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Abstract –An integral transform technique and the FN method are used to develop solutions to a class of
multigroup radiation-transport problems. The multigroup model considered allows an anisotropic scat-
tering law and transfer from any group to any group. Computational aspects of the developed solution are
discussed, and especially accurate numerical results are reported for two test cases.

I. INTRODUCTION

While multigroup transport theory has a long his-
tory in the nuclear engineering community~see, for ex-
ample, Refs. 1 and 2!, attention has mostly been focused
on cases where there is only downscattering or weak up-
scattering.3–5Even though elaborate schemes for improv-
ing the convergence rate of iterative solutions of upscatter
problems have been proposed,6–10 we believe that vari-
ous multigroup codes currently in use are still largely in-
efficient for problems that involve strong upscattering.

To provide an alternative procedure to iterating over
the groups, a spherical-harmonics method that solves di-
rectly the vector equation of transfer has recently been
developed and reported in the radiative-transfer litera-
ture.11 We note also that Kelley12 has constructed a ver-
sion of the discrete ordinates method that has been used
to obtain numerical results for the six-group test prob-
lem introduced in Ref. 11. Kelley’s results for the group
fluxes and currents for the considered problem agreed
with Siewert’s results11 to within 61 in the fifth signif-
icant figure for all considered points interior to the sur-
faces of the one-dimensional layer. On the other hand,
the fluxes at the boundaries of the layer were reported in
Refs. 11 and 12 with no more than three significant fig-
ures; in particular, the flux and current on the right bound-

ary for one of the groups were reported in these works
with only one figure.

We note that early attempts to solve the test prob-
lem of Ref. 11 with the ANISN code5 were not success-
ful13,14 nor were similar attempts with another standard
SN code.14 The kinds of difficulties observed in these
studies are clearly displayed in Fig. 2 of Ref. 14. In this
figure, one can see that the scalar flux computed with
ANISN for group 3 of the six-group problem intro-
duced in Ref. 11 underestimates the true scalar flux by
;200% near the boundary of incidence. The same be-
havior was observed in other test problems~including a
strongly coupled two-group problem! and when the two-
dimensional discrete ordinates codes DOT and TWO-
TRAN were used.13 More recently, it was observed15

that the use of a relaxation factor~input parameter RYF!
for dealing with the upscatter convergence in ANISN
can greatly improve the results for the six-group prob-
lem near the boundary of incidence, but at the expense
of reduced efficiency; in addition, the results at or near
the other boundary still show big discrepancies. Thus,
regardless of the geometry, the treatment of the energy
dependence of transport problems by iterative tech-
niques in discrete ordinates codes seems to be problem-
atic for calculations that require good energy resolution
in the thermal range.
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Here, to provide a compact computational method
that yields high-quality results on the boundaries~as well
as for the interior! of a plane-parallel layer, we general-
ize our previous work~see, for example, Refs. 16 through
19! on theFN method to the case of fully coupled multi-
group transport theory.

We consider the multigroup transport equation writ-
ten as

m
]

]z
C~z,m! 1 SC~z,m!

5
1

2 (
l50

L

Pl ~m!T lE
21

1

Pl ~m ' !C~z,m ' ! dm ' ~1!

for z [ ~0,z0! and m [ @21,1# . Here the Legendre
polynomials are denoted byPl ~m!, and the transfer ma-
trices T l are such that particle transfer~by, for exam-
ple, scattering and0or fission! between and within all
energy groups is allowed. In addition, the elements
c1~z,m!,c2~z,m!, . . . ,cM ~z,m! of the M-vectorC~z,m!
are the group angular fluxes; the elementss1,s2, . . . ,sM

of the diagonalS matrix are the group total cross sec-
tions expressed in cm21; z is the position variable mea-
sured in cm; andm is the direction cosine, with respect
to the positivez axis, that defines the direction of par-
ticle motion.

Along with Eq. ~1!, we consider boundary condi-
tions of the form

C~0,m! 5 F1~m! ~2a!

and

C~z0,2m! 5 F2~m! ~2b!

for m [ ~0,1# . Here F1~m! and F2~m! are considered
given.

To use dimensionless units, we introduce an optical
variablet 5 zsmin and an optical thicknesst0 5 z0smin,
wheresmin is the minimum of the set$si % , and rewrite
Eqs.~1! and~2! as

m
]

]t
C~t,m! 1 SC~t,m!

5
1

2 (
l50

L

Pl ~m!ClE
21

1

Pl ~m ' !C~t,m ' ! dm ' , ~3!

for t [ ~0,t0! andm [ @21,1# , and

C~0,m! 5 F1~m! ~4a!

and

C~t0,2m! 5 F2~m! , ~4b!

for m [ ~0,1# . Here the diagonal matrixS has entries
si 5 si 0smin, and the dimensionless transfer matrices are
defined byCl 5 T l 0smin.

II. SINGULAR INTEGRAL EQUATIONS
AND CONSTRAINTS

In this section we use an integral transform procedure
to reduce the problem formulated by Eqs.~3! and~4! to a
linear system of singular integral equations and constraints
for two vector quantities~Y andJ! that are related in a sim-
ple way to the angular-flux vectors at two arbitrary loca-
tions in the layer. We next specialize this system so that the
resulting solution can be used to determine the exiting
angular-flux vectorsC~0,2m! andC~t0,m! for m [ ~0,1# .
Assuming that the exiting angular-flux vectors have been
found,we thengoback to theoriginal systemandshowhow
to use it for computing the interior angular-flux vector
C~t,m! for anyt [ ~0,t0! andm [ @21,1# .

In the manner of Ref. 18, we begin our derivation by
changingm to 2m in Eq. ~3!, multiplying the resulting
equation by exp~2t0s!, and integrating overt from t 5
a to t 5 b, with 0 # a , b # t0. We find, after an inte-
gration by parts,

~mI 2 sS!C*~s,2m! 1
s

2 (
l50

L

~21! lPl ~m!Cl Cl
*~s!

5 msB~m,s! , ~5!

where

B~m,s! 5 C~a,2m!e2a0s 2 C~b,2m!e2b0s , ~6!

C*~s,2m! 5 E
a

b

C~t,2m!e2t0s dt , ~7!

and

Cl
*~s! 5 E

a

b

Cl ~t!e2t0s dt ~8!

for l 50,1, . . . ,L. Here we have also introduced the notation

Cl ~t! 5 E
21

1

Pl ~m!C~t,m! dm . ~9!

We consider now thats Ó @21,1# so that we can rewrite
Eq. ~5! as

C*~s,2m! 1
s

2
D~m,s! (

a50

L

~21!aPa~m!CaCa
*~s!

5 msD~m,s!B~m,s! , ~10!

where

D~m,s! 5 ~mI 2 sS!21 . ~11!

At this point we multiply Eq.~10! by Pl ~ m!, for l 5
0,1, . . . ,L, and integrate over allm to obtain

~21! l Cl
*~s! 1

s

2 (
a50

L

~21!a

3 E
21

1

Pl ~m!D~m,s!Pa~m! dmCaCa
*~s! 5 Gl ~s! ,

~12!
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where

Gl ~s! 5 sE
21

1

mPl ~m!D~m,s!B~m,s! dm . ~13!

Multigroup versionsGl ~j ! of the Chandrasekhar
polynomials were defined in Ref. 20 by the starting value

G0~j ! 5 I ~14!

and the three-term recursion formula

jhl Gl ~j ! 5 ~l 1 1!Gl11~j ! 1 l Gl21~j ! ~15!

for l $ 0. Here

hl 5 ~2l 1 1!S 2 Cl , for l 5 0,1, . . . ,L , ~16a!

and

hl 5 ~2l 1 1!S , for l . L . ~16b!

Now we introduce a set of matricesGl
†
~j ! relevant to the

adjoint problem: We define these matrices by the start-
ing value

G0
†
~j ! 5 I ~17!

and the three-term recursion formula

j Dhl Gl
†
~j ! 5 ~l 1 1!Gl11

† ~j ! 1 l Gl21
†

~j ! ~18!

for l $ 0, where the tilde is used~throughout this work!
to denote the transpose operation.

We now multiply Eq.~12! by EGl
†
~s!Cl and sum the

resulting equation overl to obtain

(
l50

L

~21! l M l ~s!Cl Cl
*~s! 5 (

l50

L

EGl
†
~s!Cl Gl ~s! , ~19!

where

M l ~s! 5 EGl
†
~s! 1

s

2 (
a50

L

EGa
†~s!Ca

3 E
21

1

Pa~m!D~m,s!Pl ~m! dm . ~20!

Multiplying Eq. ~20! by ~2l 1 1!s and using the three-
term recursion formula

~2l 1 1!mPl ~m! 5 ~l 1 1!Pl11~m! 1 lPl21~m! ~21!

for the Legendre polynomials, we can now show that

M l ~s! 5 V~s!Pl ~sS! , ~22!

where

V~s! 5 I 1
s

2 (
l50

L

EGl
†
~s!ClE

21

1

D~m,s!Pl ~m! dm

~23!

and

Pl ~sS! 5 diag$ . . . ,Pl ~si s!, . . .% . ~24!

We note that in this work we use the notationA ~xS! to
indicate thatsi x is the argument of thei ’th component
of A, whenA represents a vector, or the argument of the
i ’th diagonal element ofA, whenA represents a diago-
nal matrix. Clearly, the definition given by Eq.~24! re-
fers to the latter case. It follows that we can use Eq.~22!
to rewrite Eq.~19! as

V~s!X ~s! 5 s(
l50

L

EGl
†
~s!Cl

3 E
21

1

mPl ~m!D~m,s!B~m,s! dm , ~25!

where

X ~s! 5 (
l50

L

~21! l Pl ~sS!Cl Cl
*~s! . ~26!

At this point we find it convenient to change the in-
tegration variable in Eq.~23! so that we can write

V~s! 5 I 1
s

2
E

21

1

G†~s, xS!Q~x!
dx

x 2 s
, ~27!

where

G†~s, xS! 5 (
l50

L

EGl
†
~s!Cl Pl ~xS! ~28!

and where

Q~x! 5 diag$ . . . ,ui ~x!, . . .% ~29!

with ui ~x! 51 for x [ @210si ,10si # andui ~x! 5 0, other-
wise. By making a similar change of variable in the right-
hand side of Eq.~25!, we can rewrite that equation as

V~s!X ~s! 5 sE
21

1

xG†~s, xS!SQ~x!B~xS,s!
dx

x 2 s
.

~30!

Rather than consider thats can take values in both
the left and right half planes, we prefer to write Eq.~30!
twice and consider only values ofs in the right half plane.
We thus let

Y~a,b : s! 5
1

s
X ~s!ea0s ~31a!

and

J~a,b : s! 5
1

s
X ~2s!e2b0s

~31b!

and consider

V~s!Y~a,b : s! 5 R1~s! 1 R2~s! ~32a!

and

V~s!J~a,b : s! 5 R3~s! 1 R4~s! ~32b!

for R s . 0. Here
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R1~s! 5 E
0

1

xG†~s, xS!SQ~x!@C~a,2xS! 2 C~b,2xS!e2~b2a!0s#
dx

x 2 s
, ~33a!

R2~s! 5E
0

1

xG†~s,2xS!SQ~x!@C~a, xS! 2 C~b, xS!e2~b2a!0s#
dx

x 1 s
, ~33b!

R3~s! 5E
0

1

xG†~s, xS!SQ~x!@C~b, xS! 2 C~a, xS!e2~b2a!0s#
dx

x 2 s
, ~33c!

and

R4~s! 5E
0

1

xG†~s,2xS!SQ~x!@C~b,2xS! 2 C~a,2xS!e2~b 2 a!0s#
dx

x 1 s
. ~33d!

Following Ref. 18, we now letsapproachn [ ~0,1!, butn Ó $10si % , from the upper half plane and from the lower
half plane and use the Plemelj formulas21 to find from Eqs.~32!

v~n!Y~a,b : n! 5 r 1~n! 1 R2~n! , ~34a!

v~n!J~a,b : n! 5 r 3~n! 1 R4~n! , ~34b!

1
2
_G†~n,nS!Q~n!Y~a,b : n! 5 G†~n,nS!SQ~n!@C~a,2nS! 2 C~b,2nS!e2~b2a!0n # , ~35a!

and

1
2
_G†~n,nS!Q~n!J~a,b : n! 5 G†~n,nS!SQ~n!@C~b,nS! 2 C~a,nS!e2~b2a!0n # . ~35b!

Here

v~n! 5 I 1
n

2
2E

21

1

G†~n, xS!Q~x!
dx

x 2 n
, ~36!

r 1~n! 5 2E
0

1

xG†~n, xS!SQ~x!@C~a,2xS! 2 C~b,2xS!e2~b2a!0n #
dx

x 2 n
, ~37a!

and

r 3~n! 5 2E
0

1

xG†~n, xS!SQ~x!@C~b, xS! 2 C~a, xS!e2~b2a!0n #
dx

x 2 n
, ~37b!

where the symbol–* is used to indicate that the integral is to be evaluated in the Cauchy principal-value sense. We note
that in using the Plemelj formulas to deduce Eqs.~34!, we have excluded the “endpoints” 0 and$10si % ; however, in
subsequent equations these endpoint restrictions can effectively be removed.

To satisfy Eqs.~35!, we let, forx [ ~0,1# ,

SQ~x!C~a,2xS! 5 SQ~x!C~b,2xS!e2~b2a!0x 1 1
2
_Q~x!Y~a,b : x! ~38a!

and

SQ~x!C~b, xS! 5 SQ~x!C~a, xS!e2~b2a!0x 1 1
2
_Q~x!J~a,b : x! ~38b!

which can be substituted into Eqs.~34! to yield

v~n!Y~a,b : n! 1
1

2
2E

0

1

xG†~n, xS!Q~x!Y~a,b : x!
dx

n 2 x

1
1

2
e2~b2a!0nE

0

1

xG†~n,2xS!Q~x!J~a,b : x!
dx

n 1 x
5 T1~a,b : n! ~39a!
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and

v~n!J~a,b : n! 1
1

2
2E

0

1

xG†~n, xS!Q~x!J~a,b : x!
dx

n 2 x

1
1

2
e2~b2a!0nE

0

1

xG†~n,2xS!Q~x!Y~a,b : x!
dx

n 1 x
5 T2~a,b : n! ~39b!

for n [ @0,1# . We can use the definitions

C~t : x, y! 5
e2t0x 2 e2t0y

x 2 y
~40a!

and

S~t : x, y! 5
12 e2t0xe2t0y

x 1 y
~40b!

to write

T1~a,b : j!

5E
0

1

x@G†~j,2xS!SQ~x!C~a, xS!S~b 2 a : x,j!

1 G†~j, xS!SQ~x!C~b,2xS!

3 C~b 2 a : x,j!# dx ~41a!

and

T2~a,b : j!

5E
0

1

x@G†~j,2xS!SQ~x!C~b,2xS!S~b 2 a : x,j!

1 G†~j, xS!SQ~x!C~a, xS!

3 C~b 2 a : x,j!# dx . ~41b!

We note that Eqs.~41! can also be written as

T1~a,b : j! 5 (
l50

L

EGl
†
~j !Cl S21E

0

1

mPl ~m!

3 @~21! l S~b 2 a : mS21,j!C~a,m!

1 C~b 2 a : mS21,j!C~b,2m!# dm

~42a!

and

T2~a,b : j! 5 (
l50

L

EGl
†
~j !Cl S21E

0

1

mPl ~m!

3 @~21! l S~b 2 a : mS21,j!C~b,2m!

1 C~b 2 a : mS21,j!C~a,m!# dm ,

~42b!

where

C~t : xS21, y! 5 diag$ . . . ,C~t : x0si , y!, . . .% ~43a!

and

S~t : xS21, y! 5 diag$ . . . ,S~t : x0si , y!, . . .% . ~43b!

In addition to the values of the transform variable
s 5 n [ @0,1# , we also consider a discrete spectrum in
the right half planes5 nj , nj Ó @0,1# , j 5 1,2, . . . ,:, de-
fined by

detV~nj ! 5 0 . ~44!

Thus, if we letM ~nj ! be a vector in the null space of
V~nj !, i.e.,

M ~nj !V~nj ! 5 0 , ~45!

we can deduce from Eqs.~32! the additional equations

1

2
M ~nj !E

0

1

xG†~nj , xS!Q~x!Y~a,b : x!
dx

nj 2 x

1
1

2
e2~b2a!0nj M ~nj !

3 E
0

1

xG†~nj ,2xS!Q~x!J~a,b : x!
dx

nj 1 x

5 M ~nj !T1~a,b : nj ! ~46a!

and

1

2
M ~nj !E

0

1

xG†~nj , xS!Q~x!J~a,b : x!
dx

nj 2 x

1
1

2
e2~b2a!0nj M ~nj !

3 E
0

1

xG†~nj ,2xS!Q~x!Y~a,b : x!
dx

nj 1 x

5 M ~nj !T2~a,b : nj ! ~46b!

for j 5 1,2, . . . ,:.
At this point, we note that the unknown vectors

Y~a,b : m! andJ~a,b : m! in Eqs.~39! and ~46! are re-
lated to the angular-flux vectors at the positionsa andb,
as can be seen from Eqs.~38!. Moreover, on the right-
hand sides of Eqs.~39! and~46!, we require the incom-
ing angular-flux vectorsC~a,m! andC~b,2m!, m [ ~0,1# ,
which are only known fora 5 0 andb 5 t0, as specified
by Eqs.~4!. It is thus clear that we must start our solution
by specializing Eqs.~39! and~46! to the casea 5 0 and
b 5 t0. We find, forn [ @0,1# ,
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v~n!Y~0,t0 : n! 1
1

2
2E

0

1

xG†~n, xS!Q~x!Y~0,t0 : x!
dx

n 2 x
1

1

2
e2t00nE

0

1

xG†~n,2xS!Q~x!J~0,t0 : x!
dx

n 1 x

5 K 1~0 :n! ~47a!

and

v~n!J~0,t0 : n! 1
1

2
2E

0

1

xG†~n, xS!Q~x!J~0,t0 : x!
dx

n 2 x
1

1

2
e2t00nE

0

1

xG†~n,2xS!Q~x!Y~0,t0 : x!
dx

n 1 x

5 K 2~t0 : n! , ~47b!

and, forj 5 1,2, . . . ,:,

1

2
M ~nj !E

0

1

xG†~nj , xS!Q~x!Y~0,t0 : x!
dx

nj 2 x
1

1

2
e2t00nj M ~nj !E

0

1

xG†~nj ,2xS!Q~x!J~0,t0 : x!
dx

nj 1 x

5 M ~nj !K 1~0 :nj ! ~48a!

and

1

2
M ~nj !E

0

1

xG†~nj , xS!Q~x!J~0,t0 : x!
dx

nj 2 x
1

1

2
e2t00nj M ~nj !E

0

1

xG†~nj ,2xS!Q~x!Y~0,t0 : x!
dx

nj 1 x

5 M ~nj !K 2~t0 : nj ! , ~48b!

where, in general,

K 1~t : j! 5 E
0

1

xG†~j,2xS!SQ~x!F1~xS!e2t0xS~t0 2 t : x,j! dx

1 E
0

1

xG†~j, xS!SQ~x!F2~xS!C~t0 2 t : x,j! dx ~49a!

and

K 2~t : j! 5 E
0

1

xG†~j,2xS!SQ~x!F2~xS!e2~t0 2 t!0xS~t : x,j! dx

1 E
0

1

xG†~j, xS!SQ~x!F1~xS!C~t : x,j! dx . ~49b!

Equations~47! and ~48! define a set of linear singular-integral equations and integral constraints for the vectors
Y~0,t0 : m! and J~0,t0 : m! for m [ ~0,1# . Our intention, therefore, is to solve in some approximate manner
Eqs.~47! and ~48! and then to compute the desired exiting angular fluxes from

C~0,2m! 5 e2t0S0mF2~m! 1 1
2
_S21Y~0,t0 : mS21! ~50a!

and

C~t0,m! 5 e2t0S0mF1~m! 1
1

2
S21J~0,t0 : mS21! ~50b!

for m [ ~0,1# . We note that these expressions were derived by changing the angular variable and settinga5 0 andb5
t0 in Eqs.~38! and by making use of the boundary conditions given by Eqs.~4!. In addition, the matrix exponential
used in Eqs.~50! is defined as

e2tS0m 5 diag$ . . . ,e2si t0m, . . .% . ~51!
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Now, to find the interior angular-flux vectorC~t,m!, t [ ~0,t0! andm [ @21,1# , we first consider Eqs.~39a! and
~46a! with a 5 t andb 5 t0 and Eqs.~39b! and~46b! with a 5 0 andb 5 t. We find, forn [ @0,1# ,

v~n!Y~t,t0 : n! 1
1

2
2E

0

1

xG†~n, xS!Q~x!Y~t,t0 : x!
dx

n 2 x
2

1

2
E

0

1

xG†~n,2xS!Q~x!J~0,t : x!
dx

n 1 x

5 K 1~t : n! 2
1

2
e2~t02t!0nE

0

1

xG†~n,2xS!Q~x!J~0,t0 : x!
dx

n 1 x
~52a!

and

v~n!J~0,t : n! 1
1

2
2E

0

1

xG†~n, xS!Q~x!J~0,t : x!
dx

n 2 x
2

1

2
E

0

1

xG†~n,2xS!Q~x!Y~t,t0 : x!
dx

n 1 x

5 K 2~t : n! 2
1

2
e2t0nE

0

1

xG†~n,2xS!Q~x!Y~0,t0 : x!
dx

n 1 x
, ~52b!

and, forj 5 1,2, . . . ,:,

1

2
M ~nj !E

0

1

xG†~nj , xS!Q~x!Y~t,t0 : x!
dx

nj 2 x
2

1

2
M ~nj !E

0

1

xG†~nj ,2xS!Q~x!J~0,t : x!
dx

nj 1 x

5 M ~nj !K 1~t : nj ! 2
1

2
e2~t02t!0nj M ~nj !E

0

1

xG†~nj ,2xS!Q~x!J~0,t0 : x!
dx

nj 1 x
~53a!

and

1

2
M ~nj !E

0

1

xG†~nj , xS!Q~x!J~0,t : x!
dx

nj 2 x
2

1

2
M ~nj !E

0

1

xG†~nj ,2xS!Q~x!Y~t,t0 : x!
dx

nj 1 x

5 M ~nj !K 2~t : nj ! 2
1

2
e2t0nj M ~nj !E

0

1

xG†~nj ,2xS!Q~x!Y~0,t0 : x!
dx

nj 1 x
. ~53b!

We note that once Eqs.~47! and ~48! are solved, the
vectorsY~0,t0 : m! andJ~0,t0 : m! become available, and
so the right-hand sides of Eqs.~52! and ~53! are com-
pletely determined. Therefore, we can also solve in an
approximate manner the set of linear singular-integral
equations and integral constraints defined by Eqs.~52!
and ~53! for the unknown vectorsY ~t,t0 : m! and
J~0,t : m!. We can then compute the interior angular
fluxes from the expressions, form [ @0,1# ,

C~t,2m! 5 e2~t02t!S0mF2~m! 1
1

2
S21Y~t,t0 : mS21!

~54a!

and

C~t,m! 5 e2tS0mF1~m! 1
1

2
S21J~0,t : mS21! ,

~54b!

which can be derived by settinga 5 t and b 5 t0 in
Eq. ~38a!, a5 0 andb5 t in Eq. ~38b!, and by changing
the angular variable in the resulting equations.

III. THE FN METHOD

TheFN method22 is a collocation technique for solv-
ing linear systems of singular-integral equations and con-
straints in an approximate, but accurate, manner. As the
method has been comprehensively reviewed in the liter-
ature,23,24 no additional review is given here. However,
we do note that Kelley25 has discussed convergence as-
pects of the method in the context of multigroup theory
applied to an isotropically scattering half-space.

To start our solution of the boundary system defined
by Eqs.~47! and ~48!, we approximateY~0,t0 : m! and
J~0,t0 : m!, for m [ ~0,1# , by the finite-dimensional rep-
resentations

Y~0,t0 : m! 5 2 (
a50

N

Fa~m!aa ~55a!

and

J~0,t0 : m! 5 2 (
a50

N

Fa~m!ba , ~55b!
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where$Fa~m!% is a set of basis functions to be specified.
Once the vectors$aa% and$ba% have been determined, we
can use Eqs.~55! in Eqs.~50! to find the desired results:

C~0,2m! 5 e2t0S0mF2~m! 1 S21 (
a50

N

Fa~mS21!aa

~56a!

and

C~t0,m! 5 e2t0S0mF1~m! 1 S21 (
a50

N

Fa~mS21!ba

~56b!

for m [ ~0,1# . Here, in accordance with our previously
defined notation,

Fa~mS21! 5 diag$ . . . ,Fa~m0si !, . . .% . ~57!

If we now substitute Eqs.~55! into Eqs.~47! and ~48!,
we find

(
a50

N

@Ba~j !aa 1 e2t00jAa~j !ba# 5 V1~0 :j! ~58a!

and

(
a50

N

@Ba~j !ba 1 e2t00jAa~j !aa# 5 V2~t0 : j! , ~58b!

for j 5 nj , j 51,2, . . . ,:, orj 5 n [ @0,1# . Here, we have
defined theM-dimensional row vectors

Aa~nj ! 5 M ~nj ! (
l50

L

~21! l EGl
†
~nj !Cl S21

3 E
0

1

mPl ~m!D~m,2nj !Fa~mS21! dm

~59a!

and

Ba~nj ! 5 2M ~nj ! (
l50

L

EGl
†
~nj !Cl S21

3 E
0

1

mPl ~m!D~m,nj !Fa~mS21! dm ,

~59b!

for j 5 1,2, . . . ,:, and theM 3 M matrices

Aa~n! 5 (
l50

L

~21! l EGl
†
~n!Cl S21

3 E
0

1

mPl ~m!D~m,2n!Fa~mS21! dm

~60a!

and

Ba~n! 5 2Fa~n!v~n! 2 (
l50

L

EGl
†
~n!Cl S21

3 2E
0

1

mPl ~m!D~m,n!Fa~mS21! dm ,

~60b!

for n [ @0,1# . In addition, we have also used in Eqs.~58!
the general definitions, forb 5 1 or 2,

Vb~t : j! 5 E~j !K b~t : j! , ~61!

where, forj 5 nj , j 5 1,2, . . . ,:, E~nj ! 5 M ~nj ! and, for
j 5 n [ @0,1# , E~n! 5 I .

To generate a finite system of linear algebraic equa-
tions from which to obtain the required 2M~N 1 1! un-
knowns, i.e., theM~N11! elements ofaa, a 5 0,1, . . . ,N,
and theM~N11! elements ofba , a 5 0,1, . . . ,N, we use
collocation. If we write: 5 k1 M 1 k2, wherek1 andk2

are nonnegative integers~with k2 , M !, and letj take
on the valuesjb 5 nb , b 5 1,2, . . . ,:, andjb [ @0,1# ,
b 5 : 1 1,: 1 2, . . . ,: 1 N 1 1 2 k1, in Eqs.~58!, we
obtain a system of 2M~N11!12k2 linear algebraic equa-
tions. Clearly, the number of equations exceeds the num-
ber of unknowns by 2k2, and so, in general, the system
will be overdetermined, unlessk2 5 0. As we prefer to
have a collocation strategy that yields always a square
system, we follow the lines of a previous work on theFN

method for radiative transfer with polarization26 and de-
fine the projection matrices

Pb 5 1 , b 5 1,2, . . . ,: , ~62a!

for the discrete spectrum and

Pb 5 I , b 5 : 1 1,: 1 2, . . . ,: 1 N 2 k1 , ~62b!

for all points in the continuum except the last one. We
assume, for simplicity, that the collocation points in the
continuum are ordered by increasing magnitudes, so that
the last of these points is closest to 1. Thus, to obtain a
square system, we associate with this point a~M 2 k2! 3
M projection matrixPb , b 5 : 1 N 11 2 k1, defined in
a way that the elements of rowi are unity for columns
i, i 11, . . . ,i 1 k2 and zero otherwise. For example, when
k2 5 0, this projection matrix is simply the identity ma-
trix, and whenk2 5 M 2 1, it reduces to a row vector of
dimensionM with all elements equal to unity. With these
definitions, we can now solve the square system formed
by

Pb (
a50

N

@Ba~jb!aa 1 e2t00jbAa~jb!ba# 5 PbV1~0 :jb!

~63a!
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and

Pb (
a50

N

@Ba~jb!ba 1 e2t00jbAa~jb!aa# 5 PbV2~t0 : jb! ,

~63b!

for b 5 1,2, . . . ,: 1 N 1 1 2 k1, to find the vectors$aa%
and$ba% required in Eqs.~56!.

Once we solve Eqs.~63!, we can turn our attention
to the calculation of the interior angular-flux vector
C~t,m! for any t [ ~0,t0! andm [ @21,1# . First, we
introduce the approximations

Y~t,t0 : m! 5 2 (
a50

N

Fa~m!ca~t! ~64a!

and

J~0,t : m! 5 2 (
a50

N

Fa~m!da~t! , ~64b!

for m [ @0,1# , into Eqs.~52! and~53! and use the same
collocation strategy used for the boundary system to ob-
tain the square system

Pb (
a50

N

@Ba~jb!ca~t! 2 Aa~jb!da~t!#

5 PbV1~t : jb! 2 e2~t0 2 t!0jbPb (
a50

N

Aa~jb!ba

~65a!

and

Pb (
a50

N

@Ba~jb!da~t! 2 Aa~jb!ca~t!#

5 PbV2~t : jb! 2 e2t0jbPb (
a50

N

Aa~jb!aa ~65b!

for the unknown vectors$ca~t!% and$da~t!% . Clearly, as
the matrix of coefficients related to the linear system de-
fined by Eqs.~65! does not depend ont, a single lower-
upper~LU ! decomposition of this matrix is sufficient for
finding $ca~t!% and$da~t!% for any number of positions
inside the layer. Finally, once these vectors become avail-
able, we can substitute Eqs.~64! into Eqs.~54! and use
the resulting expressions, i.e.,

C~t,2m! 5 e2~t02t!S0mF2~m!

1 S21 (
a50

N

Fa~mS21!ca~t! ~66a!

and

C~t,m! 5 e2tS0mF1~m! 1 S21 (
a50

N

Fa~mS21!da~t!

~66b!

for m [ @0,1# , to compute ourFN approximations to the
interior angular fluxes.

IV. COMPUTATIONAL METHODS

To implement ourFN solution to the considered multi-
group problem, we must first computenj , j 5 1,2, . . . ,:,
the zeros of detV~j! in the right half plane cut from@0,1#.
Here we use a procedure similar to that of Siewert and
Thomas,20 and so we begin by writing the transpose of
Eq. ~23!, for R j $ 0 butj Ó @0,1# , as

EV~j ! 5 I 1 j (
l50

L

Ql ~jS! ECl Gl
†
~j ! , ~67!

where

Ql ~jS! 5
1

2
E

21

1

D~m,j!Pl ~m! dm ~68!

satisfies

~2l 1 1!jSQl ~jS!

5 ~l 1 1!Ql11~jS! 1 lQl21~jS! 2 dl,0I ~69!

for l $ 0. If we now subtract Eq.~18! multiplied on the
left by Ql ~jS! from Eq.~69! multiplied on the right by
Gl

†
~j ! and sum the resulting equation froml 5 0 up to

l 5 L, we obtain an alternative representation forEV~j !,
namely,

EV~j ! 5 ~L 1 1!@QL11~jS!GL
†
~j ! 2 QL~jS!GL11

†
~j !# .

~70!

Similarly, we can subtract Eq.~18! multiplied on the left
by Pl ~jS! from

~2l 1 1!jSPl ~jS! 5 ~l 1 1!Pl11~jS! 1 lPl21~jS!

~71!
multiplied on the right byGl

†
~j ! and sum the result from

l 5 0 up to l 5 L to find

j (
l50

L

Pl ~jS! ECl Gl
†
~j !

5 ~L 1 1!@PL11~jS!GL
†
~j ! 2 PL~jS!GL11

†
~j !# .

~72!

In addition, we can subtract Eq.~71! multiplied on the
left by Ql ~jS! from Eq.~69! multiplied on the right by
Pl ~jS! and sum the result froml 5 0 up tol 5 L to find

I 5 ~L 1 1!@QL11~jS!PL~jS! 2 QL~jS!PL11~jS!# .

~73!

Proceeding with the development of our procedure
for computing the discrete spectrum in the right half plane,
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we multiply Eq. ~70! on the left byPL~jS! and use
Eqs.~72! and~73! to obtain

PL~jS! EV~j ! 5 GL
†
~j ! 1 jQL~jS! (

l50

L

Pl ~jS! ECl Gl
†
~j ! .

~74!

Noting thatCl 5 0 for l . L, we can easily show that
Eq. ~74! is also valid whenL is replaced byK, for any
K $ L. Moreover, sincej Ó ~0,1!, we can write Eq.~74!
as

EV~j ! 5 PK
21~jS!

3 FGK
†
~j ! 1 jQK ~jS! (

l50

L

Pl ~jS! ECl Gl
†
~j !G

~75!

for any K $ L. Since the Legendre function of the sec-
ond kind

Ql ~j ! 5
1

2
E

21

1

Pl ~m!
dm

j 2 m
, j Ó @21,1# , ~76!

approaches zero asl r` ~see, for example, the book by
Robin27! andQl ~jS! can be expressed as

Ql ~jS! 5 diag$ . . . ,Ql ~si j!, . . .% , ~77!

we obtain, if we letK r ` in Eq. ~75!,

EV~j ! 5 lim
Kr`

PK
21~jS!GK

†
~j ! . ~78!

We thus conclude from Eq.~78! that the required zeros
of detV~j ! can be approximated with increasing accu-
racy by the zeros of detGK

†
~j ! in the right half plane cut

from @0,1# asK r`. In regard to the computational im-
plementation of our procedure, we begin by takingK 5
N 1 1, withN odd andN $ L, in Eq.~78! and comput-
ing, according to the procedure summarized in the next
paragraph, the zeros of detGN11

†
~j !. We note that this

is a necessary step in the computational implementa-
tion of the spherical-harmonics method of orderN for
the class of problems we are addressing in this paper.11

However, in this work we are not interested in all the
zeros of detGN11

†
~j !; only those zeros in the right half

plane cut from@0,1# are relevant here. Having found our
first approximations for the required zeros of detV~j !,
we then increase the value ofN and repeat the procedure
as many times as necessary until convergence within a
prescribed tolerance in the approximations is attained. As
discussed by Siewert and Thomas,20 there may be situ-
ations for which a faster procedure~e.g., Newton’s
method! is required; here, for the sample problems to be
discussed in the next section, we found that this was not
necessary.

We now describe our procedure for computing the
zeros of detGN11

†
~j !. First, in the manner of Ref. 20, we

eliminate the odd-order terms in Eq.~18! to obtain, for
l 5 0,2, . . . ,

X l Gl22
†

~j ! 1 Yl Gl
†
~j ! 1 Z l Gl12

†
~j ! 5 j2Gl

†
~j ! ,

~79!

where

X l 5 l ~l 2 1! Dhl
21 Dhl21

21 , ~80a!

Yl 5 l 2 Dhl
21 Dhl21

21 1 ~l 1 1!2 Dhl
21 Dhl11

21 , ~80b!

and

Z l 5 ~l 1 1!~l 1 2! Dhl
21 Dhl11

21 . ~80c!

Next, assuming thatj is a zero of detGN11
†

~j !,
we multiply Eq. ~79! by N~j !, a vector in the null
space of GN11

†
~j !, and use the resulting equation

for l 5 0,2, . . . ,N 2 1 along with

GN11
†

~j !N~j ! 5 0 ~81!

to obtain the eigenvalue problem

AU 5 j2U , ~82!

where

A 5 1
Y0 Z0 0 J 0 0 0

X2 Y2 Z2 J 0 0 0

0 X4 Y4 J 0 0 0

I I I L I I I

0 0 0 J YN25 ZN25 0

0 0 0 J XN23 YN23 ZN23

0 0 0 J 0 XN21 YN21

2
~83!

is aM~N 1 1!02 square matrix and

U 5 diag$G0
†
~j !,G2

†
~j !, . . . ,GN21

†
~j !%N~j ! ~84!

is a vector of dimensionM~N 1 1!02. Clearly, the de-
sired zeros of detGN11

†
~j ! are simply the~positive!

square roots of the eigenvalues ofA. In this work we
used the subroutines BALANC, ELMHES, and HQR
from the EISPACK package28 to compute the eigenval-
ues ofA.

We now turn our attention to the computation of the
matrix-valued functionsAa~j ! and Ba~j ! defined by
Eqs. ~59! and ~60! and required forj [ $nj % ø @0,1# .
Although, in principle, we could have pursued the route
of recurrence formulas,23,29 we prefer to use Gaussian
integration here to evaluate the integrals in Eqs.~59! and
~60!. Clearly, the application of a standard Gauss-
Legendre quadrature for performing the integrals in

THE FN METHOD FOR MULTIGROUP TRANSPORT THEORY WITH UPSCATTERING 203

NUCLEAR SCIENCE AND ENGINEERING VOL. 130 OCT. 1998



Eqs.~59! and~60a! is straightforward, but in the case of
Eq. ~60b!, the singularity must be removed first. By
combining the first and second terms on the right-hand
side of Eq.~60b!, we find we can write this equation as

Ba~n! 5 2Fa~n!I 2 nFa~n! (
l50

L

~21! l EGl
†
~n!Cl

3 E
0

1

Pl ~m!D~m,2n! dm

2 (
l50

L

EGl
†
~n!ClE

0

1

Pl ~m!D~m,n!

3 @mS21Fa~mS21! 2 nFa~n!I # dm , ~85!

a form to which we can readily apply a standard
Gauss-Legendre quadrature. The order of the applied
quadrature was determined as follows. We first used
a 100-point Gauss-Legendre quadrature shifted to the
interval @0,1# to computeAa~j ! and Ba~j ! for all
values ofj [ $nj % ø $0.0~0.1!1.0% anda 5 0,1, . . . ,Nm,
where Nm is the maximum order of theFN approx-
imation to be used in the calculation. We note that
Nm 5 549 for the first sample problem described in
Sec. V, whileNm 5 129 for the second. Next, denoting
as Aa

ij ~j ! and Ba
ij ~j ! a general element of the matrices

A a~j ! and Ba~j !, respectively, we computed the
quantities

nA~j ! 5 (
a50

Nm

(
i51

I

(
j51

M

6Aa
ij ~j !6 ~86a!

and

nB~j ! 5 (
a50

Nm

(
i51

I

(
j51

M

6Ba
ij ~j !6 , ~86b!

whereI 5 1 whenj [ $nj % andI 5 M whenj [ @0,1# ,
for all the grid points defined forj. We then repeated the
procedure increasing the order of the quadrature by 100
each time, until the maximum relative difference ob-

served fornA~j ! and nB~j ! in two successive calcula-
tions was,10210. This procedure defined the order of
the quadrature as 1400 for the first of our test problems
in Sec. V and 300 for the second. It should be noted that
the Gaussian integration technique does not yield accu-
rate results for elements ofAa~j! andBa~j!, which have
magnitudes of the order of or smaller than the machine
precision~typically '10216 for double-precision calcu-
lations in short-word machines!. This may occur in high
order forAa~j!, j [ $nj % ø @0,1# , and forBa~j!, j [
$nj % . Fortunately, this loss of accuracy turns out to be of
no concern for us here, as we have found that the sensi-
tivity of the solutions of the linear systems defined by
Eqs.~63! and~65! to such small elements ofAa~j! and
Ba~j! is extremely small, and consequently these solu-
tions are stable in high order. Even if these elements were
computed very accurately, they would end up being cor-
rupted during the Gaussian elimination process used to
solve the linear systems.

Finally, we report our methods for computing the ma-
trices EGl

†
~n! for n [ @0,1# and the row vectors

FT l
†
~nj ! 5 M ~nj ! EGl

†
~nj ! ~87!

for j 51,2, . . . ,:—both of which are required in Eqs.~59!
and~60! and on the right-hand sides of Eqs.~63! and~65!.
We note that the required matricesEGl

†
~n! for n [ @0,1#

canbeeasilycomputedby recurrence,using the initial value
given by Eq.~17! along with Eq.~18! in the forward di-
rection forl 5 0,1, . . . ,L 2 1, and then taking the trans-
poses of the matrices so obtained. To develop a method for
computing the required vectorsFT l

†
~nj !, we first consider

j5nj in the transpose of Eq.~70! and multiply the result-
ing equation on the right byGM ~nj ! to obtain, forj 5
1,2, . . . ,:,

TL11
†

~nj ! 5 QL
21~nj S!QL11~nj S!TL

†
~nj ! . ~88!

Multiplying Eq. ~18! on the right by GM ~nj !, using the
resulting equation forl 5 0,1, . . . ,L and considering the
truncation condition expressed by Eq.~88!, we now ob-
tain, for j 5 1,2, . . . ,:,

H ~nj !T ~nj ! 5 0 , ~89!

whereH ~nj ! is aM~L 1 1! square matrix given by

H ~nj ! 5 1
nj Dh0 2I 0 J 0 0 0

2I nj Dh1 22I J 0 0 0

0 22I nj Dh2 J 0 0 0

I I I L I I I

0 0 0 J nj DhL22 2~L 2 1!I 0

0 0 0 J 2~L 2 1!I nj DhL21 2LI

0 0 0 J 0 2LI nj DhL 2 R~nj !

2 , ~90!

204 GARCIA and SIEWERT

NUCLEAR SCIENCE AND ENGINEERING VOL. 130 OCT. 1998



with R~nj ! 5 ~L 1 1!QL
21~nj S!QL11~nj S!, and

T ~nj ! 5 1
T0

†
~nj !

T1
†
~nj !

T2
†
~nj !

I

TL22
†

~nj !

TL21
†

~nj !

TL
†
~nj !

2 . ~91!

In conclusion, the required vectorsFT l
†
~nj ! can be found

from the transposes of the vectorsT ~nj !, once these are
computed forj 51,2, . . . ,:. In this work we used the sub-
routine MINFIT from the EISPACK package30 to com-
pute singular-value decompositions of the matricesH ~nj !
for j 51,2, . . . ,: that were subsequently used to compute
the correspondingT vectors.

V. SAMPLE PROBLEMS

To demonstrate the quality of the results that can be
obtained with theFN method, we first report in this sec-

tion highly accurate results for a six-group problem with
cubic ~L 5 3! anisotropic scattering that was previously
used to test a developed version of the spherical-
harmonics method.11 The problem consists of a water
layer ~with z0 5 30 cm! bombarded on the surface at
z 5 0 by a uniform and isotropic flux of neutrons with
energies in group 1. As the cross sections that define
the problem have been tabulated in Ref. 11, we do not
repeat these tabulations here. However, we do note that
the thickness of the layer is equivalent to 45.156 in units
of the optical variable introduced in Sec. I and that the
boundary conditions are expressed as

F1~m! 5 ~1 0 0 0 0 0!T ~92a!

and

F2~m! 5 0 ~92b!

for m [ ~0,1# .
In Tables I and II we report ourFN results, thought

to be accurate to all figures given, for the group scalar
fluxes

C0~t! 5 E
21

1

C~t,m! dm ~93!

TABLE I

The Group Scalar FluxesC0~t!

Group t0t0 5 0.0 t0t0 5 0.25 t0t0 5 0.5 t0t0 5 0.75 t0t0 5 1.0

1 1.09412 1.62048E24a 4.85237E28 1.45667E211 4.03114E215
2 2.29719E21 3.74472E22 1.96392E23 1.02768E24 1.78976E26
3 2.91728E21 1.85473E21 9.79886E23 5.12779E24 4.36490E26
4 3.05978E22 2.62814E22 1.38837E23 7.26540E25 4.39421E27
5 5.99893E24 6.10777E24 3.22597E25 1.68816E26 7.91259E29
6 7.30516E26 7.25931E26 3.83255E27 2.00558E28 7.94257E211

aRead as 1.620483 1024.

TABLE II

The Group CurrentsC1~t!

Group t0t0 5 0.0 t0t0 5 0.25 t0t0 5 0.5 t0t0 5 0.75 t0t0 5 1.0

1 4.71921E21a 1.04414E24 3.12929E28 9.39417E212 2.92352E215
2 29.92907E22 5.98176E23 3.11437E24 1.63588E25 1.09847E26
3 21.62966E21 8.77724E23 4.69326E24 2.46565E25 2.51982E26
4 21.70261E22 5.92290E24 3.16933E25 1.66505E26 2.46538E27
5 23.27829E24 6.71835E26 3.59244E27 1.88732E28 4.31668E29
6 23.86253E26 2.88262E28 1.53371E29 8.05724E211 4.10414E211

aRead as 4.719213 1021.
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and the group currents

C1~t! 5 E
21

1

mC~t,m! dm . ~94!

We note that to find these results, we used the basis
functions

Fa~m! 5 Pa~2m 2 1! , ~95!

wherePa~2m 21! are the shifted Legendre polynomials,
in theFN approximations given by Eqs.~55! and~64!. In
addition, we used the multigroup version of a colloca-
tion scheme31 based on the~positive! discrete spectrum
and the zeros of a Chebyshev polynomial of the second
kind shifted to~0,1!, namely,

jb 5 nb , b 5 1,2, . . . ,: , ~96a!

and

jb 5
1

2F11 cosS b 2 :

N 1 2 2 k1
pDG ,

b 5 : 1 1,: 1 2, . . . ,: 1 N 1 1 2 k1 , ~96b!

to define the linear systems of Eqs.~63! and ~65!. We
note that these systems were solved with subroutines
DGECO and DGESL from the LINPACK package.32

To provide a more extensive set of results that can
be useful for benchmarking purposes, we also list in
Tables III through VIII ourFN results for the group an-
gular fluxes, thought to be accurate to within61 in the
last reported figure. While the results in Tables I and II
were obtained withN 5 149, the results in Tables III to
VIII are based on a much higher value ofN ~N 5 549!
due to the slow convergence rate of the boundary angu-
lar fluxes for 6m6 r0 that is typical of theFN method
~and also of the spherical-harmonics method!.

As a second~and more challenging! test problem,
we consider a calculation that is of particular interest for
reactor-shield design, as discussed in detail by Selph.33

A 100-cm-thick concrete slab is irradiated on the surface
z 5 0 by a normally incident, uniform beam of thermal
neutrons in a specified energy group. The group struc-
ture used for this problem consists of 42 thermal groups
in the energy range from 0 to 4 eV, and so the boundary
conditions expressed by Eqs.~4! are given in this case by

C~0,m! 5 Fd~m 2 m0! ~97a!

and

C~t0,2m! 5 0 ~97b!

for m [ ~0,1# . Herem0 51.0 is the cosine of the angle of
incidence and the vectorF has componentsFi 5 di, j for

TABLE III

The Exit and Interior Angular Fluxes for Group 1

m t0t0 5 0.0 t0t0 5 0.25 t0t0 5 0.5 t0t0 5 0.75 t0t0 5 1.0

21.0 2.6054E22a 4.0455E26 1.2072E29 3.6236E213
20.9 2.7698E22 5.1802E26 1.5505E29 4.6545E213
20.8 3.2092E22 6.2324E26 1.8679E29 5.6075E213
20.7 3.9697E22 7.2863E26 2.1846E29 6.5582E213
20.6 5.1100E22 8.4424E26 2.5307E29 7.5973E213

20.5 6.7080E22 9.8228E26 2.9429E29 8.8346E213
20.4 8.8703E22 1.1577E25 3.4659E29 1.0405E212
20.3 1.1754E21 1.3889E25 4.1551E29 1.2473E212
20.2 1.5612E21 1.6991E25 5.0798E29 1.5249E212
20.1 2.0958E21 2.1175E25 6.3278E29 1.8995E212
20.0 3.0161E21 2.6818E25 8.0122E29 2.4051E212

0.0 2.6818E25 8.0122E29 2.4051E212 6.0808E216
0.1 3.4416E25 1.0281E28 3.0862E212 8.5506E216
0.2 4.4628E25 1.3332E28 4.0022E212 1.1500E215
0.3 5.8357E25 1.7436E28 5.2341E212 1.5335E215
0.4 7.6870E25 2.2972E28 6.8959E212 2.0424E215
0.5 1.0201E24 3.0489E28 9.1525E212 2.7273E215

0.6 1.3655E24 4.0815E28 1.2252E211 3.6634E215
0.7 1.8494E24 5.5255E28 1.6587E211 4.9687E215
0.8 2.5456E24 7.5996E28 2.2813E211 6.8405E215
0.9 3.5769E24 1.0701E27 3.2121E211 9.6365E215
1.0 5.1351E24 1.5620E27 4.6917E211 1.4079E214

aRead as 2.60543 1022.
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TABLE IV

The Exit and Interior Angular Fluxes for Group 2

m t0t0 5 0.0 t0t0 5 0.25 t0t0 5 0.5 t0t0 5 0.75 t0t0 5 1.0

21.0 1.3106E21a 1.1532E22 6.0646E24 3.1638E25
20.9 1.5168E21 1.1986E22 6.3038E24 3.2901E25
20.8 1.7234E21 1.2469E22 6.5578E24 3.4241E25
20.7 1.9295E21 1.2983E22 6.8279E24 3.5664E25
20.6 2.1336E21 1.3531E22 7.1152E24 3.7178E25

20.5 2.3339E21 1.4116E22 7.4214E24 3.8790E25
20.4 2.5275E21 1.4739E22 7.7477E24 4.0507E25
20.3 2.7103E21 1.5406E22 8.0960E24 4.2338E25
20.2 2.8754E21 1.6119E22 8.4680E24 4.4294E25
20.1 3.0102E21 1.6881E22 8.8657E24 4.6384E25
20.0 3.0752E21 1.7698E22 9.2914E24 4.8621E25

0.0 1.7698E22 9.2914E24 4.8621E25 6.0594E27
0.1 1.8574E22 9.7475E24 5.1016E25 8.4821E27
0.2 1.9514E22 1.0237E23 5.3584E25 1.0674E26
0.3 2.0524E22 1.0762E23 5.6341E25 1.2889E26
0.4 2.1610E22 1.1326E23 5.9304E25 1.5165E26
0.5 2.2780E22 1.1934E23 6.2492E25 1.7520E26

0.6 2.4042E22 1.2589E23 6.5928E25 1.9969E26
0.7 2.5404E22 1.3295E23 6.9634E25 2.2525E26
0.8 2.6877E22 1.4058E23 7.3639E25 2.5205E26
0.9 2.8470E22 1.4885E23 7.7974E25 2.8023E26
1.0 3.0193E22 1.5781E23 8.2672E25 3.1000E26

aRead as 1.31063 1021.

TABLE V

The Exit and Interior Angular Fluxes for Group 3

m t0t0 5 0.0 t0t0 5 0.25 t0t0 5 0.5 t0t0 5 0.75 t0t0 5 1.0

21.0 3.7927E21a 8.0486E22 4.2459E23 2.2205E24
20.9 3.6616E21 8.1552E22 4.3026E23 2.2502E24
20.8 3.5179E21 8.2641E22 4.3604E23 2.2807E24
20.7 3.3607E21 8.3753E22 4.4196E23 2.3118E24
20.6 3.1888E21 8.4890E22 4.4801E23 2.3436E24

20.5 3.0006E21 8.6052E22 4.5420E23 2.3761E24
20.4 2.7942E21 8.7240E22 4.6052E23 2.4094E24
20.3 2.5667E21 8.8454E22 4.6699E23 2.4434E24
20.2 2.3131E21 8.9694E22 4.7361E23 2.4781E24
20.1 2.0223E21 9.0962E22 4.8037E23 2.5137E24
20.0 1.6306E21 9.2258E22 4.8729E23 2.5500E24

0.0 9.2258E22 4.8729E23 2.5500E24 2.1726E26
0.1 9.3582E22 4.9437E23 2.5872E24 2.7220E26
0.2 9.4936E22 5.0161E23 2.6252E24 3.1685E26
0.3 9.6320E22 5.0901E23 2.6641E24 3.5887E26
0.4 9.7734E22 5.1659E23 2.7039E24 3.9954E26
0.5 9.9180E22 5.2435E23 2.7446E24 4.3942E26

0.6 1.0066E21 5.3228E23 2.7863E24 4.7881E26
0.7 1.0217E21 5.4041E23 2.8290E24 5.1790E26
0.8 1.0371E21 5.4873E23 2.8727E24 5.5683E26
0.9 1.0529E21 5.5725E23 2.9174E24 5.9571E26
1.0 1.0691E21 5.6597E23 2.9632E24 6.3464E26

aRead as 3.79273 1021.
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TABLE VI

The Exit and Interior Angular Fluxes for Group 4

m t0t0 5 0.0 t0t0 5 0.25 t0t0 5 0.5 t0t0 5 0.75 t0t0 5 1.0

21.0 3.9999E22a 1.2279E22 6.4813E24 3.3907E25
20.9 3.8379E22 1.2360E22 6.5247E24 3.4135E25
20.8 3.6692E22 1.2442E22 6.5684E24 3.4365E25
20.7 3.4932E22 1.2525E22 6.6126E24 3.4597E25
20.6 3.3089E22 1.2609E22 6.6573E24 3.4832E25

20.5 3.1151E22 1.2693E22 6.7023E24 3.5069E25
20.4 2.9099E22 1.2778E22 6.7478E24 3.5308E25
20.3 2.6906E22 1.2865E22 6.7938E24 3.5549E25
20.2 2.4519E22 1.2951E22 6.8402E24 3.5793E25
20.1 2.1823E22 1.3039E22 6.8870E24 3.6039E25
20.0 1.8190E22 1.3127E22 6.9343E24 3.6288E25

0.0 1.3127E22 6.9343E24 3.6288E25 2.5448E27
0.1 1.3217E22 6.9820E24 3.6538E25 3.0580E27
0.2 1.3307E22 7.0302E24 3.6791E25 3.4488E27
0.3 1.3397E22 7.0789E24 3.7047E25 3.8022E27
0.4 1.3489E22 7.1280E24 3.7305E25 4.1338E27
0.5 1.3582E22 7.1776E24 3.7565E25 4.4505E27

0.6 1.3675E22 7.2276E24 3.7828E25 4.7564E27
0.7 1.3769E22 7.2781E24 3.8094E25 5.0538E27
0.8 1.3864E22 7.3291E24 3.8361E25 5.3446E27
0.9 1.3959E22 7.3806E24 3.8632E25 5.6301E27
1.0 1.4056E22 7.4325E24 3.8905E25 5.9112E27

aRead as 3.99993 1022.

TABLE VII

The Exit and Interior Angular Fluxes for Group 5

m t0t0 5 0.0 t0t0 5 0.25 t0t0 5 0.5 t0t0 5 0.75 t0t0 5 1.0

21.0 7.5700E24a 2.9513E24 1.5583E25 8.1534E27
20.9 7.2801E24 2.9619E24 1.5639E25 8.1829E27
20.8 6.9855E24 2.9724E24 1.5695E25 8.2122E27
20.7 6.6851E24 2.9829E24 1.5750E25 8.2415E27
20.6 6.3776E24 2.9933E24 1.5806E25 8.2706E27

20.5 6.0611E24 3.0037E24 1.5861E25 8.2997E27
20.4 5.7326E24 3.0140E24 1.5916E25 8.3286E27
20.3 5.3876E24 3.0243E24 1.5971E25 8.3574E27
20.2 5.0182E24 3.0345E24 1.6026E25 8.3861E27
20.1 4.6066E24 3.0447E24 1.6080E25 8.4147E27
20.0 4.0624E24 3.0548E24 1.6134E25 8.4432E27

0.0 3.0548E24 1.6134E25 8.4432E27 5.3326E29
0.1 3.0649E24 1.6188E25 8.4715E27 6.0798E29
0.2 3.0749E24 1.6242E25 8.4996E27 6.6427E29
0.3 3.0849E24 1.6295E25 8.5276E27 7.1420E29
0.4 3.0948E24 1.6348E25 8.5554E27 7.6007E29
0.5 3.1046E24 1.6401E25 8.5831E27 8.0293E29

0.6 3.1143E24 1.6453E25 8.6106E27 8.4338E29
0.7 3.1240E24 1.6505E25 8.6380E27 8.8178E29
0.8 3.1336E24 1.6557E25 8.6651E27 9.1843E29
0.9 3.1431E24 1.6608E25 8.6921E27 9.5351E29
1.0 3.1526E24 1.6659E25 8.7188E27 9.8718E29

aRead as 7.57003 1024.
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i 51,2, . . . ,42,with 1# j # 42 denoting the group of in-
cidence. The quantities of interest in this problem are the
double-differential, thermal-neutron albedosai, j ~m,m0!,
defined as

ai, j ~m,m0! 5
Ji

2~m!

Jj
1~m0!

, ~98!

for i 5 1,2, . . . ,42 andm [ ~0,1# . Here Ji
2~m! 5

mci ~0, 2m! andJj
1~m0! 5 m0Fj .

A few words with regard to the group constants used
in our calculation are in order. We have computed the
required macroscopic total cross sections~and transfer
matrices! by summing up the products of the micro-
scopic total cross sections~and the transfer matrices!, as
given in the WIMKAL-88 library34 for the constituents
of ordinary concrete, with their respective number den-
sities, taken from Ref. 35 and reproduced in Table IX.
The numbers so obtained were rounded to four signifi-
cant figures. The WIMKAL-88 library contains neutron-
reaction data in the WIMS 69-group structure for 132
materials and is distributed by the International Atomic
Energy Agency Nuclear Data Section. In spite of its wide-
spread use, which was the motivation for our selection
of this multigroup library, the transfer matrices given in
the WIMKAL-88 library are limited to linearly aniso-

tropic scattering~L 5 1!. We also note that since the mi-
croscopic total cross sections are not given directly in
the WIMKAL-88 library, these constants were com-
puted by adding the absorption cross sections to the scat-
tering cross sections obtained from thel 5 0 transfer
matrices. In addition, we note that thel 5 1 transfer ma-
trices given in the WIMKAL-88 library were multiplied
by 3 to take into account the~2l 11! factor built into our
definition of the transfer matrices. The 42-group struc-
ture adopted in our calculation is the WIMS thermal-
group structure used by the WIMKAL-88 library. Group
1 ~3.3 to 4.0 eV! is the highest in energy, and group 42
~0.0 to 0.005 eV! is the lowest. The energy boundaries of

TABLE IX

Concrete Composition Used for the 42-Group Problem

Element
Number Density
~1021 atom0cm3!

Material Identification
Number in WIMKAL-88

H 13.75 1 001
O 45.87 8 016
Al 1.743 13 027
Si 20.15 14 000

TABLE VIII

The Exit and Interior Angular Fluxes for Group 6

m t0t0 5 0.0 t0t0 5 0.25 t0t0 5 0.5 t0t0 5 0.75 t0t0 5 1.0

21.0 8.6694E26a 3.5729E26 1.8864E27 9.8709E29
20.9 8.3527E26 3.5810E26 1.8906E27 9.8930E29
20.8 8.0550E26 3.5887E26 1.8946E27 9.9141E29
20.7 7.7750E26 3.5960E26 1.8984E27 9.9343E29
20.6 7.5114E26 3.6030E26 1.9021E27 9.9535E29

20.5 7.2624E26 3.6096E26 1.9056E27 9.9716E29
20.4 7.0255E26 3.6158E26 1.9088E27 9.9887E29
20.3 6.7972E26 3.6216E26 1.9119E27 1.0005E28
20.2 6.5717E26 3.6270E26 1.9148E27 1.0020E28
20.1 6.3378E26 3.6320E26 1.9174E27 1.0034E28
20.0 6.0447E26 3.6366E26 1.9198E27 1.0047E28

0.0 3.6366E26 1.9198E27 1.0047E28 6.8266E211
0.1 3.6408E26 1.9221E27 1.0058E28 7.2060E211
0.2 3.6446E26 1.9241E27 1.0069E28 7.4766E211
0.3 3.6479E26 1.9259E27 1.0078E28 7.7003E211
0.4 3.6508E26 1.9274E27 1.0087E28 7.8901E211
0.5 3.6532E26 1.9288E27 1.0094E28 8.0520E211

0.6 3.6552E26 1.9299E27 1.0099E28 8.1897E211
0.7 3.6567E26 1.9307E27 1.0104E28 8.3057E211
0.8 3.6578E26 1.9314E27 1.0107E28 8.4020E211
0.9 3.6583E26 1.9318E27 1.0109E28 8.4800E211
1.0 3.6584E26 1.9319E27 1.0110E28 8.5408E211

aRead as 8.66943 1026.
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all groups are given in Ref. 34. With this description, we
hope anyone interested in using our second sample prob-
lem in benchmarking work can use the WIMKAL-88 li-
brary and the number densities given in Table IX to
reproduce our input cross-section set. Thus, to save space,
we do not tabulate the required group constants here.

We list in Table X ourF129 results for the thermal-
neutron albedos when the group of incidence is group 4
~1.5 to 2.1 eV!. These results are thought to be accurate
to within 61 in the last figure given. Because of the large
size of the linear system to be solved for the unknown
vectors$aa% and$ba% in this case, we have used the idea36

of decoupling this system into two smaller systems~one
for theaa vectors and another for theba vectors! that are
half the size of the original system. Since theaa vectors
are sufficient to establish the desired albedos, only the
smaller system for theaa vectors was solved. In addi-
tion, a slightly modified version of the projection scheme
used to obtain the square linear systems expressed by
Eqs.~63! and~65! in Sec. III was found to speed up con-
vergence for this problem asN was increased: the spe-
cial projection matrixPb for b 5 : 1 N 1 1 2 k1 was
associated with the collocation point closest to 0, instead
of the collocation point closest to 1. We should also men-
tion that we have observed the occurrence of negative
angular fluxes for other cases~other groups of inci-
dence! that we tried. This phenomenon has been ob-
served before in slowing-down calculations37 and is due

to the premature truncation of the Legendre polynomial
expansion of the scattering law~recall thatL 5 1 in the
WIMKAL-88 library !.

Finally, we report in Table XI the execution~CPU!
times of our calculations on a Silicon Graphics Power
Challenge machine~R8000 RISC processor, 300 Mflops,
384 Mbytes of RAM!, for several orders of theFN ap-
proximation. Our code was written in FORTRAN and
compiled with the F77 compiler, optimization level
OPT5 2. Typically, in theN 5 549 run for the first test
problem,;25% of the CPU time was spent in the part of

TABLE X

The Thermal-Neutron Albedosai, j ~m,m0! with j 5 4 andm0 5 1.0 for a 100-cm-thick Concrete Slab

i m 5 0.2 m 5 0.4 m 5 0.6 m 5 0.8 m 5 1.0 i m 5 0.2 m 5 0.4 m 5 0.6 m 5 0.8 m 5 1.0

1 8.998E210a 2.050E29 3.225E29 4.332E29 5.337E29 22 3.267E23 6.793E23 1.001E22 1.273E22 1.493E22
2 4.426E27 9.580E27 1.427E26 1.822E26 2.143E26 23 2.319E23 4.867E23 7.230E23 9.273E23 1.097E22
3 2.180E24 3.489E24 4.061E24 4.062E24 3.625E24 24 2.457E23 5.196E23 7.774E23 1.004E22 1.195E22
4 3.096E22 4.290E22 4.098E22 2.904E22 9.708E23 25 3.995E23 8.534E23 1.289E22 1.679E22 2.017E22
5 1.794E22 2.990E22 3.680E22 3.978E22 3.975E22 26 4.489E23 9.720E23 1.487E22 1.961E22 2.383E22

6 1.017E22 1.762E22 2.221E22 2.442E22 2.470E22 27 7.230E23 1.596E22 2.487E22 3.338E22 4.126E22
7 1.530E23 2.533E23 2.988E23 2.984E23 2.609E23 28 1.001E22 2.271E22 3.634E22 5.003E22 6.333E22
8 1.423E23 2.340E23 2.730E23 2.674E23 2.258E23 29 1.641E22 3.836E22 6.318E22 8.935E22 1.159E21
9 1.383E23 2.269E23 2.628E23 2.541E23 2.092E23 30 1.306E22 3.113E22 5.221E22 7.506E22 9.884E22

10 1.358E23 2.228E23 2.574E23 2.474E23 2.010E23 31 1.131E22 2.721E22 4.603E22 6.670E22 8.845E22

11 1.291E23 2.125E23 2.461E23 2.369E23 1.928E23 32 9.403E23 2.272E22 3.862E22 5.619E22 7.481E22
12 1.236E23 2.043E23 2.373E23 2.292E23 1.871E23 33 9.496E23 2.301E22 3.920E22 5.720E22 7.634E22
13 1.232E23 2.046E23 2.388E23 2.319E23 1.912E23 34 1.052E22 2.552E22 4.358E22 6.371E22 8.520E22
14 1.138E23 1.902E23 2.237E23 2.194E23 1.838E23 35 9.832E23 2.387E22 4.080E22 5.973E22 8.000E22
15 2.073E23 3.490E23 4.137E23 4.102E23 3.497E23 36 7.232E23 1.755E22 3.000E22 4.396E22 5.894E22

16 3.196E23 5.485E23 6.649E23 6.797E23 6.086E23 37 7.194E23 1.743E22 2.980E22 4.367E22 5.860E22
17 3.896E23 6.841E23 8.510E23 9.001E23 8.481E23 38 6.902E23 1.668E22 2.848E22 4.175E22 5.604E22
18 9.562E23 1.747E22 2.269E22 2.531E22 2.561E22 39 6.276E23 1.510E22 2.574E22 3.770E22 5.062E22
19 9.103E23 1.747E22 2.385E22 2.812E22 3.043E22 40 5.204E23 1.243E22 2.111E22 3.089E22 4.147E22
20 8.643E23 1.725E22 2.447E22 3.001E22 3.391E22 41 3.552E23 8.370E23 1.412E22 2.058E22 2.761E22
21 4.980E23 1.021E22 1.484E22 1.864E22 2.158E22 42 1.297E23 2.965E23 4.917E23 7.101E23 9.480E23

aRead as 8.9983 10210.

TABLE XI

Execution Times on a Silicon Graphics Power
Challenge Machine*

N Six-Group Problem 42-Group Problem

39 0.6 18
69 1.9 97
99 4.4 283

129 8.3 619
299 69 – – –
399 148 – – –
549 350 – – –

*The execution times are in minutes.
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the code that computes the matrix elements and right-
hand sides required to define the linear systems ex-
pressed by Eqs.~63! and ~65!, and;75% was spent in
the part that factorizes and solves these linear systems.
In the N 5 129 run for the second test problem, these
percentages were;2% and 98%, respectively. We note
that the time required to compute the discrete eigenval-
ues has not been included in Table XI since this calcula-
tion does not depend on the order of theFN approximation,
and therefore it can be performed only once for each prob-
lem. Using the procedure described in Sec. IV withP19

as our initialPN approximation for computing the dis-
crete eigenvalues and repeating the calculation withN
increased by 10 as many times as necessary for conver-
gence, we found discrete eigenvalues accurate to 12 sig-
nificant figures withN 5 39 for the six-group problem
andN 5 99 for the 42-group problem. The CPU times
were 0.5 s and 180 min, respectively.

VI. CONCLUDING REMARKS

In this work we have developed the basic theory and
computational methods required to apply theFN method
to the important class of fully coupled multigroup trans-
port problems in plane geometry. We consider that the
excellent results obtained with the method for the two
test problems of Sec. V is an indication that the method
has the potential to be used for solving well this class of
problems.

As our main effort in this work was directed toward
obtaining very good accuracy for all quantities involved
in the calculation, we have not devoted too much work
to making the calculation especially efficient in regard
to computer-time considerations. Nevertheless, as we have
found that most of the computer time is spent by our code
in the solution of the linear systems for the coefficients
of theFN approximations, and we have used a very effi-
cient package for this purpose,32 we believe there is not
much room left for improvements in this direction.

Finally, having demonstrated that theFN method
works well for the considered problems, we can see the
way to enlarge the class of solved problems so as to in-
clude multislab geometry, internal~inhomogeneous!
sources, azimuthal dependence, and multiplying media.
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