Journal of
Quantitative
Spectroscopy &
Radiative
Transfer

Journal of Quantitative Spectroscopy &

PERGAMON Radiative Transfer 64 (2000) 109-130 e —————
www.elsevier.com/locate/jgsrt

A concise and accurate solution to Chandrasekhar’s basic
problem in radiative transfer

C.E. Siewert
Mathematics Department, North Carolina State University, Raleigh, NC 27695-8205, USA
Received 19 June 1998

Abstract

A recently developed version of the discrete-ordinates method is used along with elementary numerical
linear-algebra techniques to establish an efficient and especially accurate solution to what can be called
Chandrasekhar’s basic problem in radiative transfer, namely the problem of computing the radiation
intensity in a finite plane-parallel layer illuminated by an incident beam of radiation and in which scattering
can be described by a (rather) general scattering law. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

We consider in this work what we call Chandrasekhar’s basic problem in radiative transfer
— the problem upon which much of Chandrasekhar’s classic text Radiative Transfer [ 1] is focused,
viz. the problem of computing the intensity in a finite layer illuminated by a beam of radiation
incident on one surface. In Ref. [2] we reported a high-order solution based on the spherical-
harmonics method for this problem, and in Ref. [3] the Fy method was used to generate accurate
results for the most challenging test problem, in this general class, we have solved to date. Since
many of the important works that are based on the spherical-harmonics method and the
Fy method were discussed in Refs. [2, 3], additional reviewing is not done here. In this work, we use
a variation of the discrete-ordinates technique and a recently developed particular solution [4] to
establish a solution to Chandrasekhar’s basic problem that is concise and especially accurate.

2. Basic formulation of the problem

Our formulation of the problem to be solved here and the notation we use follow directly from
Ref. [2], and so we start with the equation of transfer

u%l(f, @) + I(z, 1, ) =Ef J np(COS O)I(z, i, ¢')d¢" du (1)
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where @ € [0, 1] is the albedo for single scattering, 7 € [0, 7] is the optical variable, 7, is the optical
thickness of the plane-parallel medium, © is the scattering angle, ue [ —1, 1] is the cosine of the
polar angle (as measured from the positive t-axis) and ¢ is the azimuthal angle. Together the polar
and azimuthal angles define the direction of propagation of the radiation. In addition, we consider
here phase functions that can be expressed in terms of Legendre polynomials, that is

p(cos ©) = i PiPi(cos @),  fio =1, (2)

where the f; are the coefficients in the Lth-order expansion of the scattering law. Considering
Chandrasekhar’s standard problem [1], we seek to establish, for all ue[—1, 1], ¢ € [0, 2n] and
7€ [0, 7], a solution of Eq. (1) subject to the boundary conditions

I(Os U, QS) - TC5 /’L MO) d) ¢0 (33)
and

I(to, =1, $) =0 (3b)
for ue(0,1] and ¢ € [0, 2x]. Here uq is the direction cosine of the incident beam.

3. The reduced problem

Since the boundary condition given by Eq. (3a) introduces into I(z, i, ¢) a component that is
a generalized function, we follow Chandrasekhar and express the complete solution to the problem
defined by Egs. (1)-(3) in the form

I(z, i, ¢) = Li(7, 1, §) + 7S (1 — po)0(p — po)e™ " (4)

where I, (7, i, ¢) is the reduced or diffuse field. Continuing, we make use of the addition theorem
[5] for the Legendre polynomials and express the phase function, for scattering from {y/, ¢’} to
{1, ¢}, in the form

p(cos ®) = Z 2 - 5o,m)l_Z BiPT (W) P () cos[m(¢" — ¢)] (5)
where
moon | =m) |2 P
PP = [(, . m)!} (1= )" 4 P ©)

is used to denote the normalized Legendre function. It follows [ 1-3] now that the diffuse field can be
expressed as

_1

Ly(t, 1, ¢ Z — O0.m) I"(z, W) cos[m(¢ — ¢o)] (7)

l\.)

where the mth Fourier component satisfies the equation of transfer

0
po I+ I ) =5 Z BiP( /l)f PP ()™ (T, W) dp’ + Q™ (, ), (&)
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for ue[—1, 1] and 7 €(0, 7¢), and the boundary conditions

"0, u) =0 (%a)
and

I"(tg, =) =0 (©b)

for ue (0, 1]. Here the inhomogeneous source term is

Q"(v, p) = —e ’/"°Z i (110) P1'(1)- (10)

Il=m

4. A discrete-ordinates solution

In a recent paper [ 6], concerning a radiative-transfer problem based on completely non-coherent
scattering, a solution based on a new variation of the discrete-ordinates method was developed,
evaluated and found to be very effective. And so here we wish to make use of the solution reported
in Ref. [6] in order to solve efficiently and accurately the class of problems defined by Egs. (8)-(10).
For the moment, we exclude the special (conservative) case @ = 1, but in Section 6 of this work we
spell-out the modifications required in our general development in order deal with that case.

As a matter of strategy, we note that we intend to use the discrete-ordinates method only to find
approximate values for the integral terms in Eq. (8), and once that is done we will solve Eq. (8), with
the integral terms replaced by discrete-ordinates approximations to those terms, to find the desired
Fourier component I™(z, n) for all T and u. This second aspect of our approach is what we refer to
as a “post-processing” step [1, 7].

And so, we suppress some of the explicit notation of the Fourier index m and start with our
discrete-ordinates equations, relevant to the homogeneous version of Eq. (8), written as

d o & N _
Hi&l(faﬂi) + I(t, ;) = B > B Z () LT ) + (= D™ (x, — )] (11a)
I=m =
and
d B &
e — (1. — )+ I(1. — ) = —
Hl d"[: (Ti :Ltl) + (T7 l 2 ;
N
Z () (= D7 () + (T, — )] (11b)
fori =1,2, ... ,N.Inwriting Egs. (11) as we have, we clearly are considering that the N quadrature

points {4} and the N weights {w,} are defined for use on the integration interval [0, 1]. We see
that exponential solutions will work in Egs. (11), and so we substitute

I(t, £ i) = ¢(v, £ p)e™™ (12)
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into Egs. (11) to find

(5o

and

<1 + ﬂ) o, —
v

N

l\)|8]
IIM@

k=1

NISI

k=1

1) Y WP () Lo, ) + (= D" (v, — )] (13a)

:Z U)o WP () [(= D" ¢, ) + ¢, — m)] - (13b)

fori=1,2,...,N.In order to write Egs. (13) in a more convenient way, we introduce some matrix

notation. So with

D) =[P, £ 1), O, £ p12), .., pv, 1w) 17, (14)

T, m) = [P (), PP (Ra),s s PP ()T, (15)

M = diag { i1, fto, - 5 fy (16)
and

W =diag{w;,wy, ... , Wy}, (17)
we can rewrite Egs. (13) as

<1 —1M>q> (v) = g i BT, m) TIT (L, m) WD (v) + (— 1) ~"D_ ()] (18a)
and

<I + % M><D—(V) = g é:m B, m) I (L,m)W(— 1)'"" D (v) + @ (v)] (18b)
where I is the N x N identity matrix. Now if we let

U=0,(»+0_(v) (19a)
and

V=0, —0_(v) (19b)
then we can take the sum and the difference of Egs. (18) to obtain

EX = % Y (20a)
and

FY = % X (20b)
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where

E = <I — g li Bill + (= D! ™ITI(,m) I (I, m)W)M‘l, (21a)

F = <1 - g li Bill — (— 1!~ ITI(Lm)TIT(l, m)w>M1, (21b)

X =MU (22a)
and

Y =MV. (22b)
Clearly, we can eliminate between Egs. (20) to obtain the eigenvalue problems

(FE)X = AX (23a)
and

(EF)Y = 1Y (23b)

where 2 = 1/v2. We note that the required separation constants {v;} are readily available once we
find the eigenvalues {/;} defined by either Eq. (23a) or Eq. (23b). We choose to express our results in
terms of the eigenvalues and eigenvectors defined by Eq. (23a).

Continuing, we assume that Eq. (23a) defines positive eigenvalues and a full set of eigenvectors,
and so we let 4; and X(4;), forj = 1, 2, ..., N, denote this collection. The separation constants we
require clearly occur in plus-minus pairs, and so letting v;, for the j = 1,2, ..., N, denote the
reciprocal of positive root of 4;, we can use Egs. (19) and (20) to obtain

@, (v;) = M1 + v;E)X(4;) (24a)
and

D _(vj) =M I - vEX() (24b)
forj=1,2,...,N. We note that

D (—v)=D_(v;), (25)
and so at this point we have all we require for defining our solution to Eqgs. (11). We let

Lo(r) = [(w ), I(5 pa), oo I(x, pan)]" (26a)
and

L () =[I(t, — ) I(r, = pa), ..., I(z, — uy)]" (26b)

so we can express our discrete-ordinates solution to the homogeneous version of Eq. (8) as

N
IL(t)= Y [4®(v))e” " + B;®_(vj)e” @ 9] (27a)
j=1
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and
N
IN1t)= Y [4,®_(v;e 7 + B;® (vj)e @ 9] (27b)
j=1

where the constants {4;} and {B;} are at this point arbitrary. Note that in Egs. (27) we have added
the superscript h to remind us that these solutions refer to the homogeneous version of Eq. (8).

Having found our discrete-ordinates solution of the homogeneous version of Eq. (8), we are now
ready to define a particular solution to account for the inhomogeneous source term Q™ (z, u) that
appears in Eq. (8). In a recent work [4] based on a discrete-ordinates version of a radiative-transfer
problem that is sufficiently general so as to include the problem considered in this work, Barichello,
Garcia and Siewert used the infinite-medium Green’s function to develop a particular solution that
we can use here. Taking into account some changes in notation and continuing to suppress some of
the explicit notation that refers to the Fourier index m, we express the particular solution developed
in Ref. [4] as

M=

12() =

J

[/ () + B,D)D_(v))] (28a)

1

and

VB

2@ = Y [A@O®_() + 20, ()] (28b)

ji=1

Here the functions .Z;(t) and %;(t) that were developed in Ref. [4] can be expressed as

‘%(T) = N(V ) J\Or Z Wa[Q(xa ﬂa)¢(vj’ :uac) + Q(X, - .uat)¢(vjv - 'ua)]e*(r*x)/vf dx (29&)
and
1 (o d
'%)j(r) = ]\](V)Jv ;1 Wa[Q(Xa :uoc)qb(vﬁ - .ua) + Q(xs - :uaz)(f)(vja Auac)]ei(xir)/wdx (29b)
where
N(v;) = ; Wola[§2 (v, ) — $2 (v, — )] (30)

We note that the particular solution defined by Egs. (28)-(30) is valid for a general inhomogeneous
source term Q(z, u): however, for the current application where we can write

Q(t, p) = Qe "k, (31
with

Z BiP1(po) Pi' (), (32)
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we can follow Ref. [4] and write Egs. (29) for this special case as

N
]( ) M(()v]) C(T . Vja .uO) Zl Wm[Q(,uot)d)(vj: /“er) + Q(_ Ma)¢(vja - ,urz)]
and
e@ — ‘uovj —t/to . ad
(1) = N © S(to — 1), o) Y, WalQ(1a)(vj, — po) + O(— ) P (v, )]
J a=1
where the S and C functions are given by
1 _ AT T/xa—T/y —T/X __ LT[y
S(r:x,y)zL and C(Tian’):eie
X+y X—y

Finally, if we make note of our vector notation, we can rewrite Eq. (30) as
N(®v;) = ®L (v WM®, (v;) — ®_ (v, WM® _(v))
and Egs. (33) as

KoV

=N,

C(z:vj, fo) (@ (v)WQ + oL (v )WQ-1]

and
Vi
20 = 5 e wo — Ty k)[BT () WQ. + @L()WQ-]
J
where

Q. =[0(+ ), O(£ ), -, O£ )"

Having found a particular solution, we can now add it to Egs. (27) to obtain

N
L, ()= Y [4,®,(v)e ™ + B _(v)e ® 9] + 1% (1)

j=1

and

N
= ¥ [4®@_ (e ™ + B (y)e” 9] + I2(0)

and upon substituting Egs. (38) into the boundary conditions given by Egs. (9) we find

N
Y. [A4;@4 () + B®_(v)e "] = — I%(0)
=1
and

i [B,®. (v) + A,®_(v)e "] = — 17 (z).

115

(33a)

(33b)

(38b)

(39a)

(39b)
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Eqgs. (39) define the system of linear algebraic equations we solve to find the constants {4;} and {B,}
required to complete Egs. (38).

As mentioned earlier in this work, we use the discrete-ordinates method only to determine
approximations of the integrals in Eq. (8), and so now we substitute Egs. (38) into our quadrature
versions of those integrals and solve the resulting equation to obtain our final results. In this way
we find

I"(t, 1) = uoC(r: pho, ) Q (1) + %U[E'"(T, W+ Y"(t, W] (40a)

and
I"(5, —p) = oS (20 — T o Q=) + 5 [Z7(5, =) + Y™z, — 4] (40b)

for ue[0,1] and 7 €[0, 74]. Here

L N
Y™(t, p) = Z BiPT" (1) Z Vj[AjC (t: Vj, )
I=m j=1
+ (=1 "Bie IS (e vy, 0] G(Y) (41a)
and

Y™, —p) = Z BiPT (1) Z vil(=1) "4 e 7S (o — 71 v, p)

+ BjC(TO — TV, ﬂ)]Gl (Vj) (41b)
where
G'(v) = (L MW@ (v) + (= 1) "®_(v)]. (42)
Also, with regard to Egs. (40), we can write
E"(c, ) = Y, BPI(w) Y vilX(t, ) + (= 1) "Y(e, w1Gr () (43a)
l=m j=1

Z —1)'""Zj(x, p) + W(r, w1Gi'(v) (43b)

i(x)e” TV dx, (44a)

oA (x)e” I dx (44c)

“ls
J By(x)e= 6 dx, (44b)
“wl
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and

Wite ) = | e e (@4d)

jJr

If we now let

Y= N [®L()WQ, + ®L(y)WQ_] (45a)
and
1 T
b= N6 [®T(y)WQ + ®%(,)WQ_] (45D)

then we can enter Egs. (36) into Egs. (44) to obtain, for our current application,

vi;C(t:vi, 1) — woC(t: g,
Xt M):Moa{J (T2 v 1) — ol o u)} (46a)
Vi — Ho
C(t: o, p) — vje~ Mg mIMNi§(g 1y,
(e, 1) = pob; [“0 (€ b0, 1) = oy “)} (46b)
Vj + Uo
e S(to — T vy, ) — poe” MS(to — T
Zj(f, ,LL) — Moaj |:V_Ie (TO T vj’ )UV) HO 5 (TO T u07 M):| (46C)
Vi — Ho
and
_f/ﬂOS — T T _To/ﬂoc — TV
VI/j(T,M) :Mob] |:/v‘03 (TO T MO?M) v]e (TO T v]’ ‘L[):| (46d)
Vi + Ho

To this point we have been concerned with developing our solution for the radiation intensity;
however, we have already all that we require to compute moments of the intensity. For example,
the partial fluxes

0.0 = [ [ £iprasan @)
can, after we note Egs. (4) and (7), be written as

20 = e+ [ e 0 dn (482
and

q-(1) = nf (v, —p) dp (48b)

0
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where we suppress the Fourier-component index and let I(z, u) denote the m =0 component
of I.(t,u ¢). Keeping in mind that we are using a quadrature scheme defined for the integ-
ration interval [0,1], we now substitute Egs. (38) into quadrature versions of Egs. (48) to
obtain

q+(t) = mpoe” " + 1 Y [Aje” " + (1)]Q+(v) + 1 Y, [Bje” 7 + Bi(1)]Q-(v))

ji=1 ji=1
and (49a)
N N
q-(0)=n ) [Ae”™+ (0)]Q-(v) + 7 ) [Bie” ™ "™+ %110+ (v)) (49b)
j=1 j=1
where, after noting Eqgs. (15) and (17), we can write
Q.(v) =TT"(1,0)W®D_(v)). (50)

Here, to reiterate, we note that the functions {.<Z;(t)} and {%,(7)} are given by Egs. (36) and that the
constants {4;} and {B;} are the solutions to the linear system defined by Egs. (39).

5. An alternative particular solution

While the particular solution we have defined by Egs. (28) is, for various reasons, our preferred
form, we take a few lines here to list a variation of the particular solution used by Chandrasekhar.
We substitute

I,(t, +u) = F(+p)e (51)

into our discrete-ordinates version of Eq. (8) to find

<I —i M>F+ =
Ho

and

(14 n)r -
Ko

Here we continue to use the notation established in the previous section of this work, and in
addition we note that the vectors F, have F(+ y;) as components. We can now add Eqgs. (52a) and
(52b) and then subtract Eq. (52b) from Eq. (52a) to find

i (L, mI™(,mW[F, + (—1)"""F_] + Q. (52a)

t\)ls]

BN, m)IT (,m)W[(—1)"""F, + F_]+ Q_. (52b)

IMe

(SIS

1

[1 — (o)’ FEJMP = — p1o[D + poFS] (53a)
and

[1 — (o)’ EFIMH = — 144 [S + 1oED] (53b)
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where E and F are defined by Egs. (21) and where

P=F,+F_. and H=F, —F_. (54a, b)
In addition

S=Q;,+Q- and D=Q; —Q_. (55a, b)

Clearly, we can solve Eqgs. (53) to find F, and F_. Although we can use Gaussian elimination to
solve Egs. (53), we express the results we require to complete this particular solution as

F. = — oM ' {[1 —(o)?FE] '[D + poFS] + [1 —(1o)’EF] '[S + oED]}  (56a)
and
F_ = —JuoM ™ {[1 —(1o)*FE] '[D + poFS] — [I —(1o)*EF] '[S + poED]}. (56b)

Of course, the particular solution defined by Eqs. (28) is general in the sense that it is valid for
(essentially) any inhomogeneous source term Q(t, u). On the other hand, Egs. (56) are valid only for
the source term given by Eq. (10). In addition, and in contrast to the particular solution defined by
Egs. (28), the particular solution given by Egs. (56) does not exist in the (unlikely) event that pu is
equal to one of the separation constants {v;}. This point is clear if we note from Egs. (23) that
Lo equal to one of the seperation constants would make the two factors, the inverses of which are
required in Egs. (56), singular. We note that this limitation to Egs. (56) could be exacerbated if we
think of eventually using the solution to our albedo problem as a Green’s function, in which case an
integration over the variable u, would be encountered. Also, and again in contrast to the solution
defined by Egs. (56), the particular solution defined by Egs. (28) is explicit and does not require the
solution to systems of linear algebraic equations. We do note, however, one nice feature of the
particular solution defined by Egs. (56): it does not have to be modified for the special (conserva-
tive) case when m = 0 and @ = 1.

6. The conservative case

In this section we work out the modifications required to extend our discrete-ordinates solution
to the conservative case (w = 1 and m = 0).

The problem with the conservative case is that the largest separation constant, say vy, becomes
infinite, and so the exponential solution, introduced by Eq. (12), does not generate the two
independent forms of the solution that are needed. While we can in fact modify our solution
developed for @ < 1 to find a form appropriate to the @ = 1 case, it is clear that if @ is sufficiently
close to unity, but not equal to unity, then we can anticipate some numerical difficulties (due to
round off errors) in the solution developed for @ < 1. However, having considered values of 1| — @
as small, say, as 10~ 8 we consider that essentially all @ < 1 cases of practical interest can be solved
with the solution discussed in the previous section of this paper. We note that the case of very small
1 — ® has been well discussed, in the context of the spherical-harmonics method, by Karp,
Greenstadt and Fillmore [8].
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Continuing with the conservative case, we simply ignore the largest separation constant vy found
from our discrete-ordinates solution and include with our solution the two (exact) solutions [2]
that can be associated with an infinite separation constant. Therefore, we rewrite Egs. (38) as

L (r) = A[(to — DI, 0) + (3/h)II(1, 0)] + B[II(0, 0) — (3/hy)TI(1, 0)]

+ Z [Aj(l)+(Vj)e_r/vi + Bj(Df(Vj)e_(ro_t)/v"] + II_J'_ (T) (573)
j=1

and

I_(x) = A[(ro — DII(0, 0) — (3/hy)TI(1, 0)] + B[<II(0, 0) + (3/h;)TI(1, 0)]
+ Nf [A;®_(vj)e” " + B;® . (vj)e” @ "] + 12 (1) (57b)

1

where h; = 3 — f§; and the vectors Il(l, m) are given by Eq. (15). Here the constants 4 and B, like
the {4;} and {B;}, are to be determined from the boundary conditions. Of course, we must also
modify the particular solution for this conservative case, and so we follow Refs. [2, 4, 9] to obtain

I (1) = </ (9)[(zo — D0, 0) + (3/h)TL(L, O)] + Z()[T1(0, 0) — (3/h)TI(1, 0)]
£Y L@, () + B@OD ()] (58a)
j=1

and

I2.(v) = o (1) [(vo — D)TI(0, 0) — (3/h)TI(1, 0)] + #(v)[<X1(0, 0) + (3/h;)TI(L, O)]

¥ Nz LA@D_ (1)) + B D ()] (58b)
where {;4(1)} and {#(x)} are still given by Egs. (36) for j = 1,2, ..., N — 1, but where, in general,

S0 = [ DnxQot) + Qi dv (590)
and

20 = - [ o — 01000 — 01311 (59b)
where

0 =2 et (60

For our current application

Qo(x) =3¢ and Qq(x) =3f1pee ¥ (61a, b)
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and so we find, from Egs. (59),
oA (7) = 2“—;; [310 — Gpto + hyt)e 7] (62a)
and
A1) = ZH_rOO {[hi(to — 1) — 3uo]e™ 7 o + 3pge ™o}, (62b)
Of course, once we have solved the linear system defined by the boundary conditions so that 4,

B, and the {4} and {B;} have been found, then the intensity is still given for this case by Eqgs. (40),
but instead of Egs. (41) we have

L N-1
Y(t, 1) =Yolt, 1) + Y, BiPi(p) Y. v;[A;C(t:v;, p)
=0 j=1
+ (_ 1)lBjei(roit)/vj S(T: Vj, ,l,l)] G[(Vj) (633)
and
L N-1
Y(t, —p) = Yo(tr, —p) + Z BiP (1) Z v;[( —1)1Aje_r/vjs(fo — TV, 1)
1=0 j=1
+ B;C(to — t:vj, )1 Gy(v;) (63Db)
where
Yo(t, p) = 2A[(to + 3p/hy)(1 — e~ ) — 7] + 2B[7r — Gu/hy)(1 — e~ ")] (64a)
and
Yolt, —p) = 24 {70 — T — Guu/hy)[1 — e~}
+ 2B{t — 10 + (to + 3u/hy)[1 — e~ 0~ ?/k]} (64b)
for ue[0,1] and 7 € [0, 79]. And instead of Egs. (43) we have
E(t, w) = Eo(t, p) + Y. BiPi() i vi[X (T, ) + (= D)'Y(z, ] Gi(v)) (65a)
1=0 ji=1
and
L N-1
E(r, —u) =Eo(r, —p) + Z B Pi(1) Z v;[(— l)le(Ts W + Wi, W] Gy(v;) (65b)
=0 j=1

for ue[0,1] and 7 € [0, 74]. Here, we have defined
EO(Ta :LL) = XO (T: ,LL) + YO(T’ Au) (668')

and

Eo(t, — 1) = Zo(t, W) + Wo(t, 1) (66b)
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where now
Xol(t, ) = % Jr A(x) [to — x + (B1/hy)ple” C ™ dx, (67a)
0
Yolt, 4) = % J B [x — (By/hyde I dx, (67b)
Zo(t, p) = % JTO A (x)[1o — x — (B1/h)uJe” " ?#dx (67¢)
and

% (x)[x + (B1/h)p]e” >~ rdx (67d)

T

where .«7(t) and %4(7) are given by Egs. (62). Finally, we can use Egs. (62) in Egs. (67) to obtain, after
we note Eqgs. (66), the explicit results

Eo(t, p) = T(t, 1) — (10)* Buto + B11)C(x: pao, 1) (68a)
and
Eolt, —w=TI(r, —p) — (,Uo)2 (Buo — ﬁhu)eiw‘j S(to — T po, 1) (68b)

fort e [0, 79] and p € [0, 1]. Here we continue to use the S and C functions defined by Egs. (34), and
in addition

) =220 (g1 e ) — el e ) 4 (b (1 —e e R (69
and

P, — ) = 209 (0 P e 4 (g — 1) (1 — ¢ )

(v + 3ufhy) [1 — e~ oI (1 — e~ 7). (69b)

Now, to conclude our formulation for the conservative case, we note that for the partial fluxes we
have modified Egs. (49) to obtain

q+(t) = mpoe =" + n[A + (V)] [(to — 1)/2 + 1/hy] + n[B + A(v)] (1/2 — 1/hy)
N-1 N-1
+ 7Y [Aje” "+ oZ;(1)]0+(v))+ 7 Y [Bie "™ "+ Z,(1)]Q-(v)) (70a)

j=1 j=1
and

q-(t) =n[A + Z()][(to — 7)/2 = 1/ ] + n[B + AB()](t/2 + 1/hy)

+7 i [Aje " + o/(1)]Q-(vj)) + = i [Bie™ ™ + Z,(1)]1Q +(v)). (70b)

j=1 j=1
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7. Computational details and numerical results
Of course, the first thing we must do in order to evaluate our discrete-ordinates solution

numerically is to define a quadrature scheme, and so at this point we can emphasize that our
discrete-ordinates solution is essentially independent of the quadrature scheme to be used. The

Table 1
The Legendre coefficients for the cloud C; phase function

o

B Biyss  Bivrro  Biyros  Bivrao Bivirs Biy2io Biv2as Biyoso

1.000 19.884 16.144 6990 2.025 0440 0.079 0.012 0.002
2544 20.024 15883 6.785 1940 0422 0.074 0.011 0.002
3.883 20.145 15.606 6573 1.869 0401 0.071 0.011 0.001
4568 20.251 15338 6377 1790 0384 0.067 0.010 0.001
5235 20330 15.058 6.173 1.723 0364 0.064 0.009 0.001
5.887 20.401 14784 5986 1.649 0349 0.060 0.009 0.001
6457 20.444 14501 5790 1.588 0.331 0.057 0.008 0.001
7177 20477 14225 5612 1518 0317 0054 0.008 0.001
7.859 20489 13941 5424 1461 0301 0.052 0.008 0.001
8494 20.483 13.662 5255 1397 0.288 0.049 0.007 0.001
10 9286 20.467 13378 5075 1344 0273 0.047 0.007 0.001
11 9856 20.427 13.098 4915 1284 0.262 0.044 0.006 0.001
12 10.615 20.382 12816 4.744 1235 0248 0.042 0.006 0.001
13 11229 20.310 12536 4592 1.179 0.238 0.039 0.006 0.001
14 11851 20.236 12257 4429 1.134 0225 0.038 0.005 0.001
15 12503 20.136 11978 4285 1.082 0.215 0035 0.005 0.001
16 13.058 20.036 11.703 4.130 1.040 0.204 0.034 0.005 0.001
17 13.626 19.909 11427 3994 0992 0.195 0.032 0.005 0.001
18 14.209 19.785 11.156 3.847 0954 0.185 0.030 0.004 0.001
19 14.660 19.632 10.884 3719 0909 0.177 0.029 0.004 0.001
20 15.231 19486 10.618 3580 0.873 0.167 0.027 0.004
21 15.641 19311 10350 3459 0.832 0.160 0.026 0.004
22 16.126 19.145 10.090 3327 0.799 0.151 0.024 0.003
23 16.539 18949 9.827 3214 0.762 0.145 0.023  0.003
24 16934 18.764 9.574 3.090 0.731 0.137 0.022 0.003
25 17.325 18551 9318 2983 0.69 0.131 0.021 0.003
26 17.673 18.348 9.072 2866 0.668 0.124 0.020 0.003
27 17999 18.119 8822 2766 0.636 0.118 0.018 0.003
28 18329 17901 8584 2656 0.610 0.112 0.018 0.002
29 18588 17.659 8340 2562 0.581 0.107 0.017 0.002
30 18.885 17.428 8.110 2459 0.557 0.101 0.016 0.002
31 19.103 17.174 7.874 2372 0.530 0.097 0.015 0.002
32 19345 16931 7.652 2274 0.508 0.091 0.014 0.002
33 19.537 16.668 7.424 2193 0483 0.087 0.013 0.002
34 19.721 16415 7.211 2102 0463 0.082 0.013 0.002

OO N W —=O
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Table 2
The diffuse component of the intensity I, (1770, i, ¢) for the cloud C; phase function with 75 = 64.0,
©=09, up=02and ¢ — o =0

p n=000 7=005 7=010 7n=020 7n=050 7n=075 n=1.00

-1.0 1.56935(-2) 4.31093(-3) 1.91728(-3) 4.17708(—4) 4.69286(-6) 1.11762(-7)
—0.9 3.14608(-2) 4.48311(-3) 1.95662(-3) 4.32182(—4) 4.89715(-6) 1.16675(-7)
—0.8 5.58201(-2) 5.13016(-3) 2.11072(-3) 4.57172(-4) 5.16878(-6) 1.23166(-7)
—0.7 9.44525(-2) 6.06885(-3) 2.33466(-3) 4.91078(—4) 5.51932(-6) 1.31526(-7)
-0.6 1.54447(-1) 7.34407(-3) 2.63384(-3) 5.35020(—4) 5.96299(-6) 1.42095(-7)
-0.5 2.48011(-1) 9.03821(-3) 3.02086(-3) 5.90620(-4) 6.51661(-6) 1.55273(-7)
-0.4 3.95633(-1) 1.12707(-2) 3.51388(-3) 6.59959(-4) 7.20019(-6) 1.71538(~7)
-0.3 6.33521(-1) 1.42106(-2) 4.13716(-3) 7.45642(-4) 8.03773(-6) 1.91459(-7)
-0.2 1.03022 1.80991(-2) 4.92258(-3) 8.50905(-4) 9.05809(-6) 2.15722(-7)
-0.1 1.73200 2.32935(-2) 5.91202(-3) 9.79764(-4) 1.02962(-5) 2.45157(-7)
-0.0 2.37252 3.03778(-2) 7.16112(=3) 1.13722(-3) 1.17948(-5) 2.80774(-7)

0.0 3.03778(-2) 7.16112(-3) 1.13722(-3) 1.17948(-5) 2.80774(-7) 3.31330(-9)
0.1 4.07951(-2) 8.74536(-3) 1.32950(-3) 1.36058(-5) 3.23808(-7) 5.91271(-9)
0.2 6.67342(-2) 1.07739(-2) 1.56440(-3) 1.57933(-5) 3.75777(-7) 7.55766(-9)
0.3 9.39509(-2) 1.34341(-2) 1.85168(-3) 1.84366(-5) 4.38560(-7) 9.32979(-9)
0.4 1.11784(-1) 1.69798(-2) 2.20358(-3) 2.16343(-5) 5.14492(-7) 1.13416(-8)
0.5 1.23053(-1) 2.13665(-2) 2.63511(-3) 2.55098(-5) 6.06501(-7) 1.36868(-8)
0.6 1.20147(-1) 2.57860(-2) 3.16194(-3) 3.02185(-5) 7.18273(-7) 1.64673(-8)
0.7 1.05252(-1) 2.89528(-2) 3.78867(-3) 3.59569(-5) 8.54498(-7) 1.98045(-8)
0.8 8.33081(-2) 2.97753(-2) 4.48327(-3) 4.29740(-5) 1.02118(-6) 2.38490(-8)
0.9 5.81233(-2) 2.75115(-2) 5.14014(-3) 5.15794(-5) 1.22608(-6) 2.87904(-8)
1.0 2.45441(-2) 1.83657(-2) 5.22684(-3) 6.20352(-5) 1.47920(-6) 3.48741(-8)

only restriction we have imposed is that the N quadrature points {y,} and the N weights {w;} must
be defined for use on the integration interval [0, 1]. In a recent work [10] concerning the
equivalence between the spherical-harmonics method and the classical discrete-ordinates method
that uses a quadrature scheme defined for use on the integration interval [ — 1, 1], we confirmed
that the weights and nodes defined by the zeros of the associated Legendre functions Py, ,n(1)
were a natural choice for a “full-range” quadrature scheme. We therefore can suggest that
a “half-range” quadrature scheme defined in terms of the “weight function” (1 — u?)™ on the
integration interval [0, 1] seems the natural choice [11, 12] to use in this work. As reported by
Chalhoub and Garcia in Refs. [11,12], this quadrature scheme has been used to good effect in
radiative-transfer calculations. On the other hand, we have seen [13] a case where the inclusion in
the boundary data of a “step function” was well solved by subdividing the integration interval
[0, 1] so as to have a “break point” that coincided with the rise in the step-function boundary data.
And so we consider there to be some merit in using a simple integration scheme that can naturally
be mapped onto the integration interval [0, 1] or various subintervals of that basic interval. While
we intend to investigate (in future work) the effectiveness of other integration schemes, in this work
we follow a simple approach: we start with the usual Gauss-Legendre scheme (of order N)
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Table 3
The diffuse component of the intensity I, (179, 1, ¢) for the cloud C; phase function with 75 = 64.0,
© =09, up =02 and ¢ — pg = 7n/2

p n=000 n=005 9=010 =020 n=050 75=0.75 n=1.00

-1.0 1.56935(-2) 4.31093(-3) 1.91728(-3) 4.17708(—4) 4.69286(-6) 1.11762(~7)
-0.9 1.81328(-2) 4.64405(-3) 2.02015(-3) 4.36492(—4) 4.89825(-6) 1.16676(~7)
-0.8 2.10149(-2) 5.05580(-3) 2.15480(-3) 4.61409(-4) 5.16997(-6) 1.23167(-7)
-0.7 2.44400(-2) 5.56443(-3) 2.32628(-3) 4.93502(-4) 5.52018(-6) 1.31527(-7)
-0.6 2.83993(-2) 6.18988(-3) 2.54077(-3) 5.34027(-4) 5.96314(-6) 1.42095(-7)
-0.5 3.30050(-2) 6.95443(-3) 2.80590(-3) 5.84491(-4) 6.51563(-6) 1.55273(-7)
-0.4 3.81247(-2) 7.88409(-3) 3.13102(-3) 6.46703(—4) 7.19765(-6) 1.71536(~7)
-0.3 4.37074(-2) 9.00936(-3) 3.52735(-3) 7.22843(-4) 8.03307(-6) 1.91455(-7)
-0.2 4.91547(-2) 1.03654(-2) 4.00840(-3) 8.15544(-4) 9.05067(~6) 2.15715(-7)
-0.1 5.28131(-2) 1.19911(-2) 4.59024(-3) 9.27992(-4) 1.02853(-5) 2.45146(-7)
-0.0 3.66127(-2) 1.39262(-2) 5.29178(-3) 1.06405(-3) 1.17792(-5) 2.80758(-7)

0.0 1.39262(-2) 5.29178(-3) 1.06405(-3) 1.17792(-5) 2.80758(~7) 3.31329(-9)
0.1 1.62038(-2) 6.13482(-3) 1.22844(-3) 1.35842(-5) 3.23786(-7) 5.91269(-9)
0.2 1.88152(-2) 7.14313(-3) 1.42687(-3) 1.57641(-5) 3.75748(-7) 7.55763(-9)
0.3 2.15527(-2) 8.33897(-3) 1.66631(-3) 1.83976(-5) 4.38520(-7) 9.32975(-9)
0.4 2.39306(-2) 9.73007(-3) 1.95513(-3) 2.15826(-5) 5.14440(-7) 1.13416(-8)
0.5 2.55761(-2) 1.12835(-2) 2.30318(-3) 2.54419(-5) 6.06432(-7) 1.36868(-8)
0.6 2.64190(-2) 1.29162(-2) 2.72117(-3) 3.01300(-5) 7.18184(-7) 1.64672(-8)
0.7 2.65711(=2) 1.45215(-2) 3.21908(-3) 3.58435(-5) 8.54384(-7) 1.98044(-8)
0.8 2.62034(-2) 1.60037(-2) 3.80338(-3) 4.28336(-5) 1.02104(-6) 2.38489(-8)
0.9 2.54826(-2) 1.72967(-2) 4.47469(-3) 5.14244(-5) 1.22593(-6) 2.87903(-8)
1.0 2.45441(-2) 1.83657(-2) 5.22684(-3) 6.20352(-5) 1.47920(-6) 3.48741(-8)

defined by the zeros of the Legendre polynomial Py(u) for use on the integration interval
[— 1,1], and then we map (linearly) this scheme into a scheme defined for use on the interval
[0, 17.

Having defined our quadrature scheme, we obtain the required separation constants {v;} and the
associated eigenvectors by using the driver program RG from the EISPACK collection [14] to
solve the eigenvalue problem defined by Eq. (23a). We have also used a Gaussian elimination
package from the LINPACK collection [15] to solve the system of linear algebraic equations
defined by Egs. (39). At this point our solution is complete, and so we are ready to look at some
numerical results.

For our example calculations we consider the cloud C; problem that was posed as a basic test
problem by the Radiation Commission of the International Association of Meteorology and
Atmospheric Physics [ 16]. This cloud problem was also used to define test cases in Refs. [2, 3]. For
this model the 300-term phase function is defined by the Legendre coefficients that were accurately
computed by de Haan [17] and Karp [18]. For the sake of completeness we reproduce in our
Table 1 the defining Legendre coefficients that were first tabulated in Ref. [2]. Our first problem is
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Table 4
The diffuse component of the intensity I, (7o, i, ¢) for the cloud C; phase function with 7, = 64.0,
=09 uy=02and ¢ —¢po=1

p__1n=000 7=005 n=010 7=02 7n=050 n=075 75=100

-1.0 1.56935(-2) 4.31093(-3) 1.91728(-3) 4.17708(-4) 4.69286(-6) 1.11762(~7)
-0.9 2.17431(-2) 5.11215(-3) 2.10612(-3) 4.41062(-4) 4.89936(-6) 1.16677(~7)
-0.8 3.78221(-2) 5.62344(-3) 2.25453(-3) 4.66487(-4) 5.17116(-6) 1.23168(-7)
-0.7 4.61092(-2) 6.13263(-3) 2.41651(-3) 4.97557(-4) 5.52106(-6) 1.31528(~7)
-0.6 4.80969(-2) 6.68373(-3) 2.59985(-3) 5.35633(-4) 5.96332(-6) 1.42095(-7)
-0.5 5.52736(-2) 7.29004(-3) 2.81068(-3) 5.82115(-4) 6.51471(=6) 1.55272(~7)
—0.4 6.60110(-2) 7.96452(-3) 3.05524(-3) 6.38599(-4) 7.19517(-6) 1.71533(~7)
-0.3 9.22168(-2) 8.72469(-3) 3.34008(-3) 7.06954(—4) 8.02850(-6) 1.91450(-7)
-0.2 1.62931(-1) 9.59029(-3) 3.67231(-3) 7.89394(-4) 9.04337(-6) 2.15707(-7)
-0.1 1.30445(-1) 1.05863(-2) 4.05996(-3) 8.88548(—4) 1.02744(-5) 2.45135(-7)
-0.0 8.61035(-2) 1.17417(-2) 4.51252(-3) 1.00754(-3) 1.17638(-5) 2.80743(~7)

0.0 1.17417(=2) 4.51252(-3) 1.00754(-3) 1.17638(-5) 2.80743(-7) 3.31328(-9)
0.1 1.30933(-2) 5.04114(-3) 1.15012(-3) 1.35629(-5) 3.23764(-7) 5.91266(-9)
0.2 1.47042(-2) 5.65889(-3) 1.32074(-3) 1.57353(-5) 3.75718(-7) 7.55760(-9)
0.3 1.65402(-2) 6.38083(-3) 1.52485(-3) 1.83590(-5) 4.38481(~7) 9.32971(-9)
0.4 1.82756(-2) 7.22013(-3) 1.76904(-3) 2.15316(-5) 5.14388(-7) 1.13415(-8)
0.5 1.89516(-2) 8.16162(-3) 2.06151(-3) 2.53749(-5) 6.06363(=7) 1.36867(-8)
0.6 1.81268(-2) 9.13873(-3) 2.41248(-3) 3.00430(-5) 7.18095(-7) 1.64671(-8)
0.7 1.69801(-2) 1.01214(-2) 2.83519(-3) 3.57322(-5) 8.54270(-7) 1.98043(-8)
0.8 1.59154(-2) 1.11720(-2) 3.34996(-3) 4.26963(-5) 1.02090(-6) 2.38487(-8)
0.9 1.56553(=2) 1.26104(-2) 4.00401(-3) 5.12731(-5) 1.22577(-6) 2.87901(-8)
1.0 2.45441(-2) 1.83657(-2) 5.22684(-3) 6.20352(-5) 1.47920(-6) 3.48741(-8)

for a layer of optical thickness 7o = 64 with @ = 0.9, and the incident beam is defined by the
direction cosine po = 0.2. In Ref. [2] the spherical-harmonics method was used to solve this
problem, with essentially five figures of accuracy, for the case of normal incidence (1o = 1) which
requires only the m = 0 Fourier component to define the complete solution. In a more recent work
[3], the Fy method was used to solve, again with essentially five figures of accuracy, a case of
non-normal incidence (1o = 0.2). This problem is considered a severe test of a computational
method since all 300 Fourier components I™(z, 1) are required for the complete solution. And so
with our test problem defined, we have used a FORTRAN implementation of our solution to
obtain the results listed for three values of the azimuthal angle in Tables 2-4. These results given
with what we believe to be six figures of accuracy were obtained using various orders N of the
quadrature scheme for each of the Fourier component problems. For example, the results listed in
our tables were obtained with a maximum value of N = 350 for m € [0, 6] and a minimum value of
N =100 for m € [201, 299]. While we did not attempt to find minimum values of N that would
yield the six-figure results that are listed in Tables 2-4, we did double the mentioned values of N to
see that our algorithm was in fact very stable and that the results listed in Tables 2-4 did not
change.
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Table 5
The diffuse component of the intensity I, (7o, i, ¢) for the cloud C; phase function with 7, = 64.0,
w=10,pu0=02and ¢ — ¢po=0

p n=000 =005 n=010 7=020 7=050 75=075 n=1.00

-1.0 1.11696(-1) 9.48001(-2) 8.87177(-2) 7.82799(-2) 4.77964(-2) 2.24161(-2)
-0.9 1.38292(-1) 9.63736(-2) 8.97374(-2) 7.93064(-2) 4.88402(-2) 2.34552(-2)
-0.8 1.76327(-1) 9.90274(-2) 9.10961(-2) 8.03709(-2) 4.98841(-2) 2.44968(-2)
-0.7 2.33788(-1) 1.02336(-1) 9.26214(-2) 8.14527(-2) 5.09280(-2) 2.55397(-2)
-0.6 3.19725(-1) 1.06383(-1) 9.43133(~2) 8.25509(-2) 5.19719(-2) 2.65833(-2)
-0.5 4.49274(-1) 1.11325(-1) 9.61919(-2) 8.36665(-2) 5.30159(-2) 2.76272(-2)
0.4 6.47359(-1) 1.17390(-1) 9.82892(-2) 8.48016(-2) 5.40599(-2) 2.86712(-2)
-0.3 9.57154(-1) 1.24890(-1) 1.00649(-1) 8.59591(-2) 5.51039(-2) 2.97153(-2)
—0.2 1.45849 1.34260(-1) 1.03326(-1) 8.71430(-2) 5.61480(-2) 3.07593(-2)
-0.1 2.31370 1.46129(-1) 1.06391(-1) 8.83579(-2) 5.71921(-2) 3.18034(-2)
-0.0 2.86066 1.61526(-1) 1.09932(-1) 8.96094(-2) 5.82363(-2) 3.28474(-2)

0.0 1.61526(-1) 1.09932(-1) 8.96094(-2) 5.82363(-2) 3.28474(-2) 3.57779(-3)
0.1 1.83158(-1) 1.14062(-1) 9.09038(-2) 5.92806(-2) 3.38914(-2) 6.56432(-3)
0.2 2.31498(-1) 1.18935(-1) 9.22479(-2) 6.03249(~2) 3.49354(-2) 8.10518(-3)
0.3 2.78928(-1) 1.24813(-1) 9.36480(-2) 6.13693(-2) 3.59794(-2) 9.48945(-3)
04 2.99396(-1) 1.31852(-1) 9.51078(-2) 6.24139(-2) 3.70233(-2) 1.07873(-2)
0.5 3.02958(-1) 1.39199(-1) 9.66228(-2) 6.34585(-2) 3.80673(-2) 1.20272(-2)
0.6 2.81238(-1) 1.44522(-1) 9.81612(-2) 6.45032(-2) 3.91112(-2) 1.32253(-2)
0.7 2.40623(-1) 1.45108(-1) 9.96161(~2) 6.55479(-2) 4.01551(-2) 1.43934(-2)
0.8 1.90312(-1) 1.39120(-1) 1.00730(-1) 6.65924(=2) 4.11991(-2) 1.55402(-2)
0.9 1.36594(-1) 1.25482(-1) 1.00986(-1) 6.76359(-2) 4.22430(-2) 1.66711(-2)
1.0 6.89992(-2) 9.47993(-2) 9.79271(-2) 6.86730(-2) 4.32868(-2) 1.77898(-2)

Finally, to test our solution for the conservative case we consider a second problem defined by
the same data as our first problem except that now we take @ = 1. As mentioned in Section 6, the
conservative case must be treated differently (for the m = 0 Fourier component), and so this case is
considered an important test of our general solution. In Tables 5-7 we list our results which (again)
we believe to be correct to all of the six figures given.

8. Concluding remarks

Needless to say, this is not the first work concerning the use of the discrete-ordinates method
for solving radiative-transfer problems in plane geometry. However, we consider that we have
defined (and tested numerically for a quite difficult problem) a very efficient and concise version
of the method. Having said that, we must note that Stamnes, Tsay, Wiscombe and Jayaweera
[19] have reported a discrete-ordinates algorithm that has many features common to our
work here. However, we note something we find strange about the development reported in
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Table 6
The diffuse component of the intensity I, (7o, i, ¢) for the cloud C; phase function with 7, = 64.0,
o =10, uo=0.2and ¢ — pg = /2

g 1n=000 9n=005 n=010 =020 7=050 n=075 = 1.00

-1.0 1.11696(-1) 9.48001(-2) 8.87177(=2) 7.82799(-2) 4.77964(-2) 2.24161(-2)
-0.9 1.16231(-1) 9.64067(-2) 8.98900(-2) 7.93320(-2) 4.88402(-2) 2.34552(-2)
-0.8 1.21145(-1) 9.80605(-2) 9.10772(-2) 8.03856(-2) 4.98841(-2) 2.44968(-2)
-0.7 1.26441(-1) 9.97763(-2) 9.22823(-2) 8.14406(-2) 5.09280(-2) 2.55397(-2)
-0.6 1.31940(-1) 1.01567(~1) 9.35073(-2) 8.24972(-2) 5.19718(-2) 2.65833(~2)
-0.5 1.37480(-1) 1.03442(-1) 9.47543(-2) 8.35554(-2) 5.30157(-2) 2.76272(-2)
0.4 1.42496(-1) 1.05402(-1) 9.60251(-2) 8.46153(-2) 5.40595(-2) 2.86712(-2)
-0.3 1.46276(-1) 1.07441(-1) 9.73204(-2) 8.56773(-2) 5.51034(-2) 2.97153(-2)
-0.2 1.47001(-1) 1.09539(-1) 9.86396(-2) 8.67414(-2) 5.61473(-2) 3.07593(-2)
-0.1 1.40326(-1) 1.11654(-1) 9.99786(-2) 8.78076(-2) 5.71911(-2) 3.18033(-2)
—0.0 8.45445(-2) 1.13697(-1) 1.01328(-1) 8.88759(-2) 5.82350(-2) 3.28474(-2)

0.0 1.13697(-1) 1.01328(-1) 8.88759(-2) 5.82350(-2) 3.28474(-2) 3.57779(-3)
0.1 1.15499(-1) 1.02667(-1) 8.99458(-2) 5.92789(-2) 3.38914(-2) 6.56432(-3)
0.2 1.16680(-1) 1.03957(-1) 9.10159(-2) 6.03227(-2) 3.49354(-2) 8.10518(-3)
0.3 1.16363(-1) 1.05121(-1) 9.20835(-2) 6.13666(-2) 3.59793(-2) 9.48945(-3)
0.4 1.13579(-1) 1.06010(-1) 9.31433(-2) 6.24105(-2) 3.70233(-2) 1.07873(-2)
0.5 1.08299(-1) 1.06376(-1) 9.41850(-2) 6.34543(-2) 3.80672(-2) 1.20272(-2)
0.6 1.01224(-1) 1.05950(-1) 9.51890(-2) 6.44982(-2) 3.91112(-2) 1.32253(-2)
0.7 9.31800(=2) 1.04556(-1) 9.61214(-2) 6.55420(-2) 4.01551(-2) 1.43934(-2)
0.8 8.48414(-2) 1.02162(-1) 9.69316(-2) 6.65858(-2) 4.11990(-2) 1.55402(-2)
0.9 7.66825(-2) 9.88565(-2) 9.75559(-2) 6.76295(-2) 4.22429(-2) 1.66711(-2)
1.0 6.89992(-2) 9.47993(-2) 9.79271(-2) 6.86730(-2) 4.32868(-2) 1.77898(-2)

Ref. [19]: the order of the Legendre expansion of the phase function (our L) and the order
of the half-range quadrature scheme (our N) seem to be related by the (impossible) condition
2N —1=1L.

While we have also used (for the incident-beam problem) a particular solution (see Section 5)
of the form given by Eq. (9a) of Ref. [19], we are of the opinion that the particular solution as
given by Egs. (28) and (33) has two advantages over the form used in Ref. [19]: (i) our particular
solution, as defined by Egs. (28) and (33), is given explicitly and so does not depend on solutions
to systems of linear algebraic equations, and (ii) our particular solution is not singular in the
event that p, happens to be one of the separation constants {v;}. We are happy to report,
however, that we have obtained the results given in our tables from formulations based on the two
different forms of the particular solution. Finally, we note that our particular solution as given by
Egs. (28) and (29) is general in the sense that it is valid for a general form of the inhomogeneous
source term.
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Table 7
The diffuse component of the intensity I, (179, 1, ¢) for the cloud C; phase function with 75 = 64.0,
o=10,u=02and ¢ —¢po=1

g n=000 =005 9n=010 95=020 9=050 n7=07 7=100

~1.0 1.11696(-1) 9.48001(-2) 8.87177(~2) 7.82799(-2) 4.77964(-2) 2.24161(~2)
-0.9 1.20383(-1) 9.74329(-2) 9.01621(~2) 7.93608(-2) 4.88403(-2) 2.34552(~2)
-0.8 1.41593(-1) 9.91923(-2) 9.13338(~2) 8.04086(-2) 4.98841(-2) 2.44968(-2)
-0.7 1.53157(~1) 1.00701(~1) 9.24149(-2) 8.14434(-2) 5.09279(-2) 2.55397(-2)
—0.6 1.56512(~1) 1.02044(~1) 9.34165(-2) 8.24662(-2) 5.19717(-2) 2.65833(~2)
-0.5 1.65210(-1) 1.03220(-1) 9.43364(~2) 8.34765(-2) 5.30155(~2) 2.76272(-2)
—0.4 1.77131(=1) 1.04211(~1) 9.51671(-2) 8.44730(<2) 5.40592(-2) 2.86712(~2)
-0.3 2.06090(-1) 1.04994(-1) 9.58966(~2) 8.54538(~2) 5.51029(~2) 2.97152(-2)
-0.2 2.83360(-1) 1.05535(-1) 9.65079(-2) 8.64166(~2) 5.61466(~2) 3.07593(-2)
-0.1 2.36858(~1) 1.05799(-1) 9.69792(-2) 8.73582(~2) 5.71902(-2) 3.18033(-2)
—0.0 1.44304(-1) 1.05733(~1) 9.72834(~2) 8.82751(=2) 5.82337(-2) 3.28474(-2)

0.0 1.05733(-1) 9.72834(-2) 8.82751(-2) 5.82337(-2) 3.28474(-2) 3.57779(-3)
0.1 1.05259(-1) 9.73883(-2) 8.91626(-2) 5.92772(-2) 3.38914(-2) 6.56432(-3)
0.2 1.04246(-1) 9.72546(-2) 9.00153(-2) 6.03206(-2) 3.49354(-2) 8.10518(-3)
0.3 1.02179(-1) 9.68326(-2) 9.08269(-2) 6.13639(-2) 3.59793(-2) 9.48945(-3)
0.4 9.82614(-2) 9.60459(-2) 9.15906(-2) 6.24071(-2) 3.70233(-2) 1.07873(-2)
0.5 9.14511(-2) 9.47548(-2) 9.23000(-2) 6.34502(-2) 3.80672(-2) 1.20272(-2)
0.6 8.19737(-2) 9.27974(-2) 9.29515(-2) 6.44932(-2) 3.91111(-2) 1.32253(-2)
0.7 7.23240(-2) 9.02283(-2) 9.35523(-2) 6.55362(-2) 4.01551(-2) 1.43934(-2)
0.8 6.35982(-2) 8.74289(-2) 9.41472(-2) 6.65793(-2) 4.11990(-2) 1.55402(-2)
0.9 5.73107(-2) 8.54715(=2) 9.49212(-2) 6.76232(-2) 4.22429(-2) 1.66711(-2)
1.0 6.89992(-2) 9.47993(-2) 9.79271(-2) 6.86730(-2) 4.32868(-2) 1.77898(-2)
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