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Abstract —In this work concerning steady-state radiative-transfer calculations in plane-parallel media,
the equivalence between the discrete ordinates method and the spherical harmonics method is proved.
More specifically, it is shown that for standard radiative-transfer problems without the imposed restriction

of azimuthal symmetry the two methods yield identical results for the radiation intensity when the quad-
rature scheme for the discrete ordinates method is defined by the zeros of the associated Legendre func-
tions and when generalized Mark boundary conditions are used to define the spherical harmonics solution.
It is also shown that, with these choices for a quadrature scheme and for the boundary conditions, the two
methods can be formulated so as to require the same computational effort. Finally a justification for using
the generalized Mark boundary conditions in the spherical harmonics solution is given.

I. INTRODUCTION and the boundary conditions
1
It is well known® that the problem of computing the 1(0.w) =F +f R ) (0—u)w du’
radiation intensityl (7, u,¢) in a plane-parallel medium O.n)=Fa(p) 0 (w0 p)p' du

can be decomposed into a collectiondiindependent (23
problems for the componentsidfr, u, ¢) in a finite Fou-

rier decomposition. We usa as our Fourier-component and

index, but to avoid too much heavy notation we suppress

the m dependence on the intensityr, u) and the inho- o = f
mogeneous source ter@(r, ), and so we start our work H(70,=p) = Fol) + o
here by considering the Fourier-component problems de-

1
Ro(', )l (o, ") " dpa”

fined form=0,1,... L by (2b)
P for u € (0,1]. Hereg, =1 and thgB,| <2l +1for0<
w— (r,w) + (7, 1) | = L are the coefficients in alo'th order Legendre poly-
ar nomial expansion of the phase function, amd= [0,1]
o L 1 is the single-scattering albedo. Alsce [0,7,] is the op-
=3 > BiPM(w) | PP (r,u') dp’ tical variable andw € [—1,1] is the cosine of the polar
I=m -1 angle(as measured from thgositiver axis). The inho-
+ Q(7, 1) (1)  mogeneous source ter@(r,u), the boundary source
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termsF, () andF,(u), and the boundary reflection func- and

tions R, (w',u) andR, (', ) are considered specified.

To include the case of specular reflection, we allow that h=21+1, forl >L , (8b)
'Ry (', w) anduR, (', w) can have components of the
forms p$6(u' — w) andps$d(u’ — w) wherep$ andps ~ and where
are specular-reflection coefficients. Finally, we note that

in this work we are using theormalizedassociated Le-
gendre functions defined by

al" = (12— m?)2 . ©)

In addition, the eigenvaludg;} are the positive zeros of

(I — my |2 m gu-+1(¢), and the constantgA;} and{B,} are to be de-
PM( ) = [ } (1— p2)m2 P () . (3) termined from the boundary conditions. In regard to the
(I +m)! du™ particular solution given by E@5), we note that the con-
stants{C,} are given by
M -1
Il. ASPHERICAL HARMONICS SOLUTION C = 2<|2 h, [glm(fj )]2> (10)

To solve the collection of Fourier-component prob-5n4 that
lems defined by Eq9.1) and(2), we use a form of the
solution to the moments of the homogeneous version of ([t
Eq. (1) that was reported in Ref. 2 and a particular solu- A;(7) = f {f Xi () Q(X, 1) dM} e~ (" 7X/4 dx
tion that was worked out by Siewert and McCormick in .
awork® on polarization that contains the scalar case con- (113
sidered here as the first component in a Stokes-vector
formulation. In view of Refs. 2 and 3, our presentationand
here is brief. First of all, we note that, fof odd,

To 1
M 2] +1 B;() zf {f Y () Q(X, ) dM}euT)/fj dx
(7, p) = I_Z 5 P™( w) [ J-1
o 11b
| (11b
X > [Ae4 + (—=1)'"mB e o/ g€ where
j=1
M 2l+1
+ (7, ) (4) X () = |:2 T PM(w)g™(&;) (123

where
and
M 2l +1
- S T pm M 2l +1
blr) = 2 Ty P Y = 3 S D RN (wenE) - (120
I=m
J .
X S [A(7) + (=1)'""™B;(n)]g™(&) (5) To complete the spherical harmonics solution, we
=1 § note (again that the required eigenvalugs;} are the
zeros of the polynomiady.,(¢), and in Ref. 2 it was
is a particular solution, which satisfies the fifdt+ 1 shown that the Squaresjz can be Computed very
associated Legendre moments of Ef). Here we use efficiently as the eigenvalues of a tridiagonal matrix of
M =N+ m J=(N+1)/2, and we use thrormalized half-order(J) size. In addition, the Chandrasekhar poly-
Chandrasekhar polynomial$,with the starting value  nomials g™M(¢) can be effectively computed from the
eigenvectors of the mentioned tridiagonal matrix, or the
gm(é) = 2m-nufem!]—v2 (6)  recursion formula given by Ed7) can be used, if suf-
ficient care is given to using the recursive approach.
that satisfy, fol = m, Finally, we must find the arbitrary constants,} and
{B;} that appear in Eq4). To define a system of linear
h égM(¢) = alt19M1(€) +amgm(€) (7)  algebraic equations for thd + 1 unknowns{A;} and
{B;}, we use what we are calling generalized Mark
where boundary conditions, i.e., we substitute H¢) into
Egs. (2) and evaluate the resulting equations at the
h=21+1-w=p , forO=I=L, (8a  positive zeros of the associated Legendre function
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Pui1(€). We note that these zeros can also be foundNoting the recursion relation

from the eigenvalues of a tridiagonal matrix. In fact,

putting = 0 in the formulation for computing the zeros (2 + DuP™(n) = a1 PT1(w) +a"PM () |
of the Chandrasekhar polynomiagfy,.(¢) will yield

the zeros oP.1(£). l=m, (17)

In the papers of Karpand Karp and Petrackihe where thea[" are defined by Eq(9), we can multiply

intensity as computed from E¢) is shown to oscillate :
about the correct result, and so in order to remove thes%q' (16) by (2| +1)» and use Eq15) and(17) to obtain

oscillations and thus to define our best result for the in M\ — Am  m mem -

tensity, we substitute E@4) into the right side of Eq(1) hrgh(y) = atagia(v) +algtav) . 1=m, (18
and then solve analytically the resulting equation to findyhere theh, are defined by Eqs(8). In obtaining
I (7, ). While Eq.(4) can be used with confidence for Eq. (18), we have used
computing either full- or half-range moments of the in-

tensity, we consider that this “postprocessing” proce- N+1

dure’ is a very important element of our spherical > W P PP () =
harmonics solution for the intensity. o=l

—— &,
20+1 "

l+1'=2M +1 . (19

. A DISCRETE ORDINATES SOLUTION We note that the Gauss quadrature scheme based on
the zeros oP}], 1(£) can integrate exactly polynomials
g_(,u) of up to and including orderi® + 1 against the

To start we consider a discrete ordinates representWeight function(1 — )™, In other words,

tion of Eq. (1) written as
1 N+1

d m
wi — (7 py) + 1 (7, 1) (1= p®)"ufdu= > wau?,
dr —1 a=1
w L N+1 B=01,....N+1. (20
=5 > BiPM (i) X W P (i) (7, )
I=m a=t We also note that in the process of deriving E}g8),
+Q(7, 1) (13) the maximum value of’ for which we used Eq(19)

was |’ = L. Now, since we wish to use Ed18)

fori =1,2,... N+ 1. Here, to use the sani¢as inthe for| = mm + 1,...,M, we conclude that we have the
spherical harmonics solution, we considéto be odd condition M + 1 = L that we must respect in our
and define the quadrature scheme by the same zeros dicrete ordinates solution. It is clear that if, instead of
Pi1(£). We must emphasize here that this quadratur@sing a Gauss quadrature scheme based on the zeros of
scheme is not the one used by Chandrasekfarthe PJ,,(¢£), we had used the more common Gauss-Legen-
casesm > 0, but as we will see, it is a better one. Wedre scheme, then Eq20) would have been exact only
note that Karp and Petratkave pointed out that a quad- for 8 = 0,1,...,2N — m) + 1.
rature scheme based on the zeros of the associated Le- Continuing, we multiply Eq(17) by g™(»), we mul-
gendre functiorP{, 1(£) is computationally better than tiply Eq. (18) by P™(u), and we then subtract the two
a scheme based on the usual Gauss points, i.e., tlRguations, one from the other. We next sum the resulting
zeros of the Legendre polynomiBl. ,(£). equation froml = mto | = M to find

Following Chandrasekhamve first seek solutions of . y
the homogeneous equation, and so we substitute (=) @+ DPM(Wgre) +@v S B PA(wgh ()
(7, i) = @ (v, e (14) o o

= afl S[PR (el - PRl . (@21
into the homogeneous version of E43) to obtain a1 [Pita () G() = P(1) Gk ()] 2D

If we now change our previously imposed condition

o) = G 2 S BRI ML= Lo ou nal comdiionhy = [ we can use
vEu . (15 v ool
Here we have defined Plp) = I;nT PIM(p) G ()
N+1 1 1
a"(v) = alea PM( o) @ (v, o) - (16) 3 aﬂﬂv_—ﬂi Pu(ui)ou+1(») , (22
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and if we multiply Eq.(22) by P2'(u;), fora = mim+ and
1,...,M, and integratédiscretely we find, after we use

=4 (10, B = T°{N§wav,-<ua>Q<x,ua>}e-<X-T>/fj dx
T a=1
gu+1(¥)F(v) =0 (23 (28
where, in general, where
N+1 1 M
FO0) = 3 wWPP(u)PR(m) = . (24 X () =S % PM(u)g™e) (299
1= i I=m

We can now multiply Eq(24) by (2a + 1)»v and use and
Eqg. (17) to find the recursion relation

Y. — z 2|_+1 1 Ifmpm m 29p
(201 + D)rvEM(») = a™ ,FM (v) j(Ma) = Ig’n 2 (-1 | (Ma)gl (érj) - ( )
+alF1(v) + 264.m (25) Having developed our discrete ordinates solution to

the homogeneous equation and our particular solution,
fora = mm + 1,... M. We see from Eq(24) that e are ready to substitute
Ful1(v) =0, and so it is clear from Eq25) thatF"(v) "
cannot be zero foralk = mym+ 1, ... ,M. We therefore (7, 0) = 2 2l+1 PM( ;)
conclude from Eq(23) that the acceptable values nf i S 2 P
are theN + 1 zeros ofgfj1(¢), the same as the eigen- ;
values for the spherical harmonics method. It follows X D [Ae ™4+ (—1) - mBje (o4
that we can write our discrete ordinates solution of the i=1
homogeneous version of E(L3) as X gm(&) + (7, i) (30)
(7, i) = % 2l ; 1 PM(w)) into the boundary conditions
I=m

1

1O, mi) = Fu( i) +fo Ru(u/, i) 1(0,— ") " dp’

(313

J
X Y [Ae i+ (=1 "M Be (o]
=1

X gm(&) - (26)  and

It is clear that we would not be able to rewrite EG5) 1

as we have in Eq(22) without using in Eq.(21) the (7o,—mi) = Fa(pi) +f Ro( ', i) 1 (1o, ") " dp”

fact that the quadrature pointg.;} are the zeros of °

Pita( ). (31b
In regard to the required particular solution, we omit]cor i =1,2,....3, in order to find the required arbitrary

some details of the calculation and note simply that th%oeﬁicients{Aj} and{B,}. But, we see a problem: to eval-

solution we seek is, like the solution to the homogeneouaate the reflection terms in Eq81), we must have the
equation, very similar to the equivalent expression for, ’

. . . ., ~solution defined on a set of quadrature points appropri-
the spherical harmonics method. We find we can write ate to the integration interva0,1], and at this point we

M 2| +1 do not have that. Of courseif' R, (u/, u) andu ' Ry(u', w)
lp(T, i) = > —PM(ui) contain only components for specular reflection, then there
=m 2 is no problem; however, we wish to consider cases more
I C general than that.
X > 2 [A () + (=1 "B, (7)] In his computational implementation of an accurate
=1 é; and efficient discrete ordinates solution to the radiative-
X gM(&;) (27) transfer problem defined by Eqg¢l) and (2), Chal-

hout? used a special “half-range” quadrature scheme
where the[C,} are again given by Eq10). In addition ~developed especially by Chalhoub and Gaftcfain or-
der to better take into account discontinuities that can
T (N+1 e occur on the surfaces of the considered finite layer. As
Aj(7) = f Z Wo X (1a)Q(X, ) p € rdx a way of postprocessing his solution in order to com-
0 le=t pute the intensity at values @f different from the quad-
(283 rature points, Chalho&ntroduced additional points into
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the half-range quadrature scheme, assigned weights equlthe form given by Eq(32), or if reflective boundary

to zero to these additional points and solved a largeconditions that require some numerical integration are
(than N + 1) system of linear algebraic equations, toapplicable, then the two methods are not equivalent.
find the intensity at all quadrature points and all intro- It is our opinion that some good justification would
duced points. While this procedure of introducing addi-have to be found to use a “full-range” quadrature scheme
tional points into the quadrature scheme could allow uslifferent from the one used for the discrete ordinates
to evaluate the reflection terms in Eq81), we clearly method in this work. It is also our opinion, since the two
would have to solve a much larger system of linear alimethods are essentially always equivalent and since the
gebraic equations in order to find the arbitrary coeffi-spherical harmonics method requires no special consid-
cients{A;} and{B; }, and so this scheme, though it shoulderation for dealing with general reflective boundary con-
work, is not considered a very efficient way to deal withditions or with a source more general than that given by
the difficulties associated with reflection functions thatEq.(32), that there is little, if any, reason to use the clas-
require integration. Perhaps a better way of dealing wittsical discrete ordinates method for solving the class of
these types of boundary conditions is to extend the sgroblems considered in this work.

lution given by Eq.(30) to continuous values qf, just

by replacingu; with u, and doing the integration either

analytically or with any appropriate half-range quadra- v, A JUSTIFICATION FOR THE GENERALIZED MARK

ture scheme. BOUNDARY CONDITIONS

In Ref. 13, a work devoted to polarization, a justifi-
IV. WHEN EQUIVALENT AND WHEN NOT cation was given for defining a new class of boundary con-
ditionsthat provedto be very important for that polarization
In regard to reviewing previous works concerningstudy. Here, we repeat a component of that earlier work in
the equivalence between the discrete ordinates meth@dder to justify the use of the zeros Bfj 1(¢) to define
and the spherical harmonics method, we note, first of allvhat we are calling the generalized Mark boundary con-
that Gast, in a very early work, Karp!®> and Sanchez ditions. Since the demonstration we wish to make applies
and McCormicR? have all discussed this issue for a clasgdo a finite slab embedded in a vacuum or a totally absorb-
of problems based on te= 0 case. In addition, and for ing medium(w = 0), we consider that we have no reflec-
the general case oh = 0, Karp and Petrackhave re- tion at the surfaces and that we have reformulated the
ported an equivalence between the two solutions of theroblem so as to have the effectskaf 1) andF,(u) in-
classical albedo problefn. cluded in the inhomogeneous source term. Therefore, we
It is clear that if in the boundary conditions given by consider afinite slab with a defined internal source and with
Egs.(2) we have no reflection terms that must be evalho radiation incident on the two surfaces. We will con-
uated by(nontrivial) integration, if we use the general- sider this a three-region problem with the two added re-
ized Mark boundary conditions to define the sphericabions, one withr € (— c0,0] and the other with € [ 7,,00),
harmonics solution, and if the inhomogeneous source terfavingw = 0. Because the eigenvalues for the case of
Q(r, ) can be written as @ = 0 are just the zeros &}, ,(¢), we write the solu-

N1 tions in the two outside regions as

(T,m) = (1— u?)™? L (T (32 M2l +1 J
Q(r, M aZOq T) W () = IE T+ (_1)|—mplm(,u) E BJ- e-r/;tjplm(Mj) ’
=m j=1

then the two methods, as defined in this work, will yield

: . : . . =0, (339
identical results at the quadrature points and will require

the same computational effort. In addition, if the men-and

tioned conditions are satisfied, the two methods will also M ool 41 3

yield identical results, and require the same computay (r,u) = > ——— P"(w) >, Aje” "/ mPM ()
tional effort, at all values of andu once the “postpro- =m 2 =1

cessing” procedurehas been implemented. We note that r=1. (33b

the form of Q(7, 1) given by Eq.(32) is the one that is
encountered when a problem with a beam, described by Considering Eq(21) for the special case af = 0,
a delta “function,” incident on the boundary is reformu-» = u;, andu changed to-u, we find we can write
lated as a problem with an internal source and without Mool 41
inei 2
the incident beam: |2 (D) R (W) P )
=m

If some special quadrature scheme is used with the 2
discrete ordinates method, or if, for example, Marshak 1 N
" . . ) (-2
boundary conditions are used with the spherical harmon = —afl,, —— PO (wWPR(w) . (39
ics method, or if the inhomogeneous source term is not 2 Mt
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If we now use Eq(34) in Eq. (33a@ with & > 0 and in REFERENCES
Eq. (33b) with u < 0, we can write
1. S. CHANDRASEKHAR Radiative TransferOxford Uni-

1 J 1 ; . A
1(0,p) = E am, (—)PD L (w) 21 B P& 1)) Pt versity Press, London, United Kingdoh950.
1= i
~0 (353 2. M. BENASSI, R. D. M. GARCIA, A. H. KARP, and C. E.
K ’ SIEWERT, Astrophys. J.280, 853(1984).
and
1 3 1 3. C.E. S_IEWERT and N. J. McCORMICKI, Quant. Spec-
| (70,—p) = E am L (—)NPE. L (w) .ZlAi PI( ,U«j) P , trosc. Radiat. Transfers0, 531(1993.
i= i

4. R. D. M. GARCIA and C. E. SIEWERT. Quant. Spec-
n>0. (35 trosc. Radiat. Transfed3, 201(1990. 0 P
Finally, because both of Eq$35) are zero for values
of u equal to the quadrature points, we consider it some5. A. H. KARP, J. Quant. Spectrosc. Radiat. Transfes,
justification for defining the radiation incident on our fi- 403(1981).
nite slab to be zero at these same points.
6. A. H. KARP and S. PETRACK]J. Quant. Spectrosc. Ra-
diat. Transfer 30, 351(1983.
VI AFINAL COMMENT 7. V. KOURGANOFF,Basic Methods in Transfer Problems

. . . Clarendon Press, Oxford, United Kingddd952.
We note that the spherical harmonics solution and

the discrete ordinates solution that we have reported ing. . s, CHALHOUB, “The Discrete Ordinates Method in
this work are not valid for the special, conservative casehe Solution of the Azimuthally Dependent Transport Equa-
i.e.,m= 0 with @ = 1. The required modifications for tion in Plane Geometry,” ScD Dissertation, Instituto de Pes-
the spherical harmonics solution are given in Ref. 14. Weuisas Energéticas e Nucleafelmiversidade de Sdo Paulo, Sdo
are of the opinion that the required modifications for thePaulo, Brazil(1997) (in Portuguese

discrete ordinates solution are sufficiently evident from

the spherical harmonics solution for this special case tha®- E. S. CHALHOUB and R. D. M. GARCIAAnN. Nucl.
we do not list them here. Energy 24, 1069(1997.

10. E.S. CHALHOUB and R. D. M. GARCIA, “ANew Quad-
rature Scheme for Solving Azimuthally Dependent Transport
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