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Abstract

The discrete-ordinates method is used to develop a solution to a class of non-grey problems in the theory
of radiative transfer. The model considered allows for scattering with complete frequency redistribution
(completely non-coherent scattering) and continuum absorption. In addition to a general formulation for
semi-in"nite and "nite plane-parallel media, speci"c computations, for both the Doppler and the Lorentz
pro"les of the line-scattering coe$cient, are discussed in regard to a half-space application concerning
a linearly varying Planck function and also in regard to a basic problem from which, except for the
conservative case, the classical X and > functions can be extracted. ( 1999 Elsevier Science Ltd. All rights
reserved.

1. Introduction

In two recent papers [1,2] we used exact analysis and the F
N

method to develop and evaluate
solutions to some basic problems speci"c to a class of non-grey problems in radiative transfer that
are based on the equation of transfer written, after Hummer [3], as
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with B(q) being the Planck function at the center of the line. Continuing, we note that x is the
normalized frequency variable measured (in dimensionless units) from the line center, q3[0, q

0
] is

the optical variable, q
0

is the optical thickness of the plane-parallel medium and k3[!1, 1] is the
cosine of the polar angle (as measured from the positive q-axis) that describes the direction of
propagation of the radiation. In addition, -3[0, 1) is the albedo for single scattering, b50 is the
ratio of the continuum absorption coe$cient to the average line coe$cient, o is the ratio of the
continuum source function to the Planck function and /(x) is the line-scattering pro"le.

For a speci"ed Planck function B(q) we seek a solution of Eq. (1) subject to boundary conditions
of the form
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for k3 (0, 1]. Here we consider that the functions I
x,1

(k) and I
x,2

(k) that describe any radiation
incident on the layer are speci"ed.

2. A reduction to a simpler problem

In Ref. [4] some transformations were used, for the case of a semi-in"nite medium with no
radiation incident on the surface, that made it possible to construct the solution to Eq. (1) from the
solution of what is considered a much simpler problem. We therefore proceed to use similar
transformations to obtain a simpler problem for the case considered in this work, viz. the case of
a "nite layer with prescribed radiation incident on both surfaces. First of all, a change of the
angular variable by m"kc

x
with
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allows us, after the changes in notation
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to rewrite Eqs. (1) and (3) as
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for m3(!c, c) and q3 (0, q
0
), and
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for m3(0, c). Here

Q
x
(q)"[ob#(1!-)/(x)]B(q) (7)

L.B. Barichello, C.E. Siewert / Journal of Quantitative Spectroscopy & Radiative Transfer 62 (1999) 665}675666



is an inhomogeneous source term and c"sup c
x
. We consider pro"les /(x) that vanish at in"nity,

and so it is clear that c"1/b. In addition, the set Mm is de"ned such that x3Mm if and only if
[/(x)#b]DmD41.

We now write
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for m3 (0, c). Here I1
x
(q, m) is a particular solution of Eq. (5) corresponding to the speci"ed

inhomogeneous source term Q
x
(q) and the function G (q, m) is to be de"ned. Substituting Eqs. (8) into

Eq. (5) and using Eqs. (6), we "nd that Eqs. (8) are correct if G (q, m) satis"es
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Since in Ref. [4] a general procedure was given for constructing a particular solution I1
x
(q, m), we

have only to solve Eq. (9) subject to the boundary conditions given by Eqs. (10) to have the
complete solution we seek, I

x
(q, m). We therefore proceed to de"ne our discrete-ordinates solution

of the &&G problem.''

3. A discrete-ordinates solution

We note "rst of all that the characteristic function ((m) as de"ned by Eq. (11) is an even function,
and so we write our discrete-ordinates equations as
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and
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for i"1, 2, 2 , N. In writing Eqs. (13) as we have, we clearly are considering that the N quadrature
points Mm

k
N and the N weights Mw

k
N are de"ned for use on the integration interval [0, c]. Of course,

we are free to use a single quadrature scheme on the interval [0, c], or, as we will in fact do, we can
use a composite quadrature de"ned over sub-intervals of [0, c]. Now seeking exponential solutions
of Eqs. (13), we substitute
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where to have $~1 exist we cannot allow any of the quadrature points to be zero. Multiplying
Eq. (21) by the diagonal matrix T with the diagonal elements given by
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we can make TWT~1 symmetric so we can rewrite Eq. (21) as
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where
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and j"1/l2. We note that the eigenvalue problem de"ned by Eq. (23) is of a form that is
encountered when the so-called &&divide and conquer''method [5] is used to "nd the eigenvalues of
tridiagonal matrices.

Considering that we have found the required eigenvalues from Eq. (23), we impose the normaliz-
ation condition
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so that we can write our discrete-ordinates solution as
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where the arbitrary constants MA
j
N and MB

j
N are to be determined from the boundary conditions

and the separation constants Ml
j
N are the reciprocals of the positive square roots of the eigenvalues

de"ned by Eq. (23).
To de"ne the constants MA

j
N and MB

j
N we substitute Eq. (28) into Eqs. (10) evaluated at the

quadrature points Mm
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N to "nd the system of linear algebraic equations
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for i"1, 2, 2 , N. Once we have solved Eqs. (29) to "nd the required constants MA
j
N and MB

j
N, we

substitute Eq. (28) into the right-hand sides of Eqs. (13). We next replace m
i
with m in the resulting

equations to "nd
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We can now solve Eqs. (30) to get our &&post-processed'' results, viz.
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for m3(0, c). Here
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Having developed our discrete-ordinates solution to a general problem, we are ready to report on
some numerical aspects of our solution and to consider some speci"c problems.

4. Some numerical aspects of our discrete-ordinates solution

The "rst thing we must do is to de"ne the quadrature scheme to be used in our discrete-ordinates
solution. To be speci"c we "rst list the characteristic functions for the Doppler and the Lorentz
line-scattering pro"les. Quoting from Ref. [1], we note that the pro"le for the Doppler case is
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and

c
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Quoting again from Ref. [1], we note that the pro"le for the Lorentz case is

/(x)"
1

n (1#x2)
(38)

and that the characteristic function can be written as
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Now to be explicit we note that the quadrature scheme we employed is de"ned by using
a Gauss}Legendre scheme on the interval [0, 1] after using a linear transformation to map the "rst
part of the integration interval, viz. [0, c

0
], onto [0, 1]. For the second part of the integration

interval we used either the transformation [6]
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with u (c)"0, for the Lorentz case or the transformation
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with u(c)"0, for the Doppler case to map the interval [c
0
, c] onto [0, 1], and again we used

a Gauss}Legendre scheme on the interval [0, 1]. In Eq. (44) we generally used a"1. So if we put
N

1
Gauss points in the interval [0, c

0
] and N

2
points in the interval [c

0
, c] then we clearly have

N"N
1
#N

2
quadrature points in the interval [0, c].

Having de"ned our quadrature scheme, we found the required separation constants Ml
j
N by

solving the eigenvalue problem given by Eq. (23). Initially, in computing these eigenvalues we did
not use any specialized software that takes into account the special form of Eq. (23). We simply used
the driver program RG from the EISPACK collection [7] to "nd the eigenvalues; however, since
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doing our "rst calculation, we have been able to use a recent work of Siewert and Wright [8] to
improve this aspect of our solution.

Finally, but importantly, we note that since the characteristic function ((m) used in this work
can, from a computational point-of-view, be zero, we can have some, say a total of N

0
, of the

separation constants Ml
j
N equal to some of the quadrature points Mm

j
N. Of course, this is not allowed

in Eqs. (28), and so, since the quadrature points where ((m) is e!ectively zero make no contribution
to the right-hand side of Eqs. (13), we have simply omitted from our calculation these quadrature
points. Omitting these N

0
quadrature points changes N to N!N

0
in our "nal solution.

5. First application of the discrete-ordinates solution

In Ref. [1] we used exact analysis (the H function) and the F
N

method to compute G(0,!m ), and
thus I

x
(0,!m), for m3 (0, c), for the case of a linearly varying Planck function B(q) in a semi-in"nite

medium. Since S
x
(q) can be expressed as

S
x
(q)"c

x
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m?0

I
x
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we also reported in Ref. [1] a computation of the source function for the same linearly varying
Planck function. In that work [1] numerical results were reported for both the Doppler and the
Lorentz pro"les of the line-scattering coe$cient. Here we have used our discrete-ordinates solution
to con"rm all of the numerical results given in Ref. 1. We can say that the discrete-ordinates
solution was easily implemented and that we obtained results in perfect agreement with those
previous calculations.

6. A second application of the discrete-ordinates solution

In his classic work on radiative transfer, Ivanov [9] expresses the solution to the &&albedo''
problem for a "nite layer and the solution to the Schuster problem in terms of the Chandrasekhar}
Ambartzumian [10,11] X and> functions generalized to the non-grey model we are considering in
this work. We note that the solutions to both of these problems can, by way of the reduction given
in Section 2 of this work, be expressed in terms of the solution to the G problem de"ned by the
equation of transfer
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for m, m
0
3(0, c). Of course, we could convert this G problem with a delta &&function'' on the

boundary to a problem for the di!use "eld
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for m3 (!c, c), and then use our discrete-ordinates solution, with the addition of a particular
solution to the inhomogeneous equation, to compute the di!use "eld G
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(q, m : m

0
). However, since

Ivanov [9] has expressed the solutions to the two mentioned problems in terms of X and
> functions, and since we wish to use our discrete-ordinates solution to con"rm the results [2] of
our recently reported F

N
computation of the X and > functions, we proceed here to use our

discrete-ordinates solution to compute the X and > functions.
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[9,10] to express the &&exiting intensities'' as
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for m3(0, c). Here the X and > functions satisfy the non-linear equations [9,10]
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and
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Normally, of course, we would think of using Eqs. (54) to compute the exiting intensities G(0,!m)
and G (q

0
, m) for m3(0, c); however, here we proceed di!erently. We consider that we have used

our discrete-ordinates solution to compute G(0,!m) and G (q
0
, m) for m3 (0, c), and so we can

solve Eqs. (54) to "nd the X and > functions. Multiplying Eqs. (54) by ((m), integrating over m
and using [9,10]
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Since we now know x
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and y
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we can solve Eqs. (54) to "nd
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where
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0

((m) dm. (59)

Equations (58) are our "nal expressions for the X and > functions we seek. Of course, for the special
case of -"1 with b"0, we cannot use Eqs. (58) since "(R)"0 for this, the conservative, case.

In regard to computing the X and > functions as discussed here, we note that we "rst
implemented our discrete-ordinates solution and con"rmed, to all "ve signi"cant "gures given, the
numerical results reported in Ref. [2] for both the Doppler and the Lorentz pro"les for the cases of
q
0
"1, 10 and 100 with 1!-"10~6 and b"10~4. In regard to the results given in Ref. [2] for
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the nearly conservative case of 1!-"10~11 and b"0, we did have some numerical di$culties
using Eqs. (55) because "(R) is very nearly zero for this case. However, by using 1!-"10~m,
with m"6, 7 and 8 we did con"rm all of the signi"cant "gures reported in Ref. [2] for the nearly
conservative case.

7. Concluding remarks

Having used exact analysis [1], the F
N

method [1, 2] and now the discrete-ordinates approxima-
tion to solve several basic non-grey problems in semi-in"nite and in "nite media, we can say that we
were able to obtain the same accuracy from all three of the techniques. Of course, having done
already a lot of basic work on the considered non-grey model of scattering with complete frequency
redistribution, we were well prepared by the time we considered the discrete-ordinates method.
But, in the end of the day, we are of the opinion that, for the considered application, the
discrete-ordinates method is easier to implement than the F

N
method. Of course both the

F
N

method and the discrete-ordinates method, as we have implemented them, can be used with
con"dence for "nite-media applications, while the exact analysis is considered limited to half-space
problems.
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