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Abstract—The F
N

method is used to compute the classical X and ½ functions for use in the
solution of a class of non-grey radiative-transfer problems defined for finite layers. The model
considered allows for scattering with complete frequency redistribution (completely non-
coherent scattering) and continuum absorption. Some test problems based on Doppler and
Lorentz profiles of the line-scattering coefficient are discussed, and numerical results (thought
to be correct to five significant figures) are given for selected cases. ( 1998 Elsevier Science Ltd.
All rights reserved.

1 . INTRODUCTION

We consider here radiative-transfer problems based on the equation of transfer written, after
Hummer,1 as
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and B (q) is the Planck function. Here q3[0, q
0
] is the optical variable, q

0
is the optical thickness of

the considered layer and k3[!1, 1] is the cosine of the polar angle (as measured from the positive
q axis) that describes the direction of propagation of the radiation. In addition, -3[0, 1] is the
albedo for single scattering, b50 is the ratio of the continuum absorption coefficient to the average
line coefficient, o is the ratio of the continuum source function to the Planck function and / (x) is the
line-scattering profile. In a recent work2 on non-grey radiative-transfer problems based on Eq. (1)
for semi-infinite media, we used the non-linear H equation and the F

N
method to compute the

distribution of radiation exiting the medium and the source function within the medium for
a linearly varying Planck function. Here, as a first extension of Ref. 2 to the case of a finite
medium, we compute the X and ½ functions that have been much discussed in the classical radi-
ative-transfer literature3~5 and in terms of which solutions to some problems in finite media can
be expressed.

In order to keep our formulation and our calculation concise, we in this work explicitly exclude
the special (conservative) case of -"1 with b"0, since the defining equations (either the non-linear
equations or the linear equations) for the X and ½ functions in this conservative case may require
the addition of two linear constraints to define unique solutions.6~8 We can mention here that
using the second constraint6~8 for either the Lorentz or the Doppler line-scattering profile appears
somewhat problematical since the first moments of the X and ½ functions do not exist for these
cases.6

We note that by letting bP0 with -"1 and by letting -P1 with b"0 (see our Tables 3 and 4),
we believe we have computed, to at least five significant figures, the X and ½ functions also for the
conservative case.
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2 . THE DEFINING EQUATIONS FOR THE X AND ½ FUNCTIONS

In addition to Refs. 3—5 that provide much of the background and history of the use of the X and
½ functions in the theory of radiative transfer, we make use here of Ivanov’s6 text that discusses the
use of the X and ½ functions in the context of the class of non-grey problems we are considering
here. In Ref. 6 the non-linear X and ½ equations are written (using the notation of Ref. 2) as
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for z3[0, c]. Here c"1/b and ( (z) is the characteristic function. Quoting from Ref. 2, we note that
the characteristic function for the case of a Doppler profile can be written as
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Quoting again from Ref. 2, we write the characteristic function for the case of a Lorentz profile as
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Here we now have
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In addition to the non-linear X and ½ equations, Ivanov6 also lists the linear, singular-integral
equations
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for g3(0, c). We note that we use the symbol :— to denote that integrals are to be evaluated in the
Cauchy principal-value sense. In addition,

j (g)"1#g P—
c

~c
( (m)

dm
m!g

. (13)

For our work here, which excludes the conservative case, we consider that the X and ½ functions are
defined by Eqs. (12a) and (12b), and so these are the equations we wish to solve in an approximate
but accurate and concise way.

3 . THE F
N

SOLUTIONS FOR THE X AND ½ FUNCTIONS

To establish some numerical results for the X and ½ functions, we choose to use the F
N

method8~10 to develop our approximate solutions to Eqs. (12a) and (12b), and since our develop-
ment here has many common features with the solution technique reported in Ref. 2 for the
semi-infinite case, our presentation in this work is brief.

We introduce the approximations
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for m3(0, c), into Eqs. (12a) and (12b) and consider the resulting equations at selected collocation
points Mg

i
N to find

N
+
a/0

[aaBa(gi)#e~qÒ@gibaAa(gi)]"1 (15a)

and
N
+
a/0

[baBa(gi )#e~qÒ@giaaAa(gi)]"e~qÒ@gi (15b)

for i"1, 2,2 ,N#1. Here, M'a(m)N denotes a set of expansion functions to be specified and the
functions Aa (g) and Ba(g) are defined (slightly differently than in Ref. 2) by
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Our procedure now is to choose a set of expansion functions M'a(m)N and a collocation scheme,
evaluate the A and B functions required to define the system of linear algebraic equations given by
Eqs. (15a) and (15b) and then solve those equations to find the expansion coefficients MaaN and MbaN.
In this way we complete the first forms of our solutions, viz. Eqs. (14a) and (14b). We can also obtain
our ‘‘post-processed’’ results by first rewriting Eqs. (12a) and (12b) as
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for g3(0, c), and then using Eqs. (14a) and (14b) on the right-hand sides of these equations. In this
way, we find
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and
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for m3(0, c). Here we have used the definition
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4. NUMERICAL RESULTS

In regard to defining a set of expansion functions M'a (m)N and a collocation scheme, we note that
these matters were first mentioned in the context of the current application of the F

N
method in

Ref. 2, and so here we add to that discussion and report the way these quantities are defined in this
work. In general, we can say that the two important choices one must make in using the F

N
method

for solving radiative-transfer problems are those concerning the expansion functions and the
collocation scheme. For the considered class of radiative-transfer problems based on Eqs. (1) and (2),
the expansion functions and the collocation scheme we use here are somewhat different from those
typically made for an application of the F

N
method to monochromatic problems.10 We can say that

these differences are derived from two observations: (i) since the constant b can be arbitrarily small,
the support for the expansion functions can be arbitrarily large, and (ii) since the spectrum over
which the F

N
equations are defined can also be unbounded, sampling the spectrum (the collocation

scheme) can be very delicate, and a poor choice can lead to systems of linear algebraic equations that
are, from a numerical point of view, only marginally linearly independent. We are of the opinion that
the choices for the expansion functions and the collocation scheme we have made in this work are
good ones.

So here we use the (discontinuous) expansion functions defined by
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#2, 2 , N. Of course, the integer N

1
in Eqs. (20a)

and (20b) must be specified; we have used N
1
"[m (N!1)/10] with m"1, 2 or 3, typically. We note

that in Eq. (20b) we have two ‘‘scaling factors’’ a'0 and b'0 that we will define.
To have a collocation scheme for all values of b we have used the zeros of the Chebycheff

polynomials of the second kind and transformations, similar to those that lead to Eqs. (20a) and
(20b), on the variable g so as to obtain
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1
.

In regard to the scaling factors a and b that appear in Eqs. (20a), (20b), (21a) and (21b), we have
carried out numerous numerical studies to see the impact of these two factors on our calculation of
the X and ½ functions. Not surprisingly, we found that these two factors can affect greatly the
numerical results obtained. However, we have defined a scheme that at least for the considered cases
of - and b can be used with some confidence. For the case of the Doppler line-scattering profile we
use a"0.6 with b"2, and for the Lorentz case we use a"0.001 with b"1. For emphasis, we can
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Table 1. The X and ½ functions for a Doppler profile with 1!-"10~6 and b"10~4

q
0
"1 q

0
"10 q

0
"100

z X(Jnz) ½(Jnz) X(Jnz) ½(Jnz) X (Jnz) ½ (Jnz)

0.0 1.0000 0.0 1.0000 0.0 1.0000 0.0
0.1 1.1264 5.7222 (!2) 1.1502 1.0853 (!2) 1.1558 1.1034 (!3)
0.2 1.2019 1.7743 (!1) 1.2600 2.4171 (!2) 1.2724 2.4341 (!3)
0.5 1.3123 5.7035 (!1) 1.5227 7.7054 (!2) 1.5614 7.5113 (!3)
1.0 1.3759 9.0239 (!1) 1.8533 2.1040 (!1) 1.9548 1.8995 (!2)
2.0 1.4161 1.1460 2.2979 6.0766 (!1) 2.5909 5.1403 (!2)
5.0 1.4435 1.3263 2.8917 1.6294 3.9868 2.1205 (!1)
1.0 (1) 1.4533 1.3930 3.2145 2.4049 5.5810 6.8720 (!1)
2.0 (1) 1.4583 1.4277 3.4136 2.9513 7.5535 2.1698
5.0 (1) 1.4614 1.4490 3.5479 3.3471 1.0015 (1) 5.8888
1.0 (2) 1.4624 1.4562 3.5954 3.4922 1.1301 (1) 8.6442
2.0 (2) 1.4629 1.4598 3.6197 3.5673 1.2081 (1) 1.0563 (1)
5.0 (2) 1.4632 1.4620 3.6344 3.6133 1.2603 (1) 1.1943 (1)
1.0 (3) 1.4633 1.4627 3.6394 3.6288 1.2787 (1) 1.2447 (1)
2.0 (3) 1.4634 1.4630 3.6419 3.6366 1.2880 (1) 1.2708 (1)
5.0 (3) 1.4634 1.4633 3.6434 3.6412 1.2937 (1) 1.2868 (1)
c/Jn 1.4634 1.4633 3.6435 3.6416 1.2942 (1) 1.2880 (1)

say here that these choices of a and b have no theoretical basis, but to date we have found our best
results using these choices.

It is generally known4 that in the limit of infinite optical thickness q
0

the ½ function approaches
zero and the X function becomes the classical H function. It is also known6 that for the non-grey
model considered here the function H(m) diverges as m tends to infinity for the conservative case
-"1 with b"0. And so for the nearly conservative case we consider, viz. 1!-"10~11 with
b"0, we have found it convenient when q

0
is sufficiently large, say q

0
'1010, to include with our

expansion functions M'a (m)N an asymptotic factor to account for this (nearly) unbounded behavior.
Therefore, we have multiplied the right-hand side of Eq. (14a) by either the asymptotic factor
J(mJlnm) for the Doppler case6 or the factor m1@4 for the case of the Lorentz line-scattering profile6
to improve our calculation of the H function for nearly conservative cases.

It is clear that one of the important aspects of our F
N

calculation, once the expansion functions
and a collocation scheme have been specified, is the evaluation of the basic functions defined by
Eqs. (16) and (19). In this work, we have used numerical integration to evaluate these quantities. The
numerical quadrature scheme we employed is defined by using a Gauss—Legendre scheme on the
interval [0, 1] after using a linear transformation to map the first part of the integration interval, viz.
[0, c

0
], onto [0, 1]. For the second part of the integration interval we used a suggestion forwarded to

us by Rutily,11 viz. we used the transformation

u (z)"
1

1#m(z)
, (22)

with u (c)"0, to map the interval [c
0
, c] onto [0, 1], and then we again employed a Gauss—Legendre

scheme on the interval [0, 1].
For our first calculation we consider the case of 1!-"10~6 with b"10~4, and so in Tables 1

and 2 we list results for the Doppler and Lorentz line-scattering profiles. We note that for this
calculation our results for the cases of q

0
"1, q

0
"10 and q

0
"100 were first obtained with N"99

in the F
N

method and then refined with N"199 and N"309. In addition, since the version of the
F
N

method we used for these two cases (for q
0
"1, q

0
"10 and q

0
"100, as well as for q

0
PR) lead

to very stable systems of linear algebraic equations, we were also able to see that our results
remained valid for N as large as 499.

The second set of calculations we wish to report is for the (somewhat challenging) essentially
conservative case defined by 1!-"10~11 with b"0. Our results for this case, again for
q
0
"1, q

0
"10 and q

0
"100, are listed in Tables 3 and 4. Here too the results summarized in

Tables 3 and 4 were first obtained with N"99 in the F
N

method and then refined with N"199 and
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Table 2. The X and ½ functions for a Lorentz profile with 1!-"10~6 and b"10~4

q
0
"1 q

0
"10 q

0
"100

z X (nz) ½(nz) X(nz) ½(nz) X(nz) ½(nz)

0.0 1.0000 0.0 1.0000 0.0 1.0000 0.0
0.1 1.0810 8.9419 (!2) 1.0934 9.2503 (!3) 1.0955 8.5257 (!4)
0.2 1.1191 2.9271 (!1) 1.1559 2.0226 (!2) 1.1605 1.8124 (!3)
0.5 1.1614 6.7230 (!1) 1.2915 6.5620 (!2) 1.3054 5.1489 (!3)
1.0 1.1814 8.9819 (!1) 1.4381 2.0619 (!1) 1.4760 1.1852 (!2)
2.0 1.1929 1.0400 1.5969 5.5322 (!1) 1.7092 2.8536 (!2)
5.0 1.2003 1.1362 1.7611 1.1399 2.1149 1.0643 (!1)
1.0 (1) 1.2029 1.1703 1.8355 1.4755 2.4763 3.6735 (!1)
2.0 (1) 1.2042 1.1878 1.8776 1.6833 2.8256 1.0085
5.0 (1) 1.2050 1.1984 1.9047 1.8232 3.1629 2.0754
1.0 (2) 1.2053 1.2020 1.9141 1.8727 3.3108 2.6801
2.0 (2) 1.2054 1.2037 1.9188 1.8979 3.3935 3.0530
5.0 (2) 1.2055 1.2048 1.9216 1.9133 3.4463 3.3035
1.0 (3) 1.2055 1.2052 1.9226 1.9184 3.4644 3.3919
2.0 (3) 1.2055 1.2053 1.9231 1.9210 3.4736 3.4371
c/n 1.2055 1.2054 1.9233 1.9219 3.4771 3.4540

Table 3. The X and ½ functions for a Doppler profile with 1!-"10~11 and b"0

q
0
"1 q

0
"10 q

0
"100

z X(Jnz) ½(Jnz) X(Jnz) ½(Jnz) X (Jnz) ½(Jnz)

0.0 1.0000 0.0 1.0000 0.0 1.0000 0.0
0.1 1.1264 5.7238 (!2) 1.1503 1.0889 (!2) 1.1560 1.1721 (!3)
0.2 1.2019 1.7746 (!1) 1.2602 2.4250 (!2) 1.2728 2.5859 (!3)
0.5 1.3124 5.7041 (!1) 1.5231 7.7296 (!2) 1.5627 7.9806 (!3)
1.0 1.3760 9.0246 (!1) 1.8542 2.1099 (!1) 1.9580 2.0184 (!2)
2.0 1.4161 1.1461 2.2995 6.0898 (!1) 2.5989 5.4622 (!2)
5.0 1.4436 1.3264 2.8946 1.6320 4.0140 2.2505 (!1)
1.0 (1) 1.4534 1.3931 3.2182 2.4084 5.6446 7.2476 (!1)
2.0 (1) 1.4584 1.4278 3.4177 2.9554 7.6794 2.2623
5.0 (1) 1.4615 1.4491 3.5523 3.3515 1.0236 (1) 6.0830
1.0 (2) 1.4625 1.4563 3.5999 3.4967 1.1577 (1) 8.9026
2.0 (2) 1.4630 1.4599 3.6243 3.5719 1.2392 (1) 1.0863 (1)
5.0 (2) 1.4633 1.4621 3.6391 3.6180 1.2937 (1) 1.2273 (1)
1.0 (3) 1.4634 1.4628 3.6441 3.6335 1.3129 (1) 1.2787 (1)
2.0 (3) 1.4635 1.4631 3.6465 3.6412 1.3227 (1) 1.3054 (1)
5.0 (3) 1.4635 1.4634 3.6480 3.6459 1.3286 (1) 1.3216 (1)
1.0 (4) 1.4635 1.4634 3.6485 3.6475 1.3306 (1) 1.3271 (1)

N"309, and again since the version of the F
N

method we used for these two cases (for q
0
"1,

q
0
"10 and q

0
"100, as well as for q

0
PR) lead to very stable systems of linear algebraic

equations, we were also able to see that our results remained valid for N as large as 499.
In regard to the literature concerning calculations of X and ½ functions for the non-grey model of

radiative transfer considered here, we first looked at the work of Fuller and Hyett,12 who considered
the case of a Doppler line-scattering profile with b"0 and -40.9. In regard to Ref. 12 we first of all
note that the X(z) and ½(z) functions of Fuller and Hyett correspond to our X (Jnz) and ½(Jnz) and
that the definition of the optical thickness q0 used by Fuller and Hyett must be multiplied by the
factor Jn to yield our q0 . These differences in definitions are due to differing definitions of the optical
variable q used in, say, Eq. (1) and, of course, are unimportant except when comparing results. We
have redone several (for -"0.1 and -"0.9) of the calculations summarized in Ref. 12, and we have
to say that we found some significant differences between our results and those of Fuller and Hyett.
Looking at the cases of q0"1 and q0"100, in the notation of Ref. 12, we found some agreement (3
or 4 and sometimes 5 figures of agreement) for the X function, and we also found some similar
agreement for the ½ function; but we also found some entries where we did not agree on any of the
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Table 4. The X and ½ functions for a Lorentz profile with 1!-"10~11 and b"0

q
0
"1 q

0
"10 q

0
"100

z X (nz) ½(nz) X (nz) ½(nz) X(nz) ½(nz)

0.0 1.0000 0.0 1.0000 0.0 1.0000 0.0
0.1 1.0810 8.9439 (!2) 1.0934 9.2802 (!3) 1.0956 8.8252 (!4)
0.2 1.1191 2.9275 (!1) 1.1560 2.0290 (!2) 1.1607 1.8760 (!3)
0.5 1.1615 6.7236 (!1) 1.2918 6.5801 (!2) 1.3059 5.3290 (!3)
1.0 1.1815 8.9825 (!1) 1.4386 2.0658 (!1) 1.4770 1.2263 (!2)
2.0 1.1929 1.0401 1.5977 5.5392 (!1) 1.7113 2.9508 (!2)
5.0 1.2004 1.1363 1.7622 1.1409 2.1206 1.0957 (!1)
1.0 (1) 1.2030 1.1704 1.8368 1.4767 2.4868 3.7462 (!1)
2.0 (1) 1.2043 1.1879 1.8790 1.6846 2.8422 1.0221
5.0 (1) 1.2051 1.1985 1.9061 1.8247 3.1863 2.0970
1.0 (2) 1.2053 1.2020 1.9155 1.8741 3.3374 2.7057
2.0 (2) 1.2055 1.2038 1.9203 1.8994 3.4220 3.0808
5.0 (2) 1.2055 1.2049 1.9231 1.9147 3.4759 3.3329
1.0 (3) 1.2056 1.2052 1.9241 1.9199 3.4945 3.4219
2.0 (3) 1.2056 1.2054 1.9246 1.9225 3.5039 3.4673
5.0 (3) 1.2056 1.2055 1.9248 1.9240 3.5096 3.4949
1.0 (4) 1.2056 1.2056 1.9249 1.9245 3.5115 3.5041

digits for the ½ function. We must say, however, that the entries where we found no agreement were
for cases when the ½ function is very small. Of course, we have no proof that our results are correct,
but we believe that at least some of the results given in Ref. 12 should be considered somewhat
suspect.

We also note that some discussion of a calculation of the X and ½ functions for the case of
a Lorentz line-scattering profile with b"0 is given in a paper by Gabrielyan et al.13 However,
looking at the numerical results for the X and ½ functions reported in Ref. 13 for the two considered
cases, viz. -"0.65 and -"0.99, we found little agreement with our calculations for the case of
-"0.65 and even less agreement for the case -"0.99.

Needless to say, we would like to see the issue of these differences between our calculations and
those of Ref. 12 and, in particular, those of Ref. 13 resolved by other, independent calculations.

In regard to the accuracy of the results we are reporting we would like to note that we have been
unable to find any published computations of the X and ½ functions for the general cases we are
considering here, and so it has proved impossible to have some independent checks of our
calculations. Therefore, we have to admit that, although we have taken various steps to establish
some confidence in the accuracy of our results, there certainly exists the possibility that some
numbers may be less accurate than what we are reporting here. So without proof, but with some
confidence, we can say that we believe the results in Tables 1—4 to be correct to plus or minus one
unit in the final digit given.

5 . CONCLUDING REMARKS

It seems clear that from an analytical point of view, a study of the X and ½ for this model of
non-coherent scattering is really very simple and, in fact, differs very little from the classical case
discussed, for example, by Chandrasekhar;4 however, because of the rapid variation of the character-
istic function ( (m), and because the domain of definition for X and ½ can be arbitrarily large, the
problem is not without some interest when it comes to computing the desired functions.

We consider that this work demonstrates the F
N

method can be used for this (in our opinion,
difficult) radiative-transfer calculation, and we intend to continue with this work in ways that should
make the calculation faster, more accurate and perhaps better defined in regard to the choice of the
scaling factors a and b used here.
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