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Abstract

The discrete-ordinates method is used to develop a solution to a basic polarization problem in radiative
transfer. In particular, a solution for the coupled I and Q components of the Stokes vector is developed for
a polarization model based on a mixture of Rayleigh and isotropic scattering. The solution is evaluated for
the case of a "nite plane-parallel layer that has a polarized beam incident on one surface and which has
Lambertian re#ection on the other surface. ( 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

We consider here a polarization model of radiative transfer that is based on a combination of
Rayleigh and isotropic scattering, and so we begin with the equation of transfer considered by
Chandrasekhar [1] and written as
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Here c3 (0, 1] is a measure of the Rayleigh component of the scattering law: c"0 would yield just
isotropic scattering and c"1 yields Rayleigh scattering [1]. In addition -3[0, 1) is the albedo for
single scattering, q3[0, q

0
] is the optical variable, q

0
is the optical thickness of the plane-parallel

medium and k3[!1, 1] is the cosine of the polar angle (as measured from the positive q axis) that
describes the direction of propagation of the radiation. The scattering matrix can be factored in
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various ways; here we choose to use the factorization attributed to Rachkovsky in Ref. [2], and so
we write

P(k, k@)"Q(k)QT(k@) (3)

where the superscript T denotes the transpose operation, and where
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In regard to the boundary conditions, subject to which we must solve Eq. (1), we assume that the
layer is illuminated on the surface at q"0 by a polarized beam and that there is Lambertian
re#ection at the surface located at q"q

0
. We express these boundary conditions as
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for k3 (0, 1]. Here k
0

is the direction cosine of the incident beam and the vector F has components
F
I

and F
Q
. In addition, j

0
3[0, 1] is the Lambertian re#ection coe$cient.

2. The reduced problem

Since the boundary condition given by Eq. (5a) introduces into I(q, k) a component that is
a generalized function, we express the complete solution as
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where, from Eqs. (1) and (5), the vector G(q, k) satis"es the equation
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for q3 (0, q
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) and k3[!1, 1], and the boundary conditions
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for k3 (0, 1]. Here the known source term is
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and the &&characteristic'' matrix is
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2
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In this work we intend to compute the two components I
*
(q, k) and Q

*
(q, k) of the reduced "eld
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or, after we note Eq. (6),
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3. A discrete-ordinates solution

In a recent paper [3] concerning a radiative-transfer problem that was based on completely non-
coherent scattering and that also included polarization e!ects, a discrete-ordinates solution was
developed that is very similar to what we require here to solve Eq. (7) subject to the boundary
conditions given by Eqs. (8). As the basic elements of the discrete-ordinates solution, we wish to
develop, have already been reported in Ref. [3], we now repeat (only brie#y) the part of Ref. [3] we
can use in this work.

We note "rst of all that (what we call) the characteristic matrix W(k) as de"ned by Eq. (11) is
symmetric. Also W (k)"W(!k), and so we write our discrete-ordinates equations, relevant to the
homogeneous version of Eq. (7), as
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for i"1, 2, 2 , N. In writing Eqs. (14) as we have, we clearly are considering that the N quadrature
points Mk

k
N and the N weights Mw

k
N are de"ned for use on the integration interval [0, 1]. Now,

following Ref. [3], we substitute
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for i"1, 2, 2, N. If we now let /
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then we can rewrite Eqs. (16) as
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Here I is the 2N]2N identity matrix, the two vector elements of U
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, the four
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Continuing to follow Ref. [3], we now let
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Considering that we have found the required separation constants M$l
j
N from the eigenvalues

de"ned by Eq. (22), we go back to Eqs. (16) to "nd U(l
j
,$k

i
), and so we write our general solution

to Eqs. (14) as
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I is now the 2]2 identity matrix and the arbitrary constants MA
j
N and MB

j
N are to be determined

from the boundary conditions.
Since Eq. (7) has the inhomogeneous source term S(q) we must add a particular solution, for

example [3]
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) to obtain the desired discrete-ordinates expression for the general solution, namely
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If we now substitute Eq. (27) into the boundary conditions, Eqs. (8), evaluated at the quadrature
points we "nd the following system of linear algebraic equations from which we determine the
constants MA

j
N and MB
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N required to complete our solution:
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for i"1, 2, 2 , N . Here the known right-hand sides of Eqs. (28) are given by
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and the re#ection components of the matrix elements are
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Clearly, once we have solved Eqs. (28) to "nd the constants MA
j
N and MB

j
N we have a "rst version of

the desired solution available from Eqs. (24), (26) and (27). However, to have a better and more
general result we follow Ref. [3] and substitute Eq. (27) into the right-hand side of
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which we can then solve to "nd
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To complete Eqs. (32) we "nd that the constant re#ection vector R can be computed by using
Eq. (27) in
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Having completed our discrete-ordinates solution, we are ready to discuss some of the computa-
tional aspects of the solution and to report some typical numerical results.

4. Computational details and numerical results

Of course, the "rst thing we must do in order to evaluate our discrete-ordinates solution
numerically is to de"ne a quadrature scheme. We simply use the usual Gauss}Legendre scheme (of
order N) de"ned for the interval [!1, 1] mapped onto the interval [0, 1]. Having de"ned our
quadrature scheme, we obtain the required separation constants Ml

j
N by using the driver program

RG from the EISPACK collection [4] to "nd the eigenvalues de"ned by Eq. (22), and so we
consider our solution complete.
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To report some numerical results we consider the problem of a layer of thickness
q
0
"2.0 illuminated by a normally incident beam (k

0
"1.0) de"ned by F

I
"1.0 and F

Q
"0.8. For

the scattering law, we take -"0.99 and c"0.5. In Tables 1 and 2 we list our results for the two
components I

*
(q, k) and Q

*
(q, k) of the reduced "eld. The results listed in Tables 1 and 2 were

obtained (with N"20) by "rst solving Eqs. (28) and then using Eqs. (32) in Eqs. (13). We have
compared our numerical results with a generalized spherical-harmonics solution [5] of the same
problem, and so, after some additional studies where we varied the order of the quadrature scheme,
we believe we have reasons to think that the results given here are correct to within one unit in the
last place given. In addition, since a FORTRAN implementation of our discrete-ordinates solution
(with N"20) runs in less than a second on a 166 MHz Pentium-based PC, we believe our solution
to be very e$cient as well as very accurate.

To conclude this work, we mention two special cases for which the solution developed here does
not apply. The "rst is the c"0 case where the problem breaks down into two simple scalar
problems, and the second is the conservative case (-"1) where special attention is required to take
into account a repeated eigenvalue at in"nity. Needless to say, if the solution does not apply for
either of these special cases, then we can expect also to encounter numerical di$culties if we have
data su$ciently close to one of these cases. However, for essentially all practical cases, say c as
small as 10~3 or 1!- as small as 10~7, we have found that the solution yields excellent results. Of

Table 1
The component I

*
(gq

0
, k) for the case of -"0.99, c"0.5 and q

0
"2.0 with k

0
"1.0, F

I
"1.0 and F

Q
"0.8

k g"0.00 g"0.10 g"0.50 g"0.75 g"1.00

!1.0 5.1625(!1) 4.9254(!1) 3.2822(!1) 2.1140(!1) 1.0578(!1)
!0.9 5.2315(!1) 5.0263(!1) 3.4016(!1) 2.1891(!1) 1.0578(!1)
!0.8 5.3052(!1) 5.1370(!1) 3.5398(!1) 2.2798(!1) 1.0578(!1)
!0.7 5.3802(!1) 5.2559(!1) 3.7000(!1) 2.3906(!1) 1.0578(!1)
!0.6 5.4512(!1) 5.3794(!1) 3.8852(!1) 2.5278(!1) 1.0578(!1)
!0.5 5.5096(!1) 5.5014(!1) 4.0976(!1) 2.7000(!1) 1.0578(!1)
!0.4 5.5429(!1) 5.6120(!1) 4.3366(!1) 2.9193(!1) 1.0578(!1)
!0.3 5.5335(!1) 5.6972(!1) 4.5938(!1) 3.1999(!1) 1.0578(!1)
!0.2 5.4580(!1) 5.7414(!1) 4.8467(!1) 3.5479(!1) 1.0578(!1)
!0.1 5.2752(!1) 5.7274(!1) 5.0664(!1) 3.9110(!1) 1.0578(!1)
!0.0 4.7883(!1) 5.6188(!1) 5.2542(!1) 4.1834(!1) 1.0578(!1)

0.0 5.6188(!1) 5.2542(!1) 4.1834(!1) 2.6389(!1)
0.1 4.7038(!1) 5.4088(!1) 4.4219(!1) 3.0219(!1)
0.2 3.4231(!1) 5.4775(!1) 4.6301(!1) 3.3215(!1)
0.3 2.6479(!1) 5.3846(!1) 4.7726(!1) 3.5792(!1)
0.4 2.1625(!1) 5.1795(!1) 4.8256(!1) 3.7817(!1)
0.5 1.8372(!1) 4.9321(!1) 4.8042(!1) 3.9225(!1)
0.6 1.6073(!1) 4.6830(!1) 4.7349(!1) 4.0088(!1)
0.7 1.4382(!1) 4.4503(!1) 4.6398(!1) 4.0529(!1)
0.8 1.3101(!1) 4.2408(!1) 4.5338(!1) 4.0673(!1)
0.9 1.2111(!1) 4.0559(!1) 4.4263(!1) 4.0618(!1)
1.0 1.1332(!1) 3.8945(!1) 4.3228(!1) 4.0441(!1)
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Table 2
The component Q

*
(gq

0
, k) for the case of -"0.99, c"0.5 and q

0
"2.0 with k

0
"1.0, F

I
"1.0 and F

Q
"0.8

k g"0.00 g"0.10 g"0.50 g"0.75 g"1.00

!1.0 0.0 0.0 0.0 0.0
!0.9 !9.8423(!3) !7.9047(!3) !3.2507(!3) !1.5848(!3)
!0.8 !1.9763(!2) !1.5884(!2) !6.6045(!3) !3.2786(!3)
!0.7 !2.9761(!2) !2.3935(!2) !1.0073(!2) !5.1109(!3)
!0.6 !3.9834(!2) !3.2051(!2) !1.3665(!2) !7.1213(!3)
!0.5 !4.9978(!2) !4.0216(!2) !1.7376(!2) !9.3618(!3)
!0.4 !6.0195(!2) !4.8416(!2) !2.1177(!2) !1.1895(!2)
!0.3 !7.0516(!2) !5.6646(!2) !2.4984(!2) !1.4770(!2)
!0.2 !8.1030(!2) !6.4950(!2) !2.8644(!2) !1.7903(!2)
!0.1 !9.1932(!2) !7.3437(!2) !3.2088(!2) !2.0663(!2)
!0.0 !1.0413(!1) !8.2268(!2) !3.5552(!2) !2.2484(!2)

0.0 !8.2268(!2) !3.5552(!2) !2.2484(!2) !1.8374(!2)
0.1 !7.6246(!2) !3.9143(!2) !2.4355(!2) !1.8028(!2)
0.2 !5.5003(!2) !4.2112(!2) !2.6286(!2) !1.8499(!2)
0.3 !4.0386(!2) !4.2155(!2) !2.7603(!2) !1.9064(!2)
0.4 !3.0241(!2) !3.9183(!2) !2.7411(!2) !1.9177(!2)
0.5 !2.2667(!2) !3.4238(!2) !2.5516(!2) !1.8384(!2)
0.6 !1.6653(!2) !2.8158(!2) !2.2161(!2) !1.6519(!2)
0.7 !1.1645(!2) !2.1458(!2) !1.7676(!2) !1.3620(!2)
0.8 !7.3213(!3) !1.4432(!2) !1.2349(!2) !9.8073(!3)
0.9 !3.4827(!3) !7.2476(!3) !6.4027(!3) !5.2233(!3)
1.0 0.0 0.0 0.0 0.0

course, the solution developed in this work can easily be modi"ed to solve both the special cases.
For the conservative case we can ignore the in"nite eigenvalue and use the exact &&discrete''
solutions, as was done in a recent work in the area of rare"ed-gas dynamics [6]. The special case
c"0 is not consider interesting since the Q component can be solved exactly in one line, and since
the resulting equation for the I component is just the usual monochromatic equation with isotropic
scattering (a problem easily solved by any number of methods, including the one discussed in this
work).
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