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A recently established version of the discrete-ordinates method is used to develop
a solution to a class of problems in the theory of rarefied-gas dynamics where tem-
perature and density effects are coupled. In particular, accurate solutions for the tem-
perature perturbation, the density perturbation, and the heat flux are developed and
evaluated for the flow, described by the Bhatnagar, Gross, and Krook model, of a rar-
efied gas between two parallel plates at which arbitrary and unequal accommodation
is allowed. Numerical results are obtained for various choices of the accommodation
coefficients and a wide range of the inverse Knudsen number.c© 1999 Academic Press

1. INTRODUCTION

The method of discrete ordinates was introduced and used by Chandrasekhar [1] to
solve well many basic problems in the area of radiative transfer. And while the method is
somewhat less well developed and less often used in the general area of the kinetic theory
of gases, we note that the early works of Wachman and Hamel [2], Huang and Giddens [3],
and Bramlette and Huang [4] all illustrate that the discrete-ordinates method can be used to
solve basic problems in this important branch of particle-transport theory. The idea of the
discrete-ordinates method is very simple indeed: various integral terms in some form of the
Boltzmann equation are replaced by numerical-quadrature approximations to those terms,
and then a resulting set of ordinary differential equations is solved. However, there are many
ways of introducing quadrature approximations and many ways of dealing with the resulting
computational aspects of the relevant equations. In this work we define some elementary
transformations that allow us to use a “half-range” quadrature scheme (considered superior
to a “full-range” scheme) without having to do the careful numerical work required to define
special purpose quadrature rules.

Needless to say, many numerical methods can yield meaningful results in low order.
Our goal in this work has been somewhat different: we have defined and implemented our
version of the discrete-ordinates method in such a way that very high quality results can be
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obtained in, say, intermediate order with a numerical method that is stable in high order. To
illustrate the merits of our solution, which we hope will be used for even more challenging
applications, we consider the quite difficult problem of the interaction of temperature and
density effects in a plane channel. While the problem chosen to test our numerical work
is not new, a uniqueness issue concerning the formulation of the problem is thought to be
newly resolved here.

We consider a problem concerning heat transfer in a rarefied gas confined between two
parallel plates, and since we are focusing our attention here on temperature and density ef-
fects as described by the linearized BGK equation [5], we can make use of the decomposition
discussed by Cercignani [6] and thus base our work on the vector equation

µ
∂

∂x
Ψ(x, µ)+Ψ(x, µ) = π−1/2Q(µ)

∫ ∞
−∞

QT(u)Ψ(x, u)e−u2
du, (1)

for x ∈ (−δ/2, δ/2)andµ∈ (−∞,∞). Here we use the superscript T to denote the transpose
operation,x is the spatial distance (measured in dimensionless units) from the centerline
between the two plates,µ is the non-dimensionalx component of the velocity, and

Q(µ) =
( 2

3

)1/2(
µ2− 1

2

)
1(

2
3

)1/2
0

 . (2)

Following Ref. [7], we note that the components of

Ψ(x, µ) =
[
ψ1(x, µ)

ψ2(x, µ)

]
(3)

are related to the dimensionless perturbations in the number density and the temperature of
the gas,viz.,

1ρ(x) = 1

π

∫ ∞
−∞

[
1
0

]T

Ψ(x, µ)e−µ
2
dµ (4a)

and

1T(x) = 2

3π

∫ ∞
−∞

[
µ2− 1

2

1

]T

Ψ(x, µ)e−µ
2
dµ. (4b)

In regard to the boundary conditions, subject to which we must solve Eq. (1), we continue
to follow Ref. [7] and write

Ψ(−a, µ) = (1− α1)Ψ(−a,−µ)+ α1π
1/2

[
µ2+ b1

1

]
(5a)

and

Ψ(a,−µ) = (1− α2)Ψ(a, µ)− α2π
1/2

[
µ2+ b2

1

]
(5b)
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for µ∈ (0,∞). Here we usea= δ/2 for the channel half-width andα1 andα2 for the
accommodation coefficients at the two walls that confine the gas. In addition the constants
b1 andb2 used in Eqs. (5) are to be defined so that the condition of no net flow in thex
direction can be satisfied not only forx ∈ (−a,a) but also at two boundariesx=±a. We
express this condition of no net flow in thex direction as it was done in Ref. [7],viz.,

[
1
0

]T ∫ ∞
−∞

Ψ(x, µ)e−µ
2
µ dµ = 0 (6)

for x ∈ [−a,a]. We can now substitute Eqs. (5) into Eq. (6) to find

b1 = −1+ 2π−1/2
∫ ∞

0
ψ1(−a,−µ)e−µ2

µ dµ (7a)

and

b2 = −1− 2π−1/2
∫ ∞

0
ψ1(a, µ)e

−µ2
µ dµ, (7b)

whereψ1(x, µ) is the first component ofΨ(x, µ). We can use Eqs. (7) to rewrite Eqs. (5)
as

Ψ(−a, µ)= (1−α1)Ψ(−a,−µ)+ 2α1

[
1 0
0 0

] ∫ ∞
0

Ψ(−a,−u)e−u2
u du+K1(µ) (8a)

and

Ψ(a,−µ) = (1− α2)Ψ(a, µ)+ 2α2

[
1 0
0 0

] ∫ ∞
0

Ψ(a, u)e−u2
u du− K2(µ) (8b)

for µ∈ (0,∞). Here the known functions are

K1(µ) = α1π
1/2

[
µ2− 1

1

]
(9a)

and

K2(µ) = α2π
1/2

[
µ2− 1

1

]
. (9b)

In this work we intend to compute1ρ(x)and1T(x)as given by Eqs. (4) and the normalized
heat fluxq defined as [8, 9]

q = −
(
α1+ α2− α1α2

α1α2

)
π−1/2

∫ ∞
−∞

[
µ2+ 1

1

]T

Ψ(x, µ)e−µ
2
µ dµ. (10)
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2. A QUESTION OF UNIQUENESS

We wish to point out that the heat-transfer problem defined by Eqs. (1), (8), and (9) does
not have a unique solution. This observation is easily made once we see that ifΨ(x, µ) is
a solution of Eqs. (1), (8), and (9) then so is

Ψ̂(x, µ) = Ψ(x, µ)+ K

[
1
0

]
(11)

for any value ofK . In Ref. [7] Thomaset al. solved, for the case ofα1=α2, the coupled
temperature–density problem we are considering here. In that work [7] the authors imposed
the antisymmetry condition

Ψ(−x,−µ) = −Ψ(x, µ) (12)

which, when utilized in Eqs. (7) and (11), shows that the Thomaset al. formulation of the
α1=α2 case hasK = 0 andb1= b2. Here, in order to define the constantK we follow a
suggestion offered by Chang [10] and impose the conservation condition∫ a

−a
1ρ(x) dx = 0, (13)

and so if we substitute Eq. (11) into Eq. (4a) and the resulting equation into Eq. (13) we
find that

K = −π
−1/2

2a

∫ a

−a

∫ ∞
−∞

ψ1(x, µ)e
−µ2

dµ dx. (14)

To see the effect of the constantK on the quantities we intend to compute we substitute
Ψ̂(x, µ) into Eqs. (4b) and (10) and note that the term added toΨ(x, µ) in Eq. (11) does
not affect the temperature perturbation1T(x) or the heat fluxq. However, substituting
Eq. (11) into Eq. (4a), we find that

1ρ(x) = 1

π

∫ ∞
−∞

[
1
0

]T

Ψ(x, µ)e−µ
2
dµ+ Kπ−1/2 (15)

does depend on the constantK . It is clear that by defining the constantK as we have done
in Eq. (14) we have removed the multiplicity of solutions as expressed by Eq. (11); on the
other hand, we clearly have not proved that the problem, as we now have it defined, does
in fact have a unique solution.

3. A DISCRETE-ORDINATES SOLUTION

In a recent paper [11] concerning a radiative-transfer problem for a model that included
some polarization effects, a discrete-ordinates solution was developed that is very similar to
what we require here to solve Eq. (1) subject to the boundary conditions given by Eqs. (8)
and (9). In order to make use immediately of Ref. [11] we multiply Eq. (1) byQ−1(µ) and
define

G(x, µ) = Q−1(µ)Ψ(x, µ) (16)
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and

Ψ(u) = π−1/2QT(u)Q(u)e−u2
(17)

so we can obtain

µ
∂

∂x
G(x, µ)+G(x, µ) =

∫ ∞
−∞

Ψ(u)G(x, u) du (18)

for x ∈ (−a,a) andµ∈ (−∞,∞). As the basic elements of the discrete-ordinates solution
we wish to develop have already been reported in Ref. [11], we now repeat (only briefly) a
part of Ref. [11] we can use in this work, and then we will make some modifications to the
solution that are specific to the heat-transfer problem considered here.

We note first of all that (what we call) the characteristic matrixΨ(u)as defined by Eq. (17)
is symmetric. AlsoΨ(u)=Ψ(−u), and so we write our discrete-ordinates equations as

µi
d

dx
G(x, µi )+G(x, µi ) =

N∑
k=1

wkΨ(µk)[G(x, µk)+G(x,−µk)] (19a)

and

−µi
d

dx
G(x,−µi )+G(x,−µi ) =

N∑
k=1

wkΨ(µk)[G(x, µk)+G(x,−µk)] (19b)

for i = 1, 2, . . . , N. In writing Eqs. (19) as we have, we clearly are considering that the
N quadrature points{µk} and theN weights{wk} are defined for use on the integration
interval [0,∞). We note that it is to this feature of using a “half-range” quadrature scheme
that we attribute the especially good accuracy we have obtained from the solution reported
here.

Following Ref. [11], we substitute

G(x,±µi ) = Φ(ν,±µi )e
−x/ν (20)

into Eqs. (19) to find

(ν − µi )Φ(ν, µi ) = ν
N∑

k=1

wkΨ(µk)[Φ(ν, µk)+Φ(ν,−µk)] (21a)

and

(ν + µi )Φ(ν,−µi ) = ν
N∑

k=1

wkΨ(µk)[Φ(ν, µk)+Φ(ν,−µk)] (21b)

for i = 1, 2, . . . , N. If we now let81(ν,±µi ) and82(ν,±µi ) denote the two components
of Φ(ν,±µi ) and if we use

Φ1± = [81(ν,±µ1),81(ν,±µ2), . . . , 81(ν,±µN)]
T (22a)

and

Φ2± = [82(ν,±µ1),82(ν,±µ2), . . . , 82(ν,±µN)]
T (22b)
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then we can write rewrite Eqs. (21) as

1

ν
MΦ+ = (I −W)Φ+ −WΦ− (23a)

and

−1

ν
MΦ− = (I −W)Φ− −WΦ+. (23b)

HereI is the 2N × 2N identity matrix, the two vector elements ofΦ± areΦ1± andΦ2±,
the fourN × N matrix elements ofW, viz., Wm,n, for m, n= 1, 2, are given by

(Wm,n)i, j = w j9m,n(µ j ), (24)

where9m,n(µ),m, n= 1, 2, are the elements ofΨ(µ), and

M = diag{µ1, µ2, . . . , µN, µ1, µ2, . . . , µN}. (25)

Continuing to follow Ref. [11], we now let

U = Φ+ +Φ− (26a)

and

V = Φ+ −Φ− (26b)

so that we can eliminate between the sum and the difference of Eqs. (23) to find

(D− 2M−1WM −1)MU = λMU , (27)

whereλ= 1/ν2 and

D = diag
{
µ−2

1 , µ−2
2 , . . . , µ−2

N , µ
−2
1 , µ−2

2 , . . . , µ−2
N

}
. (28)

Considering that we have found the required separation constants{±ν j } from the eigen-
values defined by Eq. (27), we go back to Eqs. (21) to findΦ(ν j ,±µi ), and so we write
our general solution to Eqs. (19) as

G(τ,±µi ) =
2N∑
j=1

[
Aj

ν j

ν j ∓ µi
e−(a+x)/ν j + Bj

ν j

ν j ± µi
e−(a−x)/ν j

]
F(ν j ). (29)

HereF(ν j ) is a vector in the null space of

Ω(ν j ) = I − 2ν2
j

N∑
α=1

wαΨ(µα)
1

ν2
j − µ2

α

, (30)

I is now the 2× 2 identity matrix, and the arbitrary constants{Aj } and {Bj } are to be
determined from the boundary conditions. Of course, we cannot allowν j =µi in Eq. (29).
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Having used Ref. [11] to obtain Eq. (29), we go back and use Eq. (16) to write a first
version of our discrete-ordinates solution forΨ(x, µ) as

Ψ(x,±µi ) = Q(µi )

2N∑
j=1

[
Aj

ν j

ν j ∓ µi
e−(a+x)/ν j + Bj

ν j

ν j ± µi
e−(a−x)/ν j

]
F(ν j ). (31)

At this point we wish to introduce two basic modifications to Eq. (31) that are important for
the problem considered in this work. First of all, it was shown in Ref. [12] that detΩ(z),
where

Ω(z) = I − 2z2
∫ ∞

0
Ψ(µ)

dµ

z2− µ2
, (32)

has a fourth-order zero at infinity, and so we choose to ignore the contributions in Eq. (31)
from the two largest separation constants,νN andνN−1 and, instead, to include the exact
“discrete” solutions

F1(x, µ) = F1(µ) =
(

2

3

)1/2[µ2− 1
2

1

]
, (33a)

F2(x, µ) = F2 =
[

1
0

]
, (33b)

F3(x, µ) = (µ− x)F1(µ), (33c)

and

F4(x, µ) = (µ− x)F2 (33d)

that Krieseet al. [12] found as a result of the fourfold eigenvalue at infinity. So, as a first
modification, we choose to rewrite Eq. (31) as

Ψ(x,±µi ) = Ψ∗(x,±µi )

+Q(µi )

J∑
j=1

[
Aj

ν j

ν j ∓ µi
e−(a+x)/ν j + Bj

ν j

ν j ± µi
e−(a−x)/ν j

]
F(ν j ), (34)

where

Ψ∗(x,±µi ) = [ A∗1 + B∗1(x ∓ µi )]F1(µi )+ [ A∗2 + B∗2(x ∓ µi )]F2 (35)

and whereJ= 2N− 2. Note that we still have 4N arbitrary constants to determine from
the boundary conditions of our problem. In regard to a second modification of Eq. (31), we
note from Eq. (17) that there can be some, sayN0, quadrature points{µα}where the product
wαΨ(µα) is, from a computational point of view, effectively zero, and when this happens
the right-hand sides of Eqs. (21) can be effectively zero, and so we can findνα =µα. In
order to account for these special separation constants we label our quadrature points such
that

wαΨ(µα) = 0, α = α0, α0+ 1, . . . , N, (36)
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whereα0= N− N0+ 1, and then we can express the eigenvectorsΦ(µα,±µi ) for these
cases as

Φ(1)(µα, µi ) = δi,α

[
1

0

]
(37a)

and

Φ(2)(µα, µi ) = δi,α

[
0

1

]
(37b)

with

Φ(1)(µα,−µi ) = 0 (37c)

and

Φ(2)(µα,−µi ) = 0. (37d)

Hereδi, j is the Kronecker delta. Now if we label the 2N−2 separation constants{ν j } such
that the first

J∗ = 2N − 2− 2N0

of them are not contained in the collectionµi , i = 1, 2, . . . , N, then we can incorporate the
consequences of Eq. (36) into our discrete-ordinates solution and write

Ψ(x,±µi ) = Ψ∗∗(x,±µi )

+Q(µi )

J∗∑
j=1

[
Aj

ν j

ν j ∓ µi
e−(a+x)/ν j + Bj

ν j

ν j ± µi
e−(a−x)/ν j

]
F(ν j ), (38)

where

Ψ∗∗(x,±µi ) = Ψ∗(x,±µi )+∆(x,±µi ) (39)

with

∆(x, µi ) =
N∑

α=α0

[
A(1)α F1(µα)+ A(2)α F2

]
δi,αe−(a+x)/µα (40a)

and

∆(x,−µi ) =
N∑

α=α0

[
B(1)α F1(µα)+ B(2)α F2

]
δi,αe−(a−x)/µα . (40b)

Note that we still have 4N arbitrary constants to be used to satisfy the (approximated)
boundary conditions of our problem.
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4. COMPUTATIONAL DETAILS AND NUMERICAL RESULTS

We proceed now to use the discrete-ordinates result given by Eq. (38) to solve the heat-
transfer problem defined by Eqs. (1) and (8). Since the first thing we wish to do is to
constrain the expression given by Eq. (38) to meet the condition, as given by Eq. (6),
of no net flow in thex direction, we comment on ourµ-variable integration techniques
when integrals involvingΨ(x, µ) are required. Noting that Eq. (38) contains the “exact
terms”Fα(x, µ), α= 1, 2, 3,and 4, and terms that come directly from our discrete-ordinates
approach, we use two different ways of evaluating the mentionedµ-variable integrations.
When integrating the exact terms we use exact integration, but when evaluating integrals
containing the discrete-ordinates terms, we use our general quadrature formula,viz.,

∫ ∞
−∞

f (µ) dµ =
N∑

k=1

wk[ f (µk)+ f (−µk)]. (41)

Now substituting Eq. (38) into Eq. (6) and integrating as just mentioned, we find(
2

3

)1/2

B∗1 + B∗2 = 0, (42)

and so we rewrite our solution as

Ψ(x,±µi ) = Ψ∗∗(x,±µi )

+Q(µi )

J∗∑
j=1

[
Aj

ν j

ν j ∓ µi
e−(a+x)/ν j + Bj

ν j

ν j ± µi
e−(a−x)/ν j

]
F(ν j ), (43)

whereΨ∗∗(x,±µi ) is given by Eq. (39) and now

Ψ∗(x,±µi ) = A∗1F1(µi )+ B∗1(x ∓ µi )G(µi ) (44)

with

G(µ) =
(

2

3

)1/2[µ2− 3
2

1

]
. (45)

We note that sinceF2 is a solution of Eq. (1) that also satisfies homogeneous versions of
Eqs. (8) we have dropped that term from Eq. (38) when writing Eq. (43).

If we now substitute Eq. (43) into Eqs. (8) evaluated at the quadrature pointsµi , then
we obtain a system of 4N equations for the 4N − 2 unknown constants appearing in
Eq. (43). This system of linear equations is clearly overly determined, and so we use a
projection technique to obtain a “square” system. Since each quadrature pointµi generates
two equations on each of the two boundariesx=−a andx=a, we choose to add together
the two equations generated atx=−a by the quadrature pointµN− N0 and to ignore the
second of the two equations generated, still atx=−a, from that same quadrature point.
We then carry out the same procedure at the boundaryx=a, and in this way we obtain
the 2N− 2 equations we solve (with Gaussian elimination) to find the 2N− 2 constants
required to complete the solution given by Eq. (43).
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Of course, our solution is not defined until we specify a quadrature scheme, and so here
we follow what was done in a recent work concerning Poiseuille flow [13]. First of all we
have used either the transformation

u(µ) = 1

1+ µ (46a)

or the transformation

u(µ) = e−µ (46b)

to map the interval [0,∞) onto [0, 1], and we then used a Gauss–Legendre scheme mapped
onto the interval [0, 1]. Of course other quadrature schemes could be used. In fact we note
that recent works by Garcia [14] and Gander and Karp [15] have reported special quadrature
schemes for use in the general area of particle-transport theory. Such an approach clearly
could be used here. In fact the choice of a quadrature scheme based on the integration
interval [0,∞) with a weight function

W(µ) = e−µ
2

seems a natural choice for this work [see Ref. 3]. However, we have found the use of
a mapping defined by either of Eqs. (46) followed by the use of the Gauss–Legendre
integration formulas to be so effective that we have not tried other integration techniques.

Having defined our quadrature scheme, we found the required separation constants{ν j }
by using the driver program RG from the EISPACK collection [16] to find the eigenvalues
defined by Eq. (27), and so we consider our solution complete.

Assuming that we have solved our linear system to find all of the required constants, we
now substitute Eq. (43) into Eqs. (4b), (10), and (15) to find expressions for the physical
quantites that we wish to compute,viz.,

1T(x) =
(

2

3π

)1/2
A∗1 + B∗1 x +

J∗∑
j=1

[
Aj e
−(a+x)/ν j + Bj e

−(a−x)/ν j
]

f1(ν j )

 , (47)

q = −5

8

(
2

3

)1/2(
α1+ α2− α1α2

α1α2

)
B∗1, (48)

and

1ρ(x) = π−1/2

{
−
(

2

3

)1/2

B∗1 x+
J∗∑

j=1

[
Aj e
−(a+x)/ν j + Bj e

−(a−x)/ν j
]

f2(ν j )+ K

}
, (49)

where f1(ν j ) and f2(ν j ) are the two components of the vectorF(ν j ). To be complete, we
use Eq. (43) in Eq. (14) to find

K = − 1

2a

J∗∑
j=1

ν j
(
1− e−2a/ν j

)
(Aj + Bj ) f2(ν j ). (50)

In order to test the discrete-ordinates solution developed in this work, we have confirmed
to all figures given all of the numerical results given, for the case ofα1=α2, in Ref. [7].
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In that work [7], Thomaset al. computed and reported the heat fluxq with six figures of
accuracy and the temperature and density perturbations with five figures of accuracy for
various values of the accommodation coefficient and a wide range, oura∈ [0.0005, 5], of
the inverse Knudsen number. Considering now thatα1 6=α2, we note that Thomas [8] has
reported results of a calculation that was based on exact analysis and that Valougeorgis
and Thomas [9] used theFN method [17] to solve the same class of problems. While
the formulation of the basic problem introduced and used in Refs. [8, 9] is different from
what we have here, we find that the results can be easily related. If we letq†,1T †(x),
and1ρ†(x) denote the heat flux, the temperature perturbation, and the density perturbation
defined and calculated by Thomas [8] and by Valougeorgis and Thomas [9], then we find
that the following relations relate the quantities from Refs. [8, 9] to what we have here,

q† = q, (51a)

1T †(x) = 1
2[1−1T(x)] (51b)

and

1ρ†(x) = 1
2

[
Kπ−1/2+ b1+ 1

2 −1ρ(x)
]
, (51c)

whereK is given by Eq. (50) andb1is given by Eq. (7a) or, after we use Eq. (43) in Eq. (7a),

b1 = −1+ 2π−1/2

[
61/2

12
(A∗1 + aB∗1)+ S

]
, (52)

where

S=
N∑

k=1

J∗∑
j=1

wkµke−µ
2
k

[
Aj ν j

ν j + µk
+ Bj ν j

ν j − µk
e−2a/ν j

][(
2

3

)1/2(
µ2

k−
1

2

)
f1(ν j )+ f2(ν j )

]
.

(53)

As a first test of our solution for a case of two different accommodation coefficients
we have used our solution (withN= 60) to confirm to six significant figures all of the

TABLE I

The Temperature and Density Profiles for

a= 1.0,α1 = 0.7, andα2 = 0.3

η 1T(−a+ 2ηa) 1ρ(−a+ 2ηa)

0.0 6.74584(−1) −2.64589(−1)
0.1 5.96370(−1) −1.93097(−1)
0.2 5.39984(−1) −1.41190(−1)
0.3 4.88604(−1) −9.34717(−2)
0.4 4.39293(−1) −4.74422(−2)
0.5 3.90627(−1) −1.94045(−3)
0.6 3.41552(−1) 4.38749(−2)
0.7 2.90927(−1) 9.09189(−2)
0.8 2.36995(−1) 1.40637(−1)
0.9 1.75849(−1) 1.96382(−1)
1.0 8.40673(−2) 2.79763(−1)
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TABLE II

The Temperature and Density Profiles for

a= 2.5,α1 = 1.0, andα2 = 0.5

η 1T(−a+ 2ηa) 1ρ(−a+ 2ηa)

0.0 8.26728(−1) −5.78738(−1)
0.1 6.75739(−1) −4.37145(−1)
0.2 5.58061(−1) −3.23881(−1)
0.3 4.46818(−1) −2.15527(−1)
0.4 3.38031(−1) −1.08983(−1)
0.5 2.29936(−1) −2.94476(−3)
0.6 1.21266(−1) 1.03501(−1)
0.7 1.05785(−2) 2.11399(−1)
0.8 −1.04578(−1) 3.22577(−1)
0.9 −2.30311(−1) 4.41826(−1)
1.0 −4.10298(−1) 6.07501(−1)

heat-flux results quoted as exact in Ref. [9] forα1= 0.7 andα1= 0.3 and various values of
a∈ [0.0005, 50]. We have also used our solution, again withN= 60, and the relations
given by Eqs. (51b) and (51c) to confirm to all six figures given the temperature and density
perturbations reported by Valougeorgis and Thomas [9] for the caseα1= 0.7 andα2= 0.3
with a= 1.0 and the caseα1= 1.0 andα2= 0.5 with a= 2.5. So having found such good
agreement with Refs. [7–9], we feel justified in having confidence that our solution and the
FORTRAN implementation of the solution are good.

Finally, we wish to report some numerical results that we have found with the solution
developed, and so in Tables I and II we list the temperature perturbations and the density
perturbations as computed (withN= 60) from Eqs. (47), (49), and (50). We note also that
we found (in perfect agreement with the heat fluxes given in Ref. [9])q= 0.772293 for the
case defined in Table I andq= 0.447227 for the case defined in Table II.
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