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Abstract – In this work concerning steady-state radiative-transfer calculations in plane-parallel media,
the equivalence between the discrete ordinates method and the spherical harmonics method is proved.
More specifically, it is shown that for standard radiative-transfer problems without the imposed restriction
of azimuthal symmetry the two methods yield identical results for the radiation intensity when the quad-
rature scheme for the discrete ordinates method is defined by the zeros of the associated Legendre func-
tions and when generalized Mark boundary conditions are used to define the spherical harmonics solution.
It is also shown that, with these choices for a quadrature scheme and for the boundary conditions, the two
methods can be formulated so as to require the same computational effort. Finally a justification for using
the generalized Mark boundary conditions in the spherical harmonics solution is given.

I. INTRODUCTION

It is well known1 that the problem of computing the
radiation intensityI ~t,m,f! in a plane-parallel medium
can be decomposed into a collection off-independent
problems for the components ofI ~t,m,f! in a finite Fou-
rier decomposition. We usem as our Fourier-component
index, but to avoid too much heavy notation we suppress
them dependence on the intensityI ~t,m! and the inho-
mogeneous source termQ~t,m!, and so we start our work
here by considering the Fourier-component problems de-
fined for m5 0,1, . . . ,L by

m
]

]t
I ~t,m! 1 I ~t,m!

5
Ã

2 (
l5m

L

bl Pl
m~m!E

21

1

Pl
m~m ' ! I ~t,m ' ! dm '

1 Q~t,m! ~1!

and the boundary conditions

I ~0,m! 5 F1~m! 1E
0

1

R1~m ',m! I ~0,2m ' !m ' dm '

~2a!

and

I ~t0,2m! 5 F2~m! 1E
0

1

R2~m ',m! I ~t0,m ' !m ' dm '

~2b!

for m [ ~0,1# . Hereb0 51 and the6bl 6, 2l 11 for 0,
l # L are the coefficients in anL’th order Legendre poly-
nomial expansion of the phase function, andÃ [ @0,1#
is the single-scattering albedo. Alsot [ @0,t0# is the op-
tical variable andm [ @21,1# is the cosine of the polar
angle~as measured from thepositivet axis!. The inho-
mogeneous source termQ~t,m!, the boundary source
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termsF1~m! andF2~m!, and the boundary reflection func-
tions R1~m ',m! andR2~m ',m! are considered specified.
To include the case of specular reflection, we allow that
m 'R1~m ',m! andm 'R2~m ',m! can have components of the
forms r1

sd~m ' 2 m! andr2
sd~m ' 2 m! wherer1

s andr2
s

are specular-reflection coefficients. Finally, we note that
in this work we are using thenormalizedassociated Le-
gendre functions defined by

Pl
m~m! 5 F ~l 2 m!!

~l 1 m!! G
102

~12 m2!m02
dm

dmm Pl ~m! . ~3!

II. A SPHERICAL HARMONICS SOLUTION

To solve the collection of Fourier-component prob-
lems defined by Eqs.~1! and ~2!, we use a form of the
solution to the moments of the homogeneous version of
Eq. ~1! that was reported in Ref. 2 and a particular solu-
tion that was worked out by Siewert and McCormick in
a work3 on polarization that contains the scalar case con-
sidered here as the first component in a Stokes-vector
formulation. In view of Refs. 2 and 3, our presentation
here is brief. First of all, we note that, forN odd,

I ~t,m! 5 (
l5m

M 2l 1 1

2
Pl

m~m!

3 (
j51

J

@Aj e
2t0jj 1 ~21! l2mBj e

2~t02t!0jj #gl
m~jj !

1 Ip~t,m! ~4!

where

Ip~t,m! 5 (
l5m

M 2l 1 1

2
Pl

m~m!

3 (
j51

J Cj

jj

@Aj ~t! 1 ~21! l2mBj ~t!#gl
m~jj ! ~5!

is a particular solution, which satisfies the firstN 1 1
associated Legendre moments of Eq.~1!. Here we use
M 5 N 1 m, J 5 ~N 1 1!02, and we use thenormalized
Chandrasekhar polynomials,1,4 with the starting value

gm
m~j ! 5 ~2m2 1!!! @~2m!!#2102 , ~6!

that satisfy, forl $ m,

hl jgl
m~j ! 5 al11

m gl11
m ~j ! 1 al

mgl21
m ~j ! ~7!

where

hl 5 2l 1 1 2 Ãbl , for 0 # l # L , ~8a!

and

hl 5 2l 1 1 , for l . L , ~8b!

and where

al
m 5 ~l 2 2 m2!102 . ~9!

In addition, the eigenvalues$jj % are the positive zeros of
gM11

m ~j !, and the constants$Aj % and $Bj % are to be de-
termined from the boundary conditions. In regard to the
particular solution given by Eq.~5!, we note that the con-
stants$Cj % are given by

Cj 5 2S(
l5m

M

hl @gl
m~jj !#

2D21

~10!

and that

Aj ~t! 5 E
0

tHE
21

1

Xj ~m!Q~x,m! dmJe2~t2x!0jj dx

~11a!

and

Bj ~t! 5E
t

t0HE
21

1

Yj ~m!Q~x,m! dmJe2~x2t!0jj dx

~11b!

where

Xj ~m! 5 (
l5m

M 2l 1 1

2
Pl

m~m!gl
m~jj ! ~12a!

and

Yj ~m! 5 (
l5m

M 2l 1 1

2
~21! l2mPl

m~m!gl
m~jj ! . ~12b!

To complete the spherical harmonics solution, we
note ~again! that the required eigenvalues$jj % are the
zeros of the polynomialgM11

m ~j !, and in Ref. 2 it was
shown that the squaresjj

2 can be computed very
efficiently as the eigenvalues of a tridiagonal matrix of
half-order~J! size. In addition, the Chandrasekhar poly-
nomials gl

m~jj ! can be effectively computed from the
eigenvectors of the mentioned tridiagonal matrix, or the
recursion formula given by Eq.~7! can be used, if suf-
ficient care is given to using the recursive approach.4

Finally, we must find the arbitrary constants$Aj % and
$Bj % that appear in Eq.~4!. To define a system of linear
algebraic equations for theN 1 1 unknowns$Aj % and
$Bj % , we use what we are calling generalized Mark
boundary conditions, i.e., we substitute Eq.~4! into
Eqs. ~2! and evaluate the resulting equations at theJ
positive zeros of the associated Legendre function
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PM11
m ~j !. We note that these zeros can also be found

from the eigenvalues of a tridiagonal matrix. In fact,
puttingÃ 5 0 in the formulation for computing the zeros
of the Chandrasekhar polynomialgM11

m ~j ! will yield
the zeros ofPM11

m ~j !.
In the papers of Karp5 and Karp and Petrack,6 the

intensity as computed from Eq.~4! is shown to oscillate
about the correct result, and so in order to remove these
oscillations and thus to define our best result for the in-
tensity, we substitute Eq.~4! into the right side of Eq.~1!
and then solve analytically the resulting equation to find
I ~t,m!. While Eq. ~4! can be used with confidence for
computing either full- or half-range moments of the in-
tensity, we consider that this “postprocessing” proce-
dure7 is a very important element of our spherical
harmonics solution for the intensity.

III. A DISCRETE ORDINATES SOLUTION

To start we consider a discrete ordinates representa-
tion of Eq.~1! written as

m i

d

dt
I ~t,m i ! 1 I ~t,m i !

5
Ã

2 (
l5m

L

bl Pl
m~m i ! (

a51

N11

wa Pl
m~ma! I ~t,ma!

1 Q~t,m i ! ~13!

for i 5 1,2, . . . ,N 1 1. Here, to use the sameN as in the
spherical harmonics solution, we considerN to be odd
and define the quadrature scheme by the same zeros of
PM11

m ~j !. We must emphasize here that this quadrature
scheme is not the one used by Chandrasekhar1 for the
casesm . 0, but as we will see, it is a better one. We
note that Karp and Petrack6 have pointed out that a quad-
rature scheme based on the zeros of the associated Le-
gendre functionPM11

m ~j ! is computationally better than
a scheme based on the usual Gauss points, i.e., the
zeros of the Legendre polynomialPN11~j !.

Following Chandrasekhar,1 we first seek solutions of
the homogeneous equation, and so we substitute

I ~t,m i ! 5 F~n,m i !e2t0n ~14!

into the homogeneous version of Eq.~13! to obtain

F~n,m i ! 5
Ãn

2

1

n 2 m i
(
l5m

L

bl Pl
m~m i !gl

m~n! ,

n Þ m i . ~15!

Here we have defined

gl
m~n! 5 (

a51

N11

wa Pl
m~ma!F~n,ma! . ~16!

Noting the recursion relation

~2l 1 1!mPl
m~m! 5 al11

m Pl11
m ~m! 1 al

mPl21
m ~m! ,

l $ m , ~17!

where theal
m are defined by Eq.~9!, we can multiply

Eq.~16! by ~2l 11!n and use Eqs.~15! and~17! to obtain

hl ngl
m~n! 5 al11

m gl11
m ~n! 1 al

mgl21
m ~n! , l $ m , ~18!

where thehl are defined by Eqs.~8!. In obtaining
Eq. ~18!, we have used

(
a51

N11

wa Pl
m~ma!Pl '

m~ma! 5
2

2l 1 1
dl, l ' ,

l 1 l ' # 2M 1 1 . ~19!

We note that the Gauss quadrature scheme based on
the zeros ofPM11

m ~j ! can integrate exactly polynomials
p~m! of up to and including order 2N 1 1 against the
weight function~1 2 m2!m. In other words,

E
21

1

~12 m2!mm b dm 5 (
a51

N11

wa m b ,

b 5 0,1, . . . ,2N 1 1 . ~20!

We also note that in the process of deriving Eq.~18!,
the maximum value ofl ' for which we used Eq.~19!
was l ' 5 L. Now, since we wish to use Eq.~18!
for l 5 m,m 1 1, . . . ,M, we conclude that we have the
condition M 1 1 $ L that we must respect in our
discrete ordinates solution. It is clear that if, instead of
using a Gauss quadrature scheme based on the zeros of
PM11

m ~j !, we had used the more common Gauss-Legen-
dre scheme, then Eq.~20! would have been exact only
for b 5 0,1, . . . ,2~N 2 m! 1 1.

Continuing, we multiply Eq.~17! by gl
m~n!, we mul-

tiply Eq. ~18! by Pl
m~m!, and we then subtract the two

equations, one from the other. We next sum the resulting
equation froml 5 m to l 5 M to find

~m 2 n! (
l5m

M

~2l 1 1!Pl
m~m!gl

m~n! 1 Ãn (
l5m

M

bl Pl
m~m!gl

m~n!

5 aM11
m @PM11

m ~m!gM
m~n! 2 PM

m~m!gM11
m ~n!# . ~21!

If we now change our previously imposed condition
M 1 1 $ L to our final conditionM $ L, we can use
Eq. ~21! to rewrite Eq.~15!, for n Þ m i , as

F~n,m i ! 5 (
l5m

M 2l 1 1

2
Pl

m~m i !gl
m~n!

2
1

2
aM11

m
1

n 2 m i

PM
m~m i !gM11

m ~n! , ~22!
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and if we multiply Eq.~22! by Pa
m~m i !, for a 5 m,m1

1, . . . ,M, and integrate~discretely! we find, after we use
Eq. ~16!,

gM11
m ~n!Fa

m~n! 5 0 ~23!

where, in general,

Fa
m~n! 5 (

i51

N11

wi Pa
m~m i !PM

m~m i !
1

n 2 m i

. ~24!

We can now multiply Eq.~24! by ~2a 1 1!n and use
Eq. ~17! to find the recursion relation

~2a 1 1!nFa
m~n! 5 aa11

m Fa11
m ~n!

1 aa
mFa21

m ~n! 1 2da,M ~25!

for a 5 m,m 1 1, . . . ,M. We see from Eq.~24! that
FM11

m ~n! 5 0, and so it is clear from Eq.~25! thatFa
m~n!

cannot be zero for alla 5 m,m1 1, . . . ,M. We therefore
conclude from Eq.~23! that the acceptable values ofn
are theN 1 1 zeros ofgM11

m ~j !, the same as the eigen-
values for the spherical harmonics method. It follows
that we can write our discrete ordinates solution of the
homogeneous version of Eq.~13! as

Ih~t,m i ! 5 (
l5m

M 2l 1 1

2
Pl

m~m i !

3 (
j51

J

@Aj e2t0jj 1 ~21! l2m Bj e2~t02t!0jj #

3 gl
m~jj ! . ~26!

It is clear that we would not be able to rewrite Eq.~15!
as we have in Eq.~22! without using in Eq.~21! the
fact that the quadrature points$m i % are the zeros of
PM11

m ~m!.
In regard to the required particular solution, we omit

some details of the calculation and note simply that the
solution we seek is, like the solution to the homogeneous
equation, very similar to the equivalent expression for
the spherical harmonics method. We find we can write

Ip~t,m i ! 5 (
l5m

M 2l 1 1

2
Pl

m~m i !

3 (
j51

J Cj

jj

@Aj ~t! 1 ~21! l2mBj ~t!#

3 gl
m~jj ! ~27!

where the$Cj % are again given by Eq.~10!. In addition

Aj ~t! 5 E
0

tH (
a51

N11

wa Xj ~ma!Q~x,ma!Je2~t2x!0jj dx

~28a!

and

Bj ~t! 5E
t

t0H (
a51

N11

waYj ~ma!Q~x,ma!Je2~x2t!0jj dx

~28b!

where

Xj ~ma! 5 (
l5m

M 2l 1 1

2
Pl

m~ma!gl
m~jj ! ~29a!

and

Yj ~ma! 5 (
l5m

M 2l 1 1

2
~21! l2mPl

m~ma!gl
m~jj ! . ~29b!

Having developed our discrete ordinates solution to
the homogeneous equation and our particular solution,
we are ready to substitute

I ~t,m i ! 5 (
l5m

M 2l 1 1

2
Pl

m~m i !

3 (
j51

J

@Aj e2t0jj 1 ~21! l2mBj e2~t02t!0jj #

3 gl
m~jj ! 1 Ip~t,m i ! ~30!

into the boundary conditions

I ~0,m i ! 5 F1~m i ! 1E
0

1

R1~m ',m i ! I ~0,2m ' !m ' dm '

~31a!

and

I ~t0,2m i ! 5 F2~m i ! 1E
0

1

R2~m ',m i ! I ~t0,m ' !m ' dm ' ,

~31b!

for i 5 1,2, . . . ,J, in order to find the required arbitrary
coefficients$Aj % and$Bj %. But, we see a problem: to eval-
uate the reflection terms in Eqs.~31!, we must have the
solution defined on a set of quadrature points appropri-
ate to the integration interval@0,1#, and at this point we
do not have that. Of course ifm 'R1~m ',m! andm 'R2~m ',m!
contain only components for specular reflection, then there
is no problem; however, we wish to consider cases more
general than that.

In his computational implementation of an accurate
and efficient discrete ordinates solution to the radiative-
transfer problem defined by Eqs.~1! and ~2!, Chal-
houb8 used a special “half-range” quadrature scheme
developed especially by Chalhoub and Garcia9,10 in or-
der to better take into account discontinuities that can
occur on the surfaces of the considered finite layer. As
a way of postprocessing his solution in order to com-
pute the intensity at values ofm different from the quad-
rature points, Chalhoub8 introduced additional points into
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the half-range quadrature scheme, assigned weights equal
to zero to these additional points and solved a larger
~than N 1 1! system of linear algebraic equations, to
find the intensity at all quadrature points and all intro-
duced points. While this procedure of introducing addi-
tional points into the quadrature scheme could allow us
to evaluate the reflection terms in Eqs.~31!, we clearly
would have to solve a much larger system of linear al-
gebraic equations in order to find the arbitrary coeffi-
cients$Aj % and$Bj %, and so this scheme, though it should
work, is not considered a very efficient way to deal with
the difficulties associated with reflection functions that
require integration. Perhaps a better way of dealing with
these types of boundary conditions is to extend the so-
lution given by Eq.~30! to continuous values ofm, just
by replacingm i with m, and doing the integration either
analytically or with any appropriate half-range quadra-
ture scheme.

IV. WHEN EQUIVALENT AND WHEN NOT

In regard to reviewing previous works concerning
the equivalence between the discrete ordinates method
and the spherical harmonics method, we note, first of all,
that Gast, in a very early work,11 Karp,15 and Sanchez
and McCormick12 have all discussed this issue for a class
of problems based on them5 0 case. In addition, and for
the general case ofm $ 0, Karp and Petrack6 have re-
ported an equivalence between the two solutions of the
classical albedo problem.1

It is clear that if in the boundary conditions given by
Eqs.~2! we have no reflection terms that must be eval-
uated by~nontrivial! integration, if we use the general-
ized Mark boundary conditions to define the spherical
harmonics solution, and if the inhomogeneous source term
Q~t,m! can be written as

Q~t,m! 5 ~12 m2!m02 (
a50

N11

qa~t!ma , ~32!

then the two methods, as defined in this work, will yield
identical results at the quadrature points and will require
the same computational effort. In addition, if the men-
tioned conditions are satisfied, the two methods will also
yield identical results, and require the same computa-
tional effort, at all values oft andm once the “postpro-
cessing” procedure7 has been implemented. We note that
the form ofQ~t,m! given by Eq.~32! is the one that is
encountered when a problem with a beam, described by
a delta “function,” incident on the boundary is reformu-
lated as a problem with an internal source and without
the incident beam.1,2

If some special quadrature scheme is used with the
discrete ordinates method, or if, for example, Marshak
boundary conditions are used with the spherical harmon-
ics method, or if the inhomogeneous source term is not

of the form given by Eq.~32!, or if reflective boundary
conditions that require some numerical integration are
applicable, then the two methods are not equivalent.

It is our opinion that some good justification would
have to be found to use a “full-range” quadrature scheme
different from the one used for the discrete ordinates
method in this work. It is also our opinion, since the two
methods are essentially always equivalent and since the
spherical harmonics method requires no special consid-
eration for dealing with general reflective boundary con-
ditions or with a source more general than that given by
Eq. ~32!, that there is little, if any, reason to use the clas-
sical discrete ordinates method for solving the class of
problems considered in this work.

V. A JUSTIFICATION FOR THE GENERALIZED MARK
BOUNDARY CONDITIONS

In Ref. 13, a work devoted to polarization, a justifi-
cation was given for defining a new class of boundary con-
ditions thatproved tobevery important for thatpolarization
study. Here, we repeat a component of that earlier work in
order to justify the use of the zeros ofPM11

m ~j ! to define
what we are calling the generalized Mark boundary con-
ditions. Since the demonstration we wish to make applies
to a finite slab embedded in a vacuum or a totally absorb-
ing medium~Ã 5 0!, we consider that we have no reflec-
tion at the surfaces and that we have reformulated the
problem so as to have the effects ofF1~m! andF2~m! in-
cluded in the inhomogeneous source term. Therefore, we
considera finiteslabwithadefined internal sourceandwith
no radiation incident on the two surfaces. We will con-
sider this a three-region problem with the two added re-
gions, one witht [ ~2`,0# and the other witht [ @t0,`!,
havingÃ 5 0. Because the eigenvalues for the case of
Ã 5 0 are just the zeros ofPM11

m ~j !, we write the solu-
tions in the two outside regions as

I ~t,m! 5 (
l5m

M 2l 1 1

2
~21! l2mPl

m~m! (
j51

J

Bj e
t0m jPl

m~m j ! ,

t # 0 , ~33a!

and

I ~t,m! 5 (
l5m

M 2l 1 1

2
Pl

m~m! (
j51

J

Aj e2~t2t0!0m jPl
m~m j ! ,

t $ t0 . ~33b!

Considering Eq.~21! for the special case ofÃ 5 0,
n 5 m j, andm changed to2m, we find we can write

(
l5m

M 2l 1 1

2
~21! l2mPl

m~m!Pl
m~m j !

5
1

2
aM11

m
~21!N

m 1 m j

PM11
m ~m!PM

m~m j ! . ~34!
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If we now use Eq.~34! in Eq. ~33a! with m . 0 and in
Eq. ~33b! with m , 0, we can write

I ~0,m! 5
1

2
aM11

m ~21!NPM11
m ~m! (

j51

J

Bj PM
m~m j !

1

m 1 m j

,

m . 0 , ~35a!

and

I ~t0,2m! 5
1

2
aM11

m ~21!NPM11
m ~m! (

j51

J

Aj PM
m~m j !

1

m 1 m j

,

m . 0 . ~35b!

Finally, because both of Eqs.~35! are zero for values
of m equal to the quadrature points, we consider it some
justification for defining the radiation incident on our fi-
nite slab to be zero at these same points.

VI. A FINAL COMMENT

We note that the spherical harmonics solution and
the discrete ordinates solution that we have reported in
this work are not valid for the special, conservative case,
i.e., m 5 0 with Ã 5 1. The required modifications for
the spherical harmonics solution are given in Ref. 14. We
are of the opinion that the required modifications for the
discrete ordinates solution are sufficiently evident from
the spherical harmonics solution for this special case that
we do not list them here.
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