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ABSTRACT
The discrete-ordinates method is used to develop a solution to a class of polarization problems in the

theory of radiative transfer. The I and Q components of the Stokes vector are used to describe the pol-
arized radiation Ðeld, and the model considered allows a mixture of Rayleigh and isotropic scattering
with complete frequency redistribution (completely noncoherent scattering) and continuum absorption.
In addition to a general formulation for a Ðnite plane-parallel medium, speciÐc computations for both
the Doppler and the Lorentz proÐles of the line-scattering coefficient are reported for a general problem
with internal emission and radiation incident on one surface of the layer.
Subject headings : polarization È radiative transfer

1. INTRODUCTION

In three recent papers (Barichello & Siewert we used exact analysis (the H function), the method,1998a, 1998b, 1999), F
Nand the discrete-ordinates method to develop and evaluate solutions to some basic problems speciÐc to a class of nongray

problems in radiative transfer that are based on the equation of transfer written, following asHummer (1968),
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and B(q) is the Planck function evaluated at the center of the line. We note here that x is the normalized frequency variable
measured (in dimensionless units) from the line center, q ½ [0, is the optical depth, is the optical thickness of theq0] q0plane-parallel medium, and k ½ [[1, 1] is the cosine of the polar angle (as measured from the positive q-axis) that describes
the direction of propagation of the radiation. In addition, - ½ [0, 1) is the albedo for single scattering, b º 0 is the ratio of the
continuum absorption coefficient to the average line coefficient, o is the ratio of the continuum source function to the Planck
function, and /(x) is the line-scattering proÐle.

In this work, we consider a more general model that includes some polarization e†ects, so we start with a generalization
(b º 0) of the equation of transfer used by in an early work on this subject, viz.,Faurobert (1987)
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Here the vector has the two Stokes parameters and as components, P(k, k@) is the phase matrix, and theI
x
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x
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x
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vector B(q) deÐnes a thermal creation term. Following Frisch, & Nagendra and Grachev, &Faurobert-Scholl, (1997) Ivanov,
Loskutov we make use here of the phase matrix introduced by to describe the combined e†ects(1997), Chandrasekhar (1950)
of isotropic and Rayleigh scattering, and so we write
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D
, (5)

where c ½ [0, 1] is a measure of the Rayleigh component of the scattering law: c\ 0 yields just isotropic scattering, while
c\ 1 yields Rayleigh scattering The scattering matrix can be factored in various ways ; here we choose(Chandrasekhar 1950).
to use the factorization attributed to Rachkovsky by et al. and so we writeIvanov (1997),

P(k, k@) \ A(k)AT(k@) (6)
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where the superscript T denotes the transpose operation, and where
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We now consider it our job to solve for a given B(q), subject to the boundary conditionsequation (3)
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for k ½ (0, 1]. Here the vectors and that describe any radiation incident on the layer are assumed to be speciÐed.I
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2. A REDUCTION TO A SIMPLER PROBLEM

In & Siewert some transformations were used for the case of a semi-inÐnite medium with no radiationMcCormick (1970)
incident on the surface that made it possible to construct the solution to from the solution to what is consideredequation (1)
to be a much simpler problem. In & Siewert transformations similar to those used by &Barichello (1999), McCormick
Siewert were introduced in order to solve a general problem for a Ðnite medium. We are now ready to extend those(1970)
solutions to the case of polarization considered here. First, a change of the angular variable by withm \ kc
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to rewrite equations and as(3) (8)
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for m ½ ([c, c) and q ½ (0, andq0)
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for m ½ (0, c). Here
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is an inhomogeneous term (considered known), and c\ sup We consider proÐles /(x) that vanish at inÐnity, so c\ 1/b. Inc
x
.

addition, the set is deÐned such that if and only if [/(x) ] b] o m o¹ 1. Following & Siewert weMm x ½ Mm Barichello (1999),
now write
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for m ½ (0, c). Here is a particular solution of corresponding to the speciÐed inhomogeneous termI
x
p(q, m) equation (10) Q
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and the vector G(q, m) is to be deÐned. Substituting equations and into and using the conditions given(13a) (13b) equation (10)
in we Ðnd that equations and are correct if G(q, m) satisÐesequations (11), (13a) (13b)
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In & Siewert particular solutions of were reported for several ““ simple ÏÏ inhomogeneousMcCormick (1970) equation (1)
terms, and the inÐnite-medium GreenÏs function was used to develop a general procedure for constructing a particular
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solution. We consider for the moment that the particular solution we require for the polarization problem deÐned in this work
is available, and so we proceed to develop our discrete-ordinates solution to the ““ G problem ÏÏ deÐned by equations and(14)
(15).

3. A DISCRETE-ORDINATES SOLUTION

We note Ðrst that the characteristic matrix W(m), as deÐned by is symmetric. We also note that W(m)\ W([m),equation (16),
and so we write our discrete-ordinates equations as
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for i\ 1, 2, . . . , N. In writing equations and as we have, we are clearly considering that the N quadrature points(18a) (18b) m
kand the N weights are deÐned for use on the integration interval [0, c]. Now, seeking exponential solutions of equationsw
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Continuing to follow & Siewert we now letBarichello (1999),
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for i\ 1, 2, . . . , N. Once we have solved equations and to Ðnd the required constants and we substitute(30a) (30b) A
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We can now solve equations and to obtain our ““ postprocessed ÏÏ results, viz.,(31a) (31b)
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Having developed our discrete-ordinates solution to a general problem, we consider several particular problems and report
on some numerical aspects of our solution.

4. SOME BASIC ELEMENTS FOR THE DOPPLER AND LORENTZ PROFILES

As can be seen from the previous section, the characteristic matrix W(m) deÐned by is the Ðrst quantity we mustequation (16)
develop if we are to evaluate our discrete-ordinates solution for the two applications considered here, viz., the cases of the
Doppler and Lorentz line-scattering proÐles. So, when using in we can writeequation (7) equation (16),
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Continuing, we let
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Having completed our explicit evaluation of the characteristic matrix W(m), we list here some additional results that we will
use in the next two sections, where we develop and evaluate our discrete-ordinates solution. First, we write the dispersion
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matrix for the considered polarization problem as
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To complete this part of our work, we can evaluate the integrals deÐned by for n \ 1, 2. For the case of theequation (52)
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5. SOME APPLICATIONS OF THE DEVELOPED SOLUTION

Having discussed our solution to the given class of radiative-transfer problems, we are ready to solve some speciÐc
problems and report some numerical results. Because we want the problems solved here to include the problems discussed in
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et al. and et al. we consider a Ðnite layer with a monoenergetic beam incident on oneFaurobert-Scholl (1997) Ivanov (1997),
surface, and we take the Planck function B(q) to be the constant B, with components and We therefore start with theB
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e~x02 ] bJn

(71a)

for the Doppler case and

c
x0

\ n(1] x02)
1 ] bn(1] x02)

(71b)
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for the Lorentz case. In writing equations and we have also introduced(69a) (69b),

T(m)\-
2
P
Mm

/(x)AT(m/c
x
)MobI ] [A(m/c

x
)C ] (1[ -)I]/(x)Ndx , (72)

which can be rewritten in terms of quantities deÐned by equations and viz.,(40) (44),

T(m)\ W(m)C ] -T0(m)A0T] -m2T2(m)A2T , (73)

where

T0(m) \ obM1(m) ] (1[ -)M2(m) (74a)

and

T2(m)\ ob[M3(m)] 2bM2(m)] b2M1(m)]] (1[ -)[M4(m) ] 2bM3(m) ] b2M2(m)] , (74b)

and where

A0T\
C 1
(c/8)1@2

0
3(c/8)1@2

D
and A2T \ [3(c/8)1@2

C0
1

0
1
D

. (75)

Here the elements of the diagonal C matrix are

C11 \ -
"11(O)

[obk1(b) ] (1[ -)k2(b)] (76a)

and

C22\ -
"22(O)

(c/2)1@2 [obk1(b) ] (1[ -)k2(b)] , (76b)

where and are deÐned by equations and wherek1(b) k2(b) (57)È(60),

"11(O) \ 1 [ -k2(b) (77a)

and

"22(O) \ 1 [ 7
10

-ck2(b) . (77b)

It is clear that because of the presence of the generalized function in we cannot use our discrete-d(m [ m0) equation (69a),
ordinates solution to solve the G problem as deÐned by equations and so we substitute(68), (69a), (69b),

G(q, m)\ G
*
(q, m)]-

2
/(x0)*d(m [ m0)W~1(m0)AT(k0)Fe~q@m0 (78)

into equations and to obtain a problem that is free of generalized functions, viz.,(68), (69a), (69b)

m
L
Lq

G
*
(q, m)] G

*
(q, m) \

P
~c

c
W(m@)G

*
(q, m@)dm@] S(q) (79)

for m ½ ([c, c) and q ½ (0, with the boundary conditionsq0),

W(m)G
*
(0, m)\-

2
/(x0)#(x0, m)(1[ *)[/(x0) ] b]AT(m/c

x0
)F [ T(m)B (80a)

and

W(m)G
*
(q0, [m) \ [T(m)B (80b)

for m ½ (0, c). Here the inhomogeneous term in is given byequation (79)

S(q)\ F0 e~q@m0 where F0\ -
2

/(x0)*AT(k0)F . (81)

In of this work, we developed our discrete-ordinates solution to a homogeneous version of that we can, of° 3 equation (79)
course, use. However, we also require here a particular solution to account for the inhomogeneous term S(q) in equation (79).
We follow a procedure similar to the one used in to Ðnd° 3

G
*
p (q, ^m

i
) \ m0

m0 < m
i
X~1(m0)F0 e~q@m0 , (82)
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where

X(z)\ I [ 2z2 ;
a/1

N
waW(ma)

1
z2[ ma2

. (83)

While the particular solution given by can be used in many calculations, it cannot be considered a general result,equation (82)
since in that solution we cannot allow either to be one of the quadrature points or, since would be singular, to bem0 m

i
X(m0)one of the eigenvalues We note that a particular solution that does not su†er from either of these restrictions can be foundl

j
.

by extending to the vector model considered here the results of the recent work of Garcia, & Siewert onBarichello, (1999)
particular solutions for the discrete-ordinates method. For the moment, at least, we choose to use the simple form given in

especially since if one or both of these restrictions were violated for a given value of N, they would not beequation (82),
violated for other, equally valid, values of N.

Having found a particular solution, we can now express the desired solution to the problem asG
*

G
*
(q, ^m

i
)\ ;

j/1

2N C
A

j
l
j

l
j
< m

i
e~q@lj ] B

j
l
j

l
j
^ m

i
e~(q0~q)@lj

D
F(l

j
) ] G

*
p (q, ^m

i
) , (84)

where the constants and are to be found from the system of linear algebraic equations obtained when isA
j

B
j

equation (84)
substituted into equations and evaluated at the quadrature points, viz.,(80a) (80b)

W(m
i
) ;
j/1

2N A
A

j
l
j

l
j
[ m

i
] B

j
l
j

l
j
] m

i
e~q0@lj

B
F(l

j
) \ F1(mi

) (85a)

and

W(m
i
) ;
j/1

2N A
B

j
l
j

l
j
[ m

i
] A

j
l
j

l
j
] m

i
e~q0@lj

B
F(l

j
) \ F2(mi

) (85b)

for i\ 1, 2, . . . , N. Here

F1(mi
)\ -

2
/(x0)#(x0, m

i
)(1[ *)[/(x0) ] b]AT(m

i
/c

x0
)F [ T(m

i
)B [ W(m

i
)G

*
p (0, m

i
) (86a)

and

F2(mi
)\ [T(m

i
)B [ W(m

i
)G

*
p (q0, [m

i
) . (86b)

Once we have solved equations and to Ðnd the constants and we can construct our postprocessed result. The(85a) (85b) A
j

B
j
,

development of the postprocessed result here is very similar to the procedure used in to obtain equations and° 3 (32a) (32b).
However, since has the inhomogeneous term S(q), the computation that yielded equations andequation (79) (32a) (32b)
requires a minor modiÐcation to account for the addition of the particular solution we have used. We omit some details here
and simply list our Ðnal result for the problem asG

*
G

*
(q, m)\ G

*
(0, m)e~q@m ] N(q, m) ] !(q, m) (87a)

and

G
*
(q, [m)\ G

*
(q0, [m)e~(q0~q)@m ] N(q, [m) ] !(q, [m) (87b)

for m ½ (0, c). Here and are deÐned by equations andG
*
(0, m) G

*
(q0, [m) (80a) (80b),

N(q, m)\ ;
j/1

2N l
j
[A

j
C(q :l

j
, m) ] B

j
e~(q0~q)@ljS(q :l

j
, m)]F(l

j
) , (88a)

N(q, [m)\ ;
j/1

2N l
j
[A

j
e~q@ljS(q0[ q :l

j
, m) ] B

j
C(q0[ q :l

j
, m)]F(l

j
) , (88b)

!(q, m) \ m0C(q :m0, m)X~1(m0)F0 (89a)

and

!(q, [m)\ m0 e~q@m0S(q0[ q :m0, m)X~1(m0)F0 , (89b)

where the S and C functions are given by equations (33).
It is clear that the solution we have developed here includes the solutions of two special cases of the general problem deÐned

by equations and That is, if we consider F \ 0 and then we have the case of a radiation Ðeld(61), (62), (63a), (63b). B D 0,
generated only by the internal source, viz., the Planck function. On the other hand, if we consider B \ 0 and then weF D 0,
have an arbitrary mixture of the classical albedo problem and the case of isotropic incident radiation.

Clearly, our job here is Ðnished once we Ðnd the constants and however, before proceeding to some numerical work,A
j

B
j
;

we state our Ðnal solution to the problem deÐned by equations and We use equations(61), (62), (63a), (63b). (65a), (65b), (66),
and in equations and to Ðnd(78), (80a), (80b), (87a), (87b) (13a) (13b)

I
x
(q, k)\ d(x [ x0)[1[ *] *d(k [ k0)]Fe~q*Õ(x)`b+@k] c

x
B

x
(k)M1 [ e~q*Õ(x)`b+@kN] c

x
/(x)A(k)C(q, kc

x
) (90a)
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and

I
x
(q, [k)\ c

x
B
x
(k)M1 [ e~(q0~q)*Õ(x)`b+@kN] c

x
/(x)A(k)C(q, [kc

x
) (90b)

for q ½ [0, k ½ (0, 1], and for all x. In writing equations and we have usedq0], (90a) (90b),

B
x
(k)\ MobI ] [A(k)C ] (1[ -)I]/(x)NB , (91)

along with

C(q, kc
x
) \ N(q, kc

x
) ] !(q, kc

x
) , (92)

where N and Y are given by equations and and and(88a) (88b) (89a) (89b).
Now we are ready to use our discrete-ordinates solution to compute the only quantities that are not already known

explicitly, viz., C(q, m) and C(q, [m) for m ½ (0, c).

6. SOME NUMERICAL ASPECTS OF OUR DISCRETE-ORDINATES SOLUTION

In regard to our numerical work, we note that it closely follows our work in & Siewert but forBarichello (1999),
completeness we repeat here some of the discussion given there. First, we must deÐne the quadrature scheme to be used in our
discrete-ordinates solution.

Noting that the characteristic matrix W(m) is deÐned di†erently in each of two subintervals [0, and c], we use ac0] [c0,Gauss-Legendre scheme on the interval [0, 1], after using a linear transformation to map the Ðrst part of the integration
interval, viz., [0, onto [0, 1]. For the second part of the integration interval, we used either the transformation (B. Rutilyc0],1997, private communication)

u(z) \ 1
1 ] m(z)

, (93)

with u(c)\ 0, for the Lorentz case, or the transformation

u(z) \ e~am(z) , (94)

with u(c)\ 0, for the Doppler case, to map the interval c] onto [0, 1] ; we then again used a Gauss-Legendre scheme on[c0,the interval [0, 1]. In we generally used a \ 1. If we put Gauss points in the interval [0, and points inequation (94), N1 c0] N2the interval c], then we clearly have quadrature points in the interval [0, c].[c0, N \N1] N2While we found that the quadrature scheme deÐned in the preceding discussion works well as long as *\ 1, we also
concluded that a modiÐcation is desirable in order to take into account the step function that is present in#(x0, m) equation

To this end, we subdivided the interval u ½ [0, 1] into u ½ [0, and where and we used a(69a). u0] u ½ [u0, 1], u0\ u(c
x0

),
separate Gauss-Legendre quadrature scheme on each of the subintervals. We note that this interesting case, in which a
discontinuous function appears in the boundary conditions of a radiative-transfer problem, is the Ðrst of this class we have
seen. We therefore see, as a result of this step function m) appearing in the boundary conditions, that the choice of a good#(x0,quadrature scheme in a discrete-ordinates solution in the Ðeld of radiative transfer can depend on both the equation of
transfer and the boundary conditions.

Having deÐned our quadrature scheme, we found the required separation constants by using the driver program RGl
jfrom the EISPACK collection et al. to Ðnd the eigenvalues of the problem deÐned by In addition,(Smith 1976) equation (26).

we used a Gaussian elimination package from the LINPACK collection et al. to solve the system of linear(Dongarra 1979)
algebraic equations that deÐnes the constants and required in the solution.A

j
B
jAt this point, we consider it important to note that since the characteristic matrix W(m) used in this work can be zero, from a

computational point of view, we can have some of the separation constants equal to some of the quadrature points Ofl
j

m
j
.

course, this is not allowed in and so, since the quadrature points where W(m) is e†ectively zero make noequation (28),
contribution to the right-hand side of equations and we have resolved this issue by omitting these quadrature(18a) (18b),
points from our calculation.

In order to use fully the FORTRAN program written to implement the discrete-ordinates solution we have developed here,
we consider two basic problems, one for the Doppler line-scattering coefficient and the other for the Lorentz case, that have
none of the deÐning physical parameters set equal to zero. While it may be that the test problems we deÐne are more general
than might be required, we wish to use and evaluate all aspects of our solution.

In we list the values of the physical data used to deÐne the problems for which we choose to report our numericalTable 1
results. In Tables and we list the Ðrst and second components of the vector C(q, m), the fundamental quantity required to2 3
deÐne the solution given by equations and for the case of the Doppler line-scattering coefficient, and in Tables(90a) (90b), 4

TABLE 1

BASIC DATA

q0 - c b o x0 k0 * B
I

B
Q

F
I

F
Q

2.0 0.999999 0.5 0.0001 0.3 0.2 0.5 0.4 1.0 0.9 1.0 0.8



TABLE 2

THE FIRST COMPONENT OF FOR THE DOPPLER CASEC(gq0, n1@2z)

z g \ 0.00 g \ 0.10 g \ 0.50 g \ 0.75 g \ 1.00

[c/n1@2 [1.5115([5) [1.6301([5) [1.4274([5) [8.5646([6)
[5.0(3) [1.7055([5) [1.8393([5) [1.6106([5) [9.6641([6)
[2.0(3) [4.2626([5) [4.5973([5) [4.0262([5) [2.4159([5)
[1.0(3) [8.5213([5) [9.1912([5) [8.0511([5) [4.8315([5)
[5.0(2) [1.7027([4) [1.8369([4) [1.6097([4) [9.6615([5)
[2.0(2) [4.2453([4) [4.5823([4) [4.0204([4) [2.4143([4)
[1.0(2) [8.4525([4) [9.1313([4) [8.0280([4) [4.8250([4)
[5.0(1) [1.6753([3) [1.8131([3) [1.6005([3) [9.6357([4)
[2.0(1) [4.0766([3) [4.4351([3) [3.9631([3) [2.3982([3)
[1.0(1) [7.7936([3) [8.5551([3) [7.8011([3) [4.7610([3)
[5.0 [1.4240([2) [1.5920([2) [1.5117([2) [9.3822([3)
[2.0 [2.7098([2) [3.2122([2) [3.4425([2) [2.2447([2)
[1.0 [3.4050([2) [4.5241([2) [5.9234([2) [4.1777([2)
[5.0([1) [2.4461([2) [4.5844([2) [8.9400([2) [7.2717([2)
[2.0([1) 1.7853([2) [1.4920([2) [1.1160([1) [1.2463([1)
[1.0([1) 4.5741([2) 9.9758([3) [1.0454([1) [1.5002([1)
[0.0 7.9069([2) 4.0227([2) [8.3576([2) [1.4333([1)

0.0 4.0227([2) [8.3576([2) [1.4333([1) [2.0165([1)
1.0([1) 3.7688([2) [5.9175([2) [1.2256([1) [1.7963([1)
2.0([1) 2.4778([2) [3.9060([2) [1.0098([1) [1.5904([1)
5.0([1) 1.1828([2) [1.5692([2) [5.9367([2) [1.0878([1)
1.0 6.2861([3) [6.8809([3) [3.3604([2) [6.7776([2)
2.0 3.2416([3) [3.0022([3) [1.7723([2) [3.8013([2)
5.0 1.3211([3) [1.0611([3) [7.2829([3) [1.6295([2)
1.0(1) 6.6468([4) [5.0384([4) [3.6702([3) [8.3365([3)
2.0(1) 3.3338([4) [2.4490([4) [1.8419([3) [4.2162([3)
5.0(1) 1.3360([4) [9.6231([5) [7.3834([4) [1.6981([3)
1.0(2) 6.6843([5) [4.7823([5) [3.6943([4) [8.5096([4)
2.0(2) 3.3432([5) [2.3838([5) [1.8478([4) [4.2597([4)
5.0(2) 1.3375([5) [9.5176([6) [7.3926([5) [1.7050([4)
1.0(3) 6.6880([6) [4.7559([6) [3.6966([5) [8.5271([5)
2.0(3) 3.3441([6) [2.3772([6) [1.8483([5) [4.2640([5)
5.0(3) 1.3377([6) [9.5070([7) [7.3935([6) [1.7057([5)
c/n1@2 1.1855([6) [8.4253([7) [6.5524([6) [1.5117([5)

TABLE 3

THE SECOND COMPONENT OF FOR THE DOPPLER CASEC(gq0, n1@2z)

z g \ 0.00 g \ 0.10 g \ 0.50 g \ 0.75 g \ 1.00

[c/n1@2 1.1281([5) 8.8329([6) 2.9276([6) 1.0478([6)
[5.0(3) 1.2729([5) 9.9668([6) 3.3035([6) 1.1823([6)
[2.0(3) 3.1819([5) 2.4914([5) 8.2581([6) 2.9556([6)
[1.0(3) 6.3626([5) 4.9820([5) 1.6514([5) 5.9109([6)
[5.0(2) 1.2720([4) 9.9604([5) 3.3021([5) 1.1820([5)
[2.0(2) 3.1765([4) 2.4874([4) 8.2496([5) 2.9540([5)
[1.0(2) 6.3409([4) 4.9660([4) 1.6480([4) 5.9043([5)
[5.0(1) 1.2634([3) 9.8969([4) 3.2886([4) 1.1794([4)
[2.0(1) 3.1231([3) 2.4481([3) 8.1656([4) 2.9375([4)
[1.0(1) 6.1310([3) 4.8111([3) 1.6147([3) 5.8387([4)
[5.0 1.1821([2) 9.2955([3) 3.1577([3) 1.1534([3)
[2.0 2.6605([2) 2.1036([2) 7.3904([3) 2.7797([3)
[1.0 4.5337([2) 3.6097([2) 1.3304([2) 5.2362([3)
[5.0([1) 6.9070([2) 5.5421([2) 2.1916([2) 9.3336([3)
[2.0([1) 9.8444([2) 7.9193([2) 3.4296([2) 1.7113([2)
[1.0([1) 1.1430([1) 9.1434([2) 4.0613([2) 2.2610([2)
[0.0 1.4013([1) 1.0849([1) 4.8081([2) 2.8458([2)

0.0 1.0849([1) 4.8081([2) 2.8458([2) 1.3164([2)
1.0([1) 8.0931([2) 5.7908([2) 3.5043([2) 1.8890([2)
2.0([1) 5.2171([2) 6.2635([2) 4.2044([2) 2.4831([2)
5.0([1) 2.4615([2) 5.1292([2) 4.4996([2) 3.4333([2)
1.0 1.3031([2) 3.4312([2) 3.5007([2) 3.1468([2)
2.0 6.7072([3) 2.0042([2) 2.2321([2) 2.2119([2)
5.0 2.7303([3) 8.8282([3) 1.0401([2) 1.0977([2)
1.0(1) 1.3732([3) 4.5606([3) 5.4783([3) 5.9079([3)
2.0(1) 6.8860([4) 2.3181([3) 2.8119([3) 3.0658([3)
5.0(1) 2.7593([4) 9.3643([4) 1.1426([3) 1.2541([3)
1.0(2) 1.3804([4) 4.6976([4) 5.7434([4) 6.3175([4)
2.0(2) 6.9042([5) 2.3527([4) 2.8793([4) 3.1706([4)
5.0(2) 2.7622([5) 9.4201([5) 1.1535([4) 1.2711([4)
1.0(3) 1.3812([5) 4.7116([5) 5.7708([5) 6.3602([5)
2.0(3) 6.9061([6) 2.3562([5) 2.8861([5) 3.1813([5)
5.0(3) 2.7625([6) 9.4257([6) 1.1546([5) 1.2728([5)
c/n1@2 2.4482([6) 8.3534([6) 1.0233([5) 1.1280([5)

380



TABLE 4

THE FIRST COMPONENT OF FOR THE LORENTZ CASEC(gq0, nz)

z g \ 0.00 g \ 0.10 g \ 0.50 g \ 0.75 g \ 1.00

[c/n [3.6097([5) [3.3627([5) [2.0846([5) [1.1013([5)
[2.0(3) [5.7446([5) [5.3515([5) [3.3177([5) [1.7527([5)
[1.0(3) [1.1487([4) [1.0701([4) [6.6348([5) [3.5052([5)
[5.0(2) [2.2966([4) [2.1396([4) [1.3267([4) [7.0099([5)
[2.0(2) [5.7355([4) [5.3440([4) [3.3152([4) [1.7520([4)
[1.0(2) [1.1451([3) [1.0671([3) [6.6249([4) [3.5027([4)
[5.0(1) [2.2822([3) [2.1277([3) [1.3228([3) [6.9997([4)
[2.0(1) [5.6457([3) [5.2699([3) [3.2907([3) [1.7457([3)
[1.0(1) [1.1096([2) [1.0378([2) [6.5274([3) [3.4773([3)
[5.0 [2.1436([2) [2.0128([2) [1.2843([2) [6.8987([3)
[2.0 [4.8391([2) [4.5963([2) [3.0581([2) [1.6837([2)
[1.0 [8.2180([2) [7.9468([2) [5.6492([2) [3.2363([2)
[5.0([1) [1.2144([1) [1.2119([1) [9.6998([2) [5.9881([2)
[2.0([1) [1.4726([1) [1.5633([1) [1.6121([1) [1.2004([1)
[1.0([1) [1.3859([1) [1.5285([1) [1.8935([1) [1.7308([1)
[0.0 [1.1365([1) [1.3222([1) [1.8395([1) [2.0880([1)

0.0 [1.3222([1) [1.8395([1) [2.0880([1) [2.3228([1)
1.0([1) [5.8625([2) [1.6082([1) [1.9189([1) [2.1682([1)
2.0([1) [3.3810([2) [1.2831([1) [1.6673([1) [1.9693([1)
5.0([1) [1.4792([2) [7.3519([2) [1.0728([1) [1.3824([1)
1.0 [7.6253([3) [4.2077([2) [6.4874([2) [8.7781([2)
2.0 [3.8718([3) [2.2576([2) [3.5907([2) [5.0021([2)
5.0 [1.5632([3) [9.4304([3) [1.5299([2) [2.1722([2)
1.0(1) [7.8401([4) [4.7845([3) [7.8151([3) [1.1170([2)
2.0(1) [3.9261([4) [2.4099([3) [3.9499([3) [5.6645([3)
5.0(1) [1.5719([4) [9.6821([4) [1.5902([3) [2.2852([3)
1.0(2) [7.8620([5) [4.8482([4) [7.9684([4) [1.1458([3)
2.0(2) [3.9316([5) [2.4259([4) [3.9885([4) [5.7374([4)
5.0(2) [1.5728([5) [9.7078([5) [1.5964([4) [2.2969([4)
1.0(3) [7.8642([6) [4.8546([5) [7.9839([5) [1.1488([4)
2.0(3) [3.9322([6) [2.4275([5) [3.9924([5) [5.7448([5)
c/n [2.4707([6) [1.5253([5) [2.5086([5) [3.6097([5)

TABLE 5

THE SECOND COMPONENT OF FOR THE LORENTZ CASEC(gq0, nz)

z g \ 0.00 g \ 0.10 g \ 0.50 g \ 0.75 g \ 1.00

[c/n 7.0812([6) 5.7835([6) 2.2476([6) 8.9448([7)
[2.0(3) 1.1270([5) 9.2043([6) 3.5770([6) 1.4236([6)
[1.0(3) 2.2537([5) 1.8407([5) 7.1535([6) 2.8471([6)
[5.0(2) 4.5062([5) 3.6805([5) 1.4305([5) 5.6937([6)
[2.0(2) 1.1257([4) 9.1951([5) 3.5748([5) 1.4231([5)
[1.0(2) 2.2488([4) 1.8370([4) 7.1447([5) 2.8452([5)
[5.0(1) 4.4869([4) 3.6658([4) 1.4270([4) 5.6862([5)
[2.0(1) 1.1137([3) 9.1037([4) 3.5528([4) 1.4184([4)
[1.0(1) 2.2012([3) 1.8008([3) 7.0572([4) 2.8265([4)
[5.0 4.3002([3) 3.5236([3) 1.3923([3) 5.6119([4)
[2.0 1.0037([2) 8.2612([3) 3.3431([3) 1.3727([3)
[1.0 1.8003([2) 1.4916([2) 6.2610([3) 2.6487([3)
[5.0([1) 2.9540([2) 2.4722([2) 1.1044([2) 4.9381([3)
[2.0([1) 4.6404([2) 3.9348([2) 1.9789([2) 1.0121([2)
[1.0([1) 5.6023([2) 4.7534([2) 2.5676([2) 1.5103([2)
[0.0 7.2250([2) 5.9139([2) 3.2446([2) 2.2164([2)

0.0 5.9139([2) 3.2446([2) 2.2164([2) 1.3545([2)
1.0([1) 3.0250([2) 3.8593([2) 2.8379([2) 1.9170([2)
2.0([1) 1.7601([2) 3.4834([2) 3.0202([2) 2.3142([2)
5.0([1) 7.7423([3) 2.1853([2) 2.3200([2) 2.1691([2)
1.0 3.9984([3) 1.2912([2) 1.4974([2) 1.5387([2)
2.0 2.0321([3) 7.0404([3) 8.5669([3) 9.2757([3)
5.0 8.2086([4) 2.9694([3) 3.7234([3) 4.1666([3)
1.0(1) 4.1178([4) 1.5114([3) 1.9147([3) 2.1667([3)
2.0(1) 2.0623([4) 7.6250([4) 9.7091([4) 1.1050([3)
5.0(1) 8.2572([5) 3.0665([4) 3.9167([4) 4.4727([4)
1.0(2) 4.1300([5) 1.5360([4) 1.9639([4) 2.2453([4)
2.0(2) 2.0653([5) 7.6868([5) 9.8334([5) 1.1249([4)
5.0(2) 8.2621([6) 3.0764([5) 3.9367([5) 4.5048([5)
1.0(3) 4.1312([6) 1.5385([5) 1.9689([5) 2.2533([5)
2.0(3) 2.0656([6) 7.6930([6) 9.8459([6) 1.1269([5)
c/n 1.2979([6) 4.8338([6) 6.1867([6) 7.0809([6)
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and we report our results for the Lorentz case. Concerning the accuracy of the results listed in these tables, we note that we5
have been unable to Ðnd any comparison results applicable to the general case we consider ; however, by noting the stability in
our results as we varied the order of the quadrature scheme about the Ðnal quadrature schemed used, we have developed
some conÐdence that our results are correct to within 1 unit in the last digit given. At the same time, we cannot be certain that
the FORTRAN implementation of our solution is free of errors ; additional computational work is planned that will (we hope)
support the numerical results reported here.

The authors wish to thank H. Frisch, R. D. M. Garcia, and B. Rutily for some helpful discussions concerning this (and
other) work. In addition, one of the authors (L. B. B.) would like to express her thanks to the Mathematics Department of
North Carolina State University for providing partial Ðnancial support and for the kind hospitality extended throughout a
period during which a part of this work was done. Finally, it is noted that the work of L. B. B. was supported in part by the
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