1(£2)PL(E3) — QUIEZIPL(£3)] .

N
V(r,u) = e Ry (p) + 271 Y @, (u27H)d,(7) (73
a=0

Proceeding with the development of our procedure
(66b)  for computing the discrete spectrum in the right half plane,
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we multiply Eq.(70) on the left byP, (¢3) and use
Egs.(72) and(73) to obtain

PL(¢Z) (&) = Gl (¢) + £QL(£3) .20 P(£3)C G (¢) .

(74)

Noting thatC, = 0 for | > L, we can easily show that
Eq. (74) is also valid wherl is replaced by, for any
K = L. Moreover, sinc& & (0,1), we can write Eq(74)
as

Q(¢) = PC(és)
X [G&(f) + £Qx(£3) .ZEOP'(fE)C'G'T(f)

(75

for anyK = L. Since the Legendre function of the sec-

203

We now descrlbe our procedure for computing the
zeros ofdeGNﬂ(f) First, in the manner of Ref. 20, we
eliminate the odd-order terms in E(.8) to obtain, for
l=0,2,...,

£2G|(¢)
(79)

XiGl_o(€) + Y\GJ (&) + Z,G[2(¢) =

where
X, =1(-1h*h2 ,
=12h*hih + (L + 1)2hthihy

(80a)
(80b)
and

Z =(+D(0+2h*hy . (800

Next, assuming thatt is a zero of deG...(¢),
we multiply Eq. (79) by N(£), a vector in the null
space of Gy, 1(£¢), and use the resulting equation
for1 =0,2,... NV — 1 along with

ond kind
e du Gh1(€)N(E) =0 (81)
Q&) = 2 f_lP,(,u) E—un '’ ¢4, (79 to obtain the eigenvalue problem
approaches zero &s> oo (see, for example, the book by AU = £2U (82)
Robir?”) andQ, (¢£3) can be expressed as where
Ql(fz) = dlag{,Q|((T|§),} ) (77) Yo Zo 0 0 0 0
we obtain, if we letK — oo in Eq. (75), X2 Y2 Z 0 0 0
B ' . 0 X4 Yy 0 0 0
Q) = lim PHES)GRE) - @® | L
We thus conclude from Eq78) that the required zeros 0 0 0 Ya-s Zn-s 0
of detQ(¢) can be approximated with increasing accu- 0O 0 O Xnvez Yaos Zas
racy by the zeros of d&(¢) in the right half plane cut 0O 0 0 0 Xu-1 Yaa
from[0,1] asK — co. In regard to the computational im-
plementation of our procedure, we begin by takkg (83
N + 1, with Nodd andV = L, in Eqg.(78) and comput-
ing, according to the procedure summarized in the nexf’ aM(¥ +1)/2 square matrix and
paragraph, the zeros of deﬁfﬂ(g) We note that this — dlag{Go(f),Gz(g),...,GN_l(f)}N(g) (84)

is a necessary step in the computational implementa

tion of the spherical-harmonics method of ord€rfor  is a vector of dlmensrorh/l(/\/ + 1)/2. Clearly, the de-
the class of problems we are addressing in this pdper.sired zeros of deﬁ;Nﬂ(f) are simply the(positive
However, in thrs work we are not interested in all thesquare roots of the eigenvalues &f In this work we
zeros of deGN+1(§) only those zeros in the right half used the subroutines BALANC, ELMHES, and HQR
plane cut fron{0,1] are relevant here. Having found our from the EISPACK packagé to compute the eigenval-
first approximations for the required zeros of @Bt¢), ues ofA.

we then increase the value &fand repeat the procedure We now turn our attention to the computation of the
as many times as necessary until convergence within matrix-valued functionA ,(¢) and B, (¢) defined by
prescribed tolerance in the approximations is attained. ABgs. (59) and (60) and requrred fog € {»;} U [0,1].
discussed by Siewert and Thonfdshere may be situ- Although, in principle, we could have pursued the route
ations for which a faster procedufe.g., Newton’s of recurrence formula$’?° we prefer to use Gaussian
method is required; here, for the sample problems to bentegration here to evaluate the integrals in E§9) and
discussed in the next section, we found that this was nq60). Clearly, the application of a standard Gauss-
necessary. Legendre quadrature for performing the integrals in
NUCLEAR SCIENCE AND ENGINEERING
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Egs.(59) and(603 is straightforward, but in the case of served forn,(¢) andng(¢) in two successive calcula-
Eqg. (60b), the singularity must be removed first. By tions was<10 *° This procedure defined the order of
combining the first and second terms on the right-handhe quadrature as 1400 for the first of our test problems
side of Eq.(60b), we find we can write this equation as in Sec. V and 300 for the second. It should be noted that
the Gaussian integration technique does not yield accu-
rate results for elements 6f,(¢) andB,_,(¢), which have
magnitudes of the order of or smaller than the machine

L
Bo(¥) = 20,(»)| — v®,(») X, (~1)'G/(»)C,
e precision(typically ~10~*€ for double-precision calcu-

. lations in short-word machingsThis may occur in high
X . P (w)D(p,—v) du order forA (&), £ € {»;} U [0,1], and forB,,(¢), ¢ €
{v;}. Fortunately, this loss of accuracy turns out to be of
Loy 1 no concern for us here, as we have found that the sensi-
- > G (V)Qf P (u)D(,v) tivity of the solutions of the linear systems defined by
1=0 0 Eqgs.(63) and(65) to such small elements éf,(¢) and
X [u3S 1@, (u3S 1) — v0,(»)I]du , (85 B, (¢) is extremely small, and consequently these solu-

tions are stable in high order. Even if these elements were
a form to which we can readily apply a standargcomputed very accurately, they would end up being cor-

Gauss-Legendre quadrature. The order of the app“erdjpted dur_lng the Gaussian elimination process used to

quadrature was determined as follows. We first used®!Ve the linear systems. .

a 100-point Gauss-Legendre quadrature shifted to the Flrla}lly, we report our methods for computing the ma-

interval [0,1] to computeA_(¢) and B, (¢) for all  tricesG, (v) for v € [0,1] and the row vectors

values of¢ € {r;} U {0.0(0.1)1.0; anda =0,1,... N, ot ~t

where N,,, is the maximum order of thé&, approx- Ty () = M ()G () (87)

imation to be used in the calculation. We note that

N, = 549 for the first sample problem described inforj=1,2,... X—both of which are required in Eq&9)

Sec. V, whileN,, = 129 for the second. Next, denoting and(60) and on the right-hand sides of E¢83) and(65).

asAl(¢) andBl(¢) a general element of the matrices We note that the required matric€s (v) for v € [0,1]

A,(¢) and B, (¢), respectively, we computed the canbe easily computed by recurrence, using the initial value

quantities given by Eq.(17) along with Eq.(18) in the forward di-
rection forl = 0,1,... L — 1, and then taking the trans-

[\ M . .
. poses of the matrices so obtained. To develop a method for
Ma(¢) = Zm:lglm‘]*(g)' (863 computing the required vectoTsT(vj), we first consider
& =v;inthe transpose of E470) and multiply the result-
and ing equation on the right b\ (»;) to obtain, forj =
1,2,...8,
Nm I M .
= ij
ne(§) = 2 2 2, [BIE B6D Tl ) = 3)Quam DT . (89

wherel =1 whené € {»;} andl = M whené € [0,1],  Multiplying Eq. (18) on the right byl\W(vJ—), using the

for all the grid points defined fof. We then repeated the resulting equation for = 0,1,... L and considering the
procedure increasing the order of the quadrature by 10@uncation condition expressed by E&8), we now ob-

each time, until the maximum relative difference ob-tain, forj =1,2,... X,

H()T(y) =0, (89
whereH (»;) is aM(L + 1) square matrix given by
vihy —I o ... 0 0 0
-1 wyhy =21 .. 0 0 0
0 -2 wyhy, .. 0 0 0
H(y;) = : : : ", ~E : : , (90)
0 0 0 .. wyh_ —(L-DI 0
0 0 0 .. —(L-DI yh 4 —LI
0 0 0o ... 0 —LI I/jﬁL— R(v)
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TABLE |
The Group Scalar Fluxeg,(r)

Group 7/79= 0.0 7/79=0.25 T/79=0.5 7/79 = 0.75 T/79 = 1.0
1 1.09412 1.62048E42 4.85237E-8 1.45667E-11 4.03114E-15
2 2.29719E-1 3.74472E-2 1.96392E-3 1.02768E-4 1.78976E-6
3 2.91728E-1 1.85473E-1 9.79886E-3 5.12779E-4 4.36490E-6
4 3.05978E-2 2.62814E-2 1.38837E-3 7.26540E-5 4.39421E7
5 5.99893E-4 6.10777E-4 3.22597E-5 1.68816E-6 7.91259E-9
6 7.30516E-6 7.25931E-6 3.83255E-7 2.00558E-8 7.94257E-11

3Read as 1.62048 10 4

with R(»;) = (L + 1)Q*(»;2)Q+1(#; %), and tion highly accurate results for a six-group problem with

cubic (L = 3) anisotropic scattering that was previously

TB(VJ) used to test a developed version of the spherical-
i) harmonics metho* The problem consists of a water
! layer (with z, = 30 cm) bombarded on the surface at
TE(VJ-) z = 0 by a uniform and isotropic flux of neutrons with
T(v) = . (91) energies in group 1. As the cross sections that define
] ) ) the problem have been tabulated in Ref. 11, we do not
TJ[,Z(VJ-) repeat these tabulations here. However, we do note that
+ the thickness of the layer is equivalent to 45.156 in units
Tia(y) of the optical variable introduced in Sec. | and that the
TI(vJ-) boundary conditions are expressed as
In conclusion, the required vectoTs (v;) can be found Filw)=(1 0 0 0 0 OF (929
from the transposes of the vectdréy;), once these are
computed fof =1,2,... N. In this work we used the sub- and
routine MINFIT from the EISPACK packad®@to com-
pute singular-value decompositions of the matridé¢s; ) Fa(w) =0 (92b
forj=1,2,... X that were subsequently used to compute
the correspondind vectors. for u € (0,1].

In Tables | and Il we report ouf results, thought
to be accurate to all figures given, for the group scalar

V. SAMPLE PROBLEMS fluxes
1
To demonstrate the quality of the results that can be Yo(7) = f ¥(7, ) du (93)
obtained with thé-y, method, we first report in this sec- -1
TABLE I
The Group Current®,(7)
Group 7/79 = 0.0 7/79 = 0.25 7/79= 0.5 7/79 = 0.75 /7= 1.0
1 4,71921E-17 1.04414E-4 3.12929E-8 9.39417E-12 2.92352E-15
2 —9.92907E-2 5.98176E-3 3.11437E-4 1.63588E-5 1.09847E-6
3 —1.62966E-1 8.77724E-3 4.69326E-4 2.46565E-5 2.51982E-6
4 —1.70261E-2 5.92290E-4 3.16933E-5 1.66505E-6 2.46538E-7
5 —3.27829E-4 6.71835E-6 3.59244E-7 1.88732E-8 4.31668E-9
6 —3.86253E-6 2.88262E-8 1.53371E-9 8.05724E-11 4.10414E-11
“Read as 4.7192% 10 %,
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and the group currents To provide a more extensive set of results that can
1 be useful for benchmarking purposes, we also list in
_ Tables IIl through VIII ourF results for the group an-
v = (T, u) du . 94 N T
1(7) fl’u (7. du (94 gular fluxes, thought to be accurate to withirl in the

) last reported figure. While the results in Tables | and Il
We note that to find these results, we used the basigere obtained withN = 149, the results in Tables Il to
functions VIl are based on a much higher value Bf(N = 549)
_ _ due to the slow convergence rate of the boundary angu-
Polp) = Pel2p = 1) 9 lar fluxes for|u| — 0 that is typical of theFy, method
whereP, (2u — 1) are the shifted Legendre polynomials, (and also of the spherical-harmonics method
in the F, approximations given by Eq&55) and(64). In As a secondand more challengingtest problem,
addition, we used the multigroup version of a colloca-we consider a calculation that is of particular interest for
tion schem&! based on thépositive discrete spectrum reactor-shield design, as discussed in detail by S&lph.
and the zeros of a Chebyshev polynomial of the seconé 100-cm-thick concrete slab is irradiated on the surface

kind shifted to(0,1), namely, z= 0 by a normally incident, uniform beam of thermal
neutrons in a specified energy group. The group struc-
§g=vp B=12,..N, (963 tyre used for this problem consists of 42 thermal groups

in the energy range from 0 to 4 eV, and so the boundary

and conditions expressed by Edd) are given in this case hy
1 B — N
=—|1+ —_— YO,u) = Fé(u — 97
&g 2[ COS<N+2—k17T>] : O,w) (p = o) (973
and
B=X+1N+2,...X+N+1—-k,, (96b)

. . ¥(10,—pn) =0 (97b)
to define the linear systems of Eq$3) and (65). We
note that these systems were solved with subroutindsr u € (0,1]. Hereu, = 1.0 is the cosine of the angle of

DGECO and DGESL from the LINPACK packagde. incidence and the vectd has components; = §; ; for
TABLE 1l
The Exit and Interior Angular Fluxes for Group 1

o 7/79 = 0.0 7/79 = 0.25 7/79=0.5 7/79 = 0.75 /79 =10

—-1.0 2.6054E-2* 4.0455E-6 1.2072E-9 3.6236E-13

-0.9 2.7698E-2 5.1802E-6 1.5505E-9 4.6545E-13

—-0.8 3.2092E-2 6.2324E-6 1.8679E-9 5.6075E-13

-0.7 3.9697E-2 7.2863E-6 2.1846E-9 6.5582E-13

—-0.6 5.1100E-2 8.4424E-6 2.5307E-9 7.5973E-13

-05 6.7080E-2 9.8228E-6 2.9429E-9 8.8346E-13

—-0.4 8.8703E-2 1.1577E-5 3.4659E-9 1.0405E-12

-0.3 1.1754E1 1.3889E-5 4.1551E-9 1.2473E-12

—-0.2 1.5612E-1 1.6991E-5 5.0798E-9 1.5249E-12

—-0.1 2.0958E-1 2.1175E-5 6.3278E-9 1.8995E-12

-0.0 3.0161E-1 2.6818E-5 8.0122E-9 2.4051E-12
0.0 2.6818E5 8.0122E-9 2.4051E-12 6.0808E-16
0.1 3.4416E-5 1.0281E-8 3.0862E-12 8.5506E-16
0.2 4.4628E-5 1.3332E-8 4.0022E-12 1.1500E-15
0.3 5.8357E-5 1.7436E-8 5.2341E-12 1.5335E-15
0.4 7.6870E-5 2.2972E-8 6.8959E-12 2.0424E-15
0.5 1.0201E-4 3.0489E-8 9.1525E-12 2.7273E-15
0.6 1.3655E-4 4.0815E-8 1.2252E-11 3.6634E-15
0.7 1.8494E-4 5.5255E-8 1.6587E-11 4.9687E-15
0.8 2.5456E-4 7.5996E-8 2.2813E-11 6.8405E-15
0.9 3.5769E-4 1.0701E-7 3.2121E-11 9.6365E-15
1.0 5.1351E4 1.5620E-7 4.6917E-11 1.4079E- 14

3Read as 2.605% 10 2
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TABLE IV
The Exit and Interior Angular Fluxes for Group 2

M 7/79 = 0.0 7/7o = 0.25 7/79=0.5 7/79 = 0.75 7/79 = 1.0

-1.0 1.3106E-1* 1.1532E-2 6.0646E-4 3.1638E-5

-0.9 1.5168E1 1.1986E-2 6.3038E-4 3.2901E-5

—-0.8 1.7234E-1 1.2469E-2 6.5578E-4 3.4241E-5

—-0.7 1.9295E1 1.2983E-2 6.8279E-4 3.5664E-5

-0.6 2.1336E-1 1.3531E-2 7.1152E-4 3.7178E-5

—-0.5 2.3339E-1 1.4116E-2 7.4214E-4 3.8790E-5

-0.4 2.5275E-1 1.4739E-2 7.747T7E-4 4.0507E-5

-0.3 2.7103E-1 1.5406E-2 8.0960E-4 4.2338E-5

-0.2 2.8754E-1 1.6119E-2 8.4680E-4 4.4294E-5

-0.1 3.0102E-1 1.6881E-2 8.8657E-4 4.6384E-5

-0.0 3.0752E-1 1.7698E-2 9.2914E-4 4.8621E-5
0.0 1.7698E-2 9.2914E-4 4.8621E-5 6.0594E-7
0.1 1.8574E-2 9.7475E-4 5.1016E-5 8.4821E-7
0.2 1.9514E-2 1.0237E-3 5.3584E-5 1.0674E-6
0.3 2.0524E-2 1.0762E-3 5.6341E-5 1.2889E-6
0.4 2.1610E-2 1.1326E-3 5.9304E-5 1.5165E-6
0.5 2.2780E-2 1.1934E-3 6.2492E-5 1.7520E-6
0.6 2.4042E-2 1.2589E-3 6.5928E-5 1.9969E-6
0.7 2.5404E-2 1.3295E-3 6.9634E-5 2.2525E-6
0.8 2.6877E-2 1.4058E-3 7.3639E-5 2.5205E-6
0.9 2.8470E-2 1.4885E-3 7.7974E-5 2.8023E-6
1.0 3.0193E-2 1.5781E-3 8.2672E-5 3.1000E-6

®Read as 1.310& 10 *.
TABLE V
The Exit and Interior Angular Fluxes for Group 3

“m 7/79= 0.0 7/7o = 0.25 7/79 = 0.5 7/79 = 0.75 7/79 = 1.0

-1.0 3.7927E-1% 8.0486E-2 4.2459E-3 2.2205E-4

-0.9 3.6616E-1 8.1552E-2 4.3026E-3 2.2502E-4

—-0.8 3.5179E-1 8.2641E-2 4.3604E-3 2.2807E-4

-0.7 3.3607E-1 8.3753E-2 4.4196E-3 2.3118E-4

—-0.6 3.1888E-1 8.4890E-2 4.4801E-3 2.3436E-4

-0.5 3.0006E-1 8.6052E-2 4.5420E-3 2.3761E-4

—-0.4 2.7942E-1 8.7240E-2 4.6052E-3 2.4094E-4

-0.3 2.5667E-1 8.8454E-2 4.6699E-3 2.4434E-4

-0.2 2.3131E1 8.9694E-2 4.7361E-3 2.4781E-4

—-0.1 2.0223E1 9.0962E-2 4.8037E-3 2.5137E-4

-0.0 1.6306E-1 9.2258E-2 4.8729E-3 2.5500E-4
0.0 9.2258E-2 4.8729E-3 2.5500E-4 2.1726E-6
0.1 9.3582E-2 4.9437E-3 2.5872E-4 2.7220E-6
0.2 9.4936E-2 5.0161E-3 2.6252E-4 3.1685E-6
0.3 9.6320E-2 5.0901E-3 2.6641E-4 3.5887E-6
0.4 9.7734E-2 5.1659E-3 2.7039E-4 3.9954E-6
0.5 9.9180E-2 5.2435E-3 2.7446E-4 4.3942E-6
0.6 1.0066E-1 5.3228E-3 2.7863E-4 4.7881E-6
0.7 1.0217E-1 5.4041E-3 2.8290E-4 5.1790E-6
0.8 1.0371E1 5.4873E-3 2.8727E-4 5.5683E-6
0.9 1.0529E-1 5.5725E-3 2.9174E-4 5.9571E-6
1.0 1.0691E-1 5.6597E-3 2.9632E-4 6.3464E-6

aRead as 3.792% 10 %
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TABLE VI
The Exit and Interior Angular Fluxes for Group 4

m 7/79 = 0.0 7/79 = 0.25 7/79 = 0.5 7/79 = 0.75 7/79 = 1.0

-1.0 3.9999E-2% 1.2279E-2 6.4813E-4 3.3907E-5

-0.9 3.8379E-2 1.2360E-2 6.5247E-4 3.4135E-5

-0.8 3.6692E-2 1.2442E-2 6.5684E-4 3.4365E-5

—-0.7 3.4932E-2 1.2525E-2 6.6126E-4 3.4597E-5

-0.6 3.3089E-2 1.2609E-2 6.6573E-4 3.4832E-5

—-0.5 3.1151E-2 1.2693E-2 6.7023E-4 3.5069E-5

-0.4 2.9099E-2 1.2778E-2 6.7478E-4 3.5308E-5

—-0.3 2.6906E-2 1.2865E-2 6.7938E-4 3.5549E-5

-0.2 2.4519E-2 1.2951E-2 6.8402E-4 3.5793E-5

-0.1 2.1823E-2 1.3039E-2 6.8870E-4 3.6039E-5

-0.0 1.8190E-2 1.3127E-2 6.9343E-4 3.6288E-5
0.0 1.3127E-2 6.9343E-4 3.6288E-5 2.5448E-7
0.1 1.3217E-2 6.9820E-4 3.6538E-5 3.0580E-7
0.2 1.3307E-2 7.0302E-4 3.6791E-5 3.4488E-7
0.3 1.3397E-2 7.0789E-4 3.7047E-5 3.8022E-7
0.4 1.3489E-2 7.1280E-4 3.7305E-5 4.1338E-7
0.5 1.3582E-2 7.1776E-4 3.7565E-5 4.4505E-7
0.6 1.3675E-2 7.2276E-4 3.7828E-5 4.7564E-7
0.7 1.3769E-2 7.2781E-4 3.8094E-5 5.0538E-7
0.8 1.3864E-2 7.3291E-4 3.8361E-5 5.3446E-7
0.9 1.3959E-2 7.3806E-4 3.8632E-5 5.6301E-7
1.0 1.4056E-2 7.4325E-4 3.8905E-5 5.9112E-7

®Read as 3.999% 10 2
TABLE VII
The Exit and Interior Angular Fluxes for Group 5

o 7/79 = 0.0 7/75 = 0.25 7/79=0.5 7/75 = 0.75 7/7 = 1.0

—-1.0 7.5700E-4% 2.9513E-4 1.5583E-5 8.1534E-7

-0.9 7.2801E-4 2.9619E-4 1.5639E-5 8.1829E-7

—-0.8 6.9855E-4 2.9724E-4 1.5695E-5 8.2122E-7

-0.7 6.6851E-4 2.9829E-4 1.5750E-5 8.2415E-7

-0.6 6.3776E-4 2.9933E-4 1.5806E-5 8.2706E-7

-0.5 6.0611E-4 3.0037E-4 1.5861E-5 8.2997E-7

—-0.4 5.7326E-4 3.0140E-4 1.5916E-5 8.3286E-7

-0.3 5.3876E-4 3.0243E-4 1.5971E-5 8.3574E-7

-0.2 5.0182E-4 3.0345E-4 1.6026E-5 8.3861E-7

—-0.1 4.6066E-4 3.0447E-4 1.6080E-5 8.4147E-7

-0.0 4.0624E-4 3.0548E-4 1.6134E-5 8.4432E-7
0.0 3.0548E-4 1.6134E-5 8.4432E-7 5.3326E-9
0.1 3.0649E-4 1.6188E-5 8.4715E-7 6.0798E-9
0.2 3.0749E-4 1.6242E-5 8.4996E-7 6.6427E-9
0.3 3.0849E-4 1.6295E-5 8.5276E-7 7.1420E-9
0.4 3.0948E-4 1.6348E-5 8.5554E-7 7.6007E-9
0.5 3.1046E-4 1.6401E-5 8.5831E-7 8.0293E-9
0.6 3.1143E-4 1.6453E-5 8.6106E-7 8.4338E-9
0.7 3.1240E-4 1.6505E-5 8.6380E-7 8.8178E-9
0.8 3.1336E-4 1.6557E-5 8.6651E-7 9.1843E-9
0.9 3.1431E4 1.6608E-5 8.6921E-7 9.5351E-9
1.0 3.1526E-4 1.6659E-5 8.7188E-7 9.8718E-9

3Read as 7.570& 104
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TABLE VI
The Exit and Interior Angular Fluxes for Group 6

i 7/79= 0.0 7/19=0.25 7/79=0.5 7/79=0.75 7/79=1.0

-1.0 8.6694E-6% 3.5729E-6 1.8864E-7 9.8709E-9

-0.9 8.3527E-6 3.5810E-6 1.8906E-7 9.8930E-9

-0.8 8.0550E-6 3.5887E-6 1.8946E-7 9.9141E-9

-0.7 7.7750E-6 3.5960E-6 1.8984E-7 9.9343E-9

-0.6 7.5114E-6 3.6030E-6 1.9021E-7 9.9535E-9

-0.5 7.2624E-6 3.6096E-6 1.9056E-7 9.9716E-9

-0.4 7.0255E-6 3.6158E-6 1.9088E-7 9.9887E-9

-0.3 6.7972E-6 3.6216E-6 1.9119E-7 1.0005E-8

—-0.2 6.5717E-6 3.6270E-6 1.9148E-7 1.0020E-8

-0.1 6.3378E-6 3.6320E-6 1.9174E-7 1.0034E-8

-0.0 6.0447E-6 3.6366E-6 1.9198E-7 1.0047E-8
0.0 3.6366E-6 1.9198E-7 1.0047E-8 6.8266E-11
0.1 3.6408E-6 1.9221E-7 1.0058E-8 7.2060E-11
0.2 3.6446E-6 1.9241E-7 1.0069E-8 7.4766E-11
0.3 3.6479E-6 1.9259E-7 1.0078E-8 7.7003E-11
0.4 3.6508E-6 1.9274E-7 1.0087E-8 7.8901E-11
0.5 3.6532E-6 1.9288E-7 1.0094E-8 8.0520E-11
0.6 3.6552E-6 1.9299E-7 1.0099E-8 8.1897E-11
0.7 3.6567E-6 1.9307E-7 1.0104E-8 8.3057E-11
0.8 3.6578E-6 1.9314E-7 1.0107E-8 8.4020E-11
0.9 3.6583E-6 1.9318E-7 1.0109E-8 8.4800E-11
1.0 3.6584E-6 1.9319E-7 1.0110E-8 8.5408E-11

®Read as 8.669% 10 ©

i=1,2,...,42with 1= j = 42 denoting the group of in- TABLE IX

cidence. The quantities of interest in this problem are the
double-differential, thermal-neutron albedqs (u, uo),

defined as Number Density | Material Identification
3 () Element| (10?* atomycm®) | Number in WIMKAL-88
]
aij (o o) = 3 (g0) (98) H 13.75 1001
(@] 45.87 8016
for i = 1,2,...,42 andu € (0,1]. Here J (u) = Al 1.743 13027
;Uv'#i (0’ _/-L) and\]j+(/-L0) — IU’OFj' Si 20.15 14000

Afew words with regard to the group constants used

Concrete Composition Used for the 42-Group Problem

in our calculation are in order. We have computed the
required macroscopic total cross sectidand transfer

matrices by summing up the products of the micro- tropic scatteringL = 1). We also note that since the mi-
scopic total cross sectioriand the transfer matricesas  croscopic total cross sections are not given directly in
given in the WIMKAL-88 library** for the constituents the WIMKAL-88 library, these constants were com-
of ordinary concrete, with their respective number denputed by adding the absorption cross sections to the scat-
sities, taken from Ref. 35 and reproduced in Table IXtering cross sections obtained from the= O transfer
The numbers so obtained were rounded to four signifimatrices. In addition, we note that the: 1 transfer ma-
cant figures. The WIMKAL-88 library contains neutron- trices given in the WIMKAL-88 library were multiplied
reaction data in the WIMS 69-group structure for 132by 3 to take into account th@l + 1) factor built into our
materials and is distributed by the International Atomicdefinition of the transfer matrices. The 42-group struc-
Energy Agency Nuclear Data Section. In spite of its wideture adopted in our calculation is the WIMS thermal-
spread use, which was the motivation for our selectiomgroup structure used by the WIMKAL-88 library. Group
of this multigroup library, the transfer matrices given in1 (3.3 to 4.0 eV is the highest in energy, and group 42
the WIMKAL-88 library are limited to linearly aniso- (0.0to 0.005 eV is the lowest. The energy boundaries of
NUCLEAR SCIENCE AND ENGINEERING
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TABLE X
The Thermal-Neutron Albedas ;(u,ue) With j = 4 andu, = 1.0 for a 100-cm-thick Concrete Slab

pn=0.2 n=04| u=06| =08 | wu=10|i| u=02| wu=04| =06 | =08 | =10

8.998E-10%| 2.050E-9 | 3.225E-9| 4.332E-9 | 5.337E-9| 22| 3.267E-3| 6.793E-3 | 1.001E-2 | 1.273E-2| 1.493E-2
4.426E-7 |9.580E-7|1.427E-6| 1.822E-6| 2.143E-6| 23| 2.319E-3| 4.867E-3| 7.230E-3| 9.273E-3| 1.097E-2
2.180E-4 | 3.489E-4|4.061E-4| 4.062E-4| 3.625E-4 | 24| 2.457E-3 | 5.196E-3 | 7.774E-3 | 1.004E-2| 1.195E-2
3.096E-2 |[4.290E-2| 4.098E-2| 2.904E-2| 9.708E-3 | 25| 3.995E-3 | 8.534E-3 | 1.289E-2 | 1.679E-2| 2.017E-2
1.794E-2 | 2.990E-2| 3.680E-2| 3.978E-2 | 3.975E-2| 26| 4.489E-3 | 9.720E-3 | 1.487E-2 | 1.961E-2| 2.383E-2

1.017E-2 | 1.762E-2| 2.221E-2| 2.442E-2| 2.470E-2| 27| 7.230E-3 | 1.596E-2 | 2.487E-2 | 3.338E-2| 4.126E-2
1.530E-3 | 2.533E-3( 2.988E-3| 2.984E-3| 2.609E-3| 28| 1.001E-2| 2.271E-2| 3.634E-2 | 5.003E-2| 6.333E-2
1.423E-3 | 2.340E-3| 2.730E-3| 2.674E-3 | 2.258E-3| 29| 1.641E-2| 3.836E-2 | 6.318E-2 | 8.935E-2| 1.159E-1
1.383E-3 | 2.269E-3| 2.628E-3| 2.541E-3| 2.092E-3| 30| 1.306E-2| 3.113E-2| 5.221E-2 | 7.506E-2 | 9.884E-2
10| 1.358E-3 | 2.228E-3| 2.574E-3| 2.474E-3| 2.010E-3| 31| 1.131E-2| 2.721E-2| 4.603E-2 | 6.670E-2 | 8.845E-2

11{ 1.291E-3 | 2.125E-3| 2.461E-3| 2.369E-3 | 1.928E-3| 32| 9.403E-3 | 2.272E-2 | 3.862E-2| 5.619E-2( 7.481E-2
12| 1.236E-3 | 2.043E-3| 2.373E-3| 2.292E-3| 1.871E-3| 33| 9.496E-3 | 2.301E-2| 3.920E-2 | 5.720E-2 | 7.634E-2
13| 1.232E-3 | 2.046E-3| 2.388E-3| 2.319E-3 | 1.912E-3| 34| 1.052E-2| 2.552E-2 | 4.358E-2| 6.371E-2 | 8.520E-2
14| 1.138E-3 | 1.902E-3| 2.237E-3| 2.194E-3| 1.838E-3| 35| 9.832E-3 | 2.387E-2 | 4.080E-2| 5.973E-2 | 8.000E-2
15| 2.073E-3 | 3.490E-3| 4.137E-3| 4.102E-3| 3.497E-3 | 36| 7.232E-3 | 1.755E-2 | 3.000E-2 | 4.396E-2 | 5.894E-2

16| 3.196E-3 | 5.485E-3| 6.649E-3| 6.797E-3| 6.086E-3 | 37| 7.194E-3 | 1.743E-2| 2.980E-2 | 4.367E-2 | 5.860E-2
17| 3.896E-3 | 6.841E-3| 8.510E-3| 9.001E-3 | 8.481E-3| 38| 6.902E-3 | 1.668E-2 | 2.848E-2| 4.175E-2( 5.604E-2
18| 9.562E-3 | 1.747E-2| 2.269E-2| 2.531E-2 | 2.561E-2| 39| 6.276E-3 | 1.510E-2 | 2.574E-2| 3.770E-2 | 5.062E-2
19| 9.103E-3 | 1.747E-2| 2.385E-2| 2.812E-2| 3.043E-2 | 40| 5.204E-3| 1.243E-2| 2.111E-2| 3.089E-2 | 4.147E-2
20| 8.643E-3 | 1.725E-2| 2.447E-2| 3.001E-2| 3.391E-2| 41| 3.552E-3| 8.370E-3| 1.412E-2 | 2.058E-2| 2.761E-2
21| 4980E-3 |1.021E-2| 1.484E-2| 1.864E-2| 2.158E-2| 42| 1.297E-3| 2.965E-3| 4.917E-3| 7.101E-3| 9.480E-3

©©CoOo~NO OWNE

3Read as 8.99& 10 °

all groups are given in Ref. 34. With this description, weto the premature truncation of the Legendre polynomial
hope anyone interested in using our second sample probxpansion of the scattering lafrecall thatL = 1 in the
lem in benchmarking work can use the WIMKAL-88 li- WIMKAL-88 library).
brary and the number densities given in Table IX to  Finally, we report in Table XI the executiqitPU)
reproduce our input cross-section set. Thus, to save spadines of our calculations on a Silicon Graphics Power
we do not tabulate the required group constants here. Challenge machinéR8000 RISC processor, 300 Mflops,
We list in Table X ourF,,g results for the thermal- 384 Mbytes of RAM, for several orders of thEy ap-
neutron albedos when the group of incidence is group groximation. Our code was written in FORTRAN and
(1.5to0 2.1 eVj. These results are thought to be accurateompiled with the F77 compiler, optimization level
to within =1 in the last figure given. Because of the largeOPT = 2. Typically, in theN = 549 run for the first test
size of the linear system to be solved for the unknowrproblem,~25% of the CPU time was spent in the part of
vectors{a,, } and{b,} in this case, we have used the id®a
of decoupling this system into two smaller syste(mise
for thea,, vectors and another for tlhe, vectorg that are

half the size of the original system. Since tevectors TABLE XI

are sufficient to establish the desired albedos, only the Execution Times on a Silicon Graphics Power
smaller system for the, vectors was solved. In addi- Challenge Machine*

tion, a slightly modified version of the projection schem

used to obtain the square linear systems expressed py N Six-Group Problem 42-Group Problem
Egs.(63) and(65) in Sec. 1l was found to speed up con-

vergence for this problem d$ was increased: the spe- gg g-g ;g

cial projection matrixP, for 8 = X + N + 1 — k; was

associated with the collocation point closest to 0, instead lgg g'g %?3
of the collocation point closest to 1. We should also men-  5gq 69' T
tion that we have observed the occurrence of negatiie 399 148 -
angular fluxes for other casdsther groups of inci- 549 350 _—
dence that we tried. This phenomenon has been obt

served before in slowing-down calculatidhisind is due *The execution times are in minutes.
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the code that computes the matrix elements and righfer providing results of his implementation of the spherical-
hand sides required to define the linear systems extarmonics method for the six- and the 42-group problems. The
pressed by Eqg63) and(65), and~75% was spent in work of one of the authoréR.D.M.G,) was supp.orte,d. in part
the part that factorizes and solves these linear systemiy conselho Nacional de Desenvolvimento Cientifico e Tec-
In the N = 129 run for the second test problem, thes olégico. R.D.M.G. wishes also to express his gratitude to the

o o - inistry of Science and Technology of Brazil for the financial
percentages were 2% and 98%, respectively. We note upport(provided in the framework of the Recursos Humanos

that the time required to compute the discrete eigenvalsyia atividades Estratégicas progretimat made possible a visit
ues has not been included in Table XI since this calculag North Carolina State University during the early stages of
tion does not depend on the order of Fagapproximation,  this work and to Fundac&o de Amparo a Pesquisa do Estado de
and therefore it can be performed only once for each prolszo Paulo for computational resources that were used to per-
lem. Using the procedure described in Sec. IV vty form part of the numerical work reported in this paper. Finally,
as our initialP,, approximation for computing the dis- itis noted that some computer time was made available to C.E.S.
crete eigenvalues and repeating the calculation with by the North Carolina Supercomputing Center.

increased by 10 as many times as necessary for conver-

gence, we found discrete eigenvalues accurate to 12 sig-

nificant figures with\/ = 39 for the six-group problem REFERENCES
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