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Abstract

A recently developed version of the discrete-ordinates method is used along with elementary numerical
linear-algebra techniques to establish an e$cient and especially accurate solution to what can be called
Chandrasekhar's basic problem in radiative transfer, namely the problem of computing the radiation
intensity in a "nite plane-parallel layer illuminated by an incident beam of radiation and in which scattering
can be described by a (rather) general scattering law. ( 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

We consider in this work what we call Chandrasekhar's basic problem in radiative transfer
* the problem upon which much of Chandrasekhar's classic text Radiative ¹ransfer [1] is focused,
viz. the problem of computing the intensity in a "nite layer illuminated by a beam of radiation
incident on one surface. In Ref. [2] we reported a high-order solution based on the spherical-
harmonics method for this problem, and in Ref. [3] the F

N
method was used to generate accurate

results for the most challenging test problem, in this general class, we have solved to date. Since
many of the important works that are based on the spherical-harmonics method and the
F
N

method were discussed in Refs. [2, 3], additional reviewing is not done here. In this work, we use
a variation of the discrete-ordinates technique and a recently developed particular solution [4] to
establish a solution to Chandrasekhar's basic problem that is concise and especially accurate.

2. Basic formulation of the problem

Our formulation of the problem to be solved here and the notation we use follow directly from
Ref. [2], and so we start with the equation of transfer
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where -3[0, 1] is the albedo for single scattering, q3[0, q
0
] is the optical variable, q

0
is the optical

thickness of the plane-parallel medium, # is the scattering angle, k3[!1, 1] is the cosine of the
polar angle (as measured from the positive q-axis) and / is the azimuthal angle. Together the polar
and azimuthal angles de"ne the direction of propagation of the radiation. In addition, we consider
here phase functions that can be expressed in terms of Legendre polynomials, that is
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where the b
l
are the coe$cients in the ¸th-order expansion of the scattering law. Considering

Chandrasekhar's standard problem [1], we seek to establish, for all k3[!1, 1], /3[0, 2n] and
q3[0, q

0
], a solution of Eq. (1) subject to the boundary conditions
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for k3 (0, 1] and /3[0, 2n]. Here k
0

is the direction cosine of the incident beam.

3. The reduced problem

Since the boundary condition given by Eq. (3a) introduces into I (q, k, /) a component that is
a generalized function, we follow Chandrasekhar and express the complete solution to the problem
de"ned by Eqs. (1)} (3) in the form
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where I
*
(q, k, /) is the reduced or di!use "eld. Continuing, we make use of the addition theorem

[5] for the Legendre polynomials and express the phase function, for scattering from Mk@, /@N to
Mk, /N, in the form
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is used to denote the normalized Legendre function. It follows [1}3] now that the di!use "eld can be
expressed as
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where the mth Fourier component satis"es the equation of transfer
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for k3[!1, 1] and q3(0, q
0
), and the boundary conditions
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for k3 (0, 1]. Here the inhomogeneous source term is
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4. A discrete-ordinates solution

In a recent paper [6], concerning a radiative-transfer problem based on completely non-coherent
scattering, a solution based on a new variation of the discrete-ordinates method was developed,
evaluated and found to be very e!ective. And so here we wish to make use of the solution reported
in Ref. [6] in order to solve e$ciently and accurately the class of problems de"ned by Eqs. (8)}(10).
For the moment, we exclude the special (conservative) case -"1, but in Section 6 of this work we
spell-out the modi"cations required in our general development in order deal with that case.

As a matter of strategy, we note that we intend to use the discrete-ordinates method only to "nd
approximate values for the integral terms in Eq. (8), and once that is done we will solve Eq. (8), with
the integral terms replaced by discrete-ordinates approximations to those terms, to "nd the desired
Fourier component Im (q,k) for all q and k. This second aspect of our approach is what we refer to
as a &&post-processing'' step [1, 7].

And so, we suppress some of the explicit notation of the Fourier index m and start with our
discrete-ordinates equations, relevant to the homogeneous version of Eq. (8), written as

k
i

d
dq

I (q,k
i
)#I (q,k

i
)"

-
2

L
+
l/m

b
l
Pm
l

(k
i
)

N
+
k/1

w
k
Pm

l
(k

k
) [I(q, k

k
)#(!1) l~mI(q,!k

k
)] (11a)

and

!k
i

d
dq

I (q,!k
i
)#I (q,!k

i
)"

-
2

L
+
l/m

b
l
Pm
l

(k
i
)

]
N
+
k/1

w
k
Pm
l

(k
k
) [(!1)l~mI (q,k

k
)#I (q,!k

k
)] (11b)

for i"1, 2,2 , N. In writing Eqs. (11) as we have, we clearly are considering that the N quadrature
points Mk

k
N and the N weights Mw

k
N are de"ned for use on the integration interval [0, 1]. We see

that exponential solutions will work in Eqs. (11), and so we substitute
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into Eqs. (11) to "nd
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for i"1, 2,2 , N. In order to write Eqs. (13) in a more convenient way, we introduce some matrix
notation. So with
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we can rewrite Eqs. (13) as
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where I is the N]N identity matrix. Now if we let
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where
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Clearly, we can eliminate between Eqs. (20) to obtain the eigenvalue problems
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where j"1/l2. We note that the required separation constants Ml
j
N are readily available once we

"nd the eigenvalues Mj
j
N de"ned by either Eq. (23a) or Eq. (23b). We choose to express our results in

terms of the eigenvalues and eigenvectors de"ned by Eq. (23a).
Continuing, we assume that Eq. (23a) de"nes positive eigenvalues and a full set of eigenvectors,

and so we let j
j
and X (j

j
), for j"1, 2,2 , N, denote this collection. The separation constants we

require clearly occur in plus}minus pairs, and so letting l
j
, for the j"1, 2,2 , N, denote the

reciprocal of positive root of j
j
, we can use Eqs. (19) and (20) to obtain
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for j"1, 2,2 , N. We note that
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and so at this point we have all we require for de"ning our solution to Eqs. (11). We let
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so we can express our discrete-ordinates solution to the homogeneous version of Eq. (8) as
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and
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where the constants MA
j
N and MB

j
N are at this point arbitrary. Note that in Eqs. (27) we have added

the superscript h to remind us that these solutions refer to the homogeneous version of Eq. (8).
Having found our discrete-ordinates solution of the homogeneous version of Eq. (8), we are now

ready to de"ne a particular solution to account for the inhomogeneous source term Qm (q, k ) that
appears in Eq. (8). In a recent work [4] based on a discrete-ordinates version of a radiative-transfer
problem that is su$ciently general so as to include the problem considered in this work, Barichello,
Garcia and Siewert used the in"nite-medium Green's function to develop a particular solution that
we can use here. Taking into account some changes in notation and continuing to suppress some of
the explicit notation that refers to the Fourier index m, we express the particular solution developed
in Ref. [4] as
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Here the functions A
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We note that the particular solution de"ned by Eqs. (28)}(30) is valid for a general inhomogeneous
source term Q(q, k): however, for the current application where we can write
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we can follow Ref. [4] and write Eqs. (29) for this special case as
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where the S and C functions are given by
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Finally, if we make note of our vector notation, we can rewrite Eq. (30) as
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Having found a particular solution, we can now add it to Eqs. (27) to obtain
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and upon substituting Eqs. (38) into the boundary conditions given by Eqs. (9) we "nd
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Eqs. (39) de"ne the system of linear algebraic equations we solve to "nd the constants MA
j
N and MB

j
N

required to complete Eqs. (38).
As mentioned earlier in this work, we use the discrete-ordinates method only to determine

approximations of the integrals in Eq. (8), and so now we substitute Eqs. (38) into our quadrature
versions of those integrals and solve the resulting equation to obtain our "nal results. In this way
we "nd
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where, in general,
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then we can enter Eqs. (36) into Eqs. (44) to obtain, for our current application,
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To this point we have been concerned with developing our solution for the radiation intensity;
however, we have already all that we require to compute moments of the intensity. For example,
the partial #uxes
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where we suppress the Fourier-component index and let I(q,k) denote the m"0 component
of I

*
(q,k, /). Keeping in mind that we are using a quadrature scheme de"ned for the integ-

ration interval [0, 1], we now substitute Eqs. (38) into quadrature versions of Eqs. (48) to
obtain
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Here, to reiterate, we note that the functions MA
j
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(q)N are given by Eqs. (36) and that the

constants MA
j
N and MB

j
N are the solutions to the linear system de"ned by Eqs. (39).

5. An alternative particular solution

While the particular solution we have de"ned by Eqs. (28) is, for various reasons, our preferred
form, we take a few lines here to list a variation of the particular solution used by Chandrasekhar.
We substitute
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b
l
P(l, m)PT(l, m)W[(!1) l`mF

`
#F

~
]#Q

~
. (52b)

Here we continue to use the notation established in the previous section of this work, and in
addition we note that the vectors F

$
have F($k

i
) as components. We can now add Eqs. (52a) and

(52b) and then subtract Eq. (52b) from Eq. (52a) to "nd

[I!(k
0
)2FE]MP"!k

0
[D#k

0
FS] (53a)

and

[I!(k
0
)2EF]MH"!k

0
[S#k

0
ED] (53b)
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where E and F are de"ned by Eqs. (21) and where

P"F
`
#F

~
and H"F

`
!F

~
. (54a, b)

In addition

S"Q
`
#Q

~
and D"Q

`
!Q

~
. (55a, b)

Clearly, we can solve Eqs. (53) to "nd F
`

and F
~

. Although we can use Gaussian elimination to
solve Eqs. (53), we express the results we require to complete this particular solution as

F
`
"!1

2
k
0
M~1M[I!(k

0
)2FE]~1[D#k

0
FS]#[I!(k

0
)2EF]~1[S#k

0
ED]N (56a)

and

F
~
"!1

2
k
0
M~1M[I!(k

0
)2FE]~1[D#k

0
FS]![I!(k

0
)2EF]~1[S#k

0
ED]N . (56b)

Of course, the particular solution de"ned by Eqs. (28) is general in the sense that it is valid for
(essentially) any inhomogeneous source term Q(q, k). On the other hand, Eqs. (56) are valid only for
the source term given by Eq. (10). In addition, and in contrast to the particular solution de"ned by
Eqs. (28), the particular solution given by Eqs. (56) does not exist in the (unlikely) event that k

0
is

equal to one of the separation constants Ml
j
N. This point is clear if we note from Eqs. (23) that

k
0

equal to one of the seperation constants would make the two factors, the inverses of which are
required in Eqs. (56), singular. We note that this limitation to Eqs. (56) could be exacerbated if we
think of eventually using the solution to our albedo problem as a Green's function, in which case an
integration over the variable k

0
would be encountered. Also, and again in contrast to the solution

de"ned by Eqs. (56), the particular solution de"ned by Eqs. (28) is explicit and does not require the
solution to systems of linear algebraic equations. We do note, however, one nice feature of the
particular solution de"ned by Eqs. (56): it does not have to be modi"ed for the special (conserva-
tive) case when m"0 and -"1.

6. The conservative case

In this section we work out the modi"cations required to extend our discrete-ordinates solution
to the conservative case (-"1 and m"0).

The problem with the conservative case is that the largest separation constant, say l
N
, becomes

in"nite, and so the exponential solution, introduced by Eq. (12), does not generate the two
independent forms of the solution that are needed. While we can in fact modify our solution
developed for -(1 to "nd a form appropriate to the -"1 case, it is clear that if - is su$ciently
close to unity, but not equal to unity, then we can anticipate some numerical di$culties (due to
round o! errors) in the solution developed for -(1. However, having considered values of 1!-
as small, say, as 10~8, we consider that essentially all -(1 cases of practical interest can be solved
with the solution discussed in the previous section of this paper. We note that the case of very small
1!- has been well discussed, in the context of the spherical-harmonics method, by Karp,
Greenstadt and Fillmore [8].
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Continuing with the conservative case, we simply ignore the largest separation constant l
N

found
from our discrete-ordinates solution and include with our solution the two (exact) solutions [2]
that can be associated with an in"nite separation constant. Therefore, we rewrite Eqs. (38) as

I
`

(q)"A[(q
0
!q)P (0, 0)#(3/h

1
)P (1, 0)]#B[qP(0, 0)!(3/h

1
)P(1, 0)]

#

N~1
+
j/1

[A
j
U

`
(l

j
)e~q@lj#B

j
U

~
(l

j
)e~(q0~q)@lj]#Ip

`
(q) (57a)

and

I
~

(q)"A[(q
0
!q)P (0, 0)!(3/h

1
)P (1, 0)]#B[qP(0, 0)#(3/h

1
)P(1, 0)]

#

N~1
+
j/1

[A
j
U

~
(l

j
)e~q@lj#B

j
U

`
(l

j
)e~(q0~q)@lj]#Ip

~
(q) (57b)

where h
1
"3!b

1
and the vectors P(l, m) are given by Eq. (15). Here the constants A and B, like

the MA
j
N and MB

j
N, are to be determined from the boundary conditions. Of course, we must also

modify the particular solution for this conservative case, and so we follow Refs. [2, 4, 9] to obtain

Ip
`

(q)"A(q)[(q
0
!q)P (0, 0)#(3/h

1
)P(1, 0)]#B(q)[qP(0, 0)!(3/h

1
)P(1, 0)]

#

N~1
+
j/1

[A
j
(q)U

`
(l

j
)#B

j
(q)U

~
(l

j
)] (58a)

and

Ip
~

(q)"A(q)[(q
0
!q)P (0, 0)!(3/h

1
)P(1, 0)]#B(q)[qP(0, 0)#(3/h

1
)P(1, 0)]

#

N~1
+
j/1

[A
j
(q)U

~
(l

j
)#B

j
(q)U

`
(l

j
)] (58b)

where MA
j
(q)N and MB

j
(q)N are still given by Eqs. (36) for j"1, 2,2, N!1, but where, in general,

A(q)"
1
q
0
P
q

0

[h
1
xQ

0
(x)#Q

1
(x)] dx (59a)

and

B(q)"
1
q
0
P
q0

q
[h

1
(q

0
!x)Q

0
(x)!Q

1
(x)] dx (59b)

where

Q
l
(x)"

2l#1
2 P

1

~1

P
l
(k)Q (x, k) dk. (60)

For our current application

Q
0
(x)"1

2
e~x@k0 and Q

1
(x)"1

2
b
1
k
0
e~x@k0 (61a, b)

C.E. Siewert / Journal of Quantitative Spectroscopy & Radiative Transfer 64 (2000) 109}130120



and so we "nd, from Eqs. (59),

A(q)"
k
0

2q
0

[3k
0
!(3k

0
#h

1
q)e~q@k0] (62a)

and

B(q)"
k
0

2q
0

M[h
1
(q

0
!q)!3k

0
]e~q@k0#3k

0
e~q0@k0N . (62b)

Of course, once we have solved the linear system de"ned by the boundary conditions so that A,
B, and the MA

j
N and MB

j
N have been found, then the intensity is still given for this case by Eqs. (40),

but instead of Eqs. (41) we have

B(q, k)"B
0
(q, k)#

L
+
l/0

b
l
P
l
(k)

N~1
+
j/1

l
j
[A

j
C (q : l

j
, k)

#(!1)lB
j
e~(q0~q)@lj S(q : l

j
, k)]G

l
(l

j
) (63a)

and

B(q, !k)"B
0
(q, !k)#

L
+
l/0

b
l
P
l
(k)

N~1
+
j/1

l
j
[(!1)lA

j
e~q@ljS (q

0
!q : l

j
, k)

#B
j
C(q

0
!q : l

j
, k)]G

l
(l

j
) (63b)

where

B
0
(q, k)"2A[(q

0
#3k/h

1
) (1!e~q@k)!q]#2B[q!(3k/h

1
) (1!e~q@k )] (64a)

and

B
0
(q, !k)"2AMq

0
!q!(3k/h

1
)[1!e~(q0~q)@k]N

#2BMq!q
0
#(q

0
#3k/h

1
) [1!e~(q0~q)@k]N (64b)

for k3[0, 1] and q3[0, q
0
]. And instead of Eqs. (43) we have

$(q, k)"$
0
(q, k)#

L
+
l/0

b
l
P
l
(k)

N~1
+
j/1

l
j
[X

j
(q, k)#(!1)l>

j
(q, k)]G

l
(l

j
) (65a)

and

$(q, !k)"$
0
(q, !k)#

L
+
l/0

b
l
P

l
(k)

N~1
+
j/1

l
j
[(!1)lZ

j
(q, k)#=

j
(q, k)]G

l
(l

j
) (65b)

for k3[0, 1] and q3[0, q
0
]. Here, we have de"ned

$
0
(q, k)"X

0
(q, k)#>

0
(q, k) (66a)

and

$
0
(q, !k)"Z

0
(q, k)#=

0
(q, k) (66b)
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where now

X
0
(q, k)"

2
k P

q

0

A(x) [q
0
!x#(b

1
/h

1
)k]e~(q~x)@kdx, (67a)

>
0
(q, k)"

2
k P

q

0

B (x) [x!(b
1
/h

1
)k]e~(q~x)@kdx, (67b)

Z
0
(q, k)"

2
k P

q0

q
A(x) [q

0
!x!(b

1
/h

1
)k]e~(x~q)@kdx (67c)

and

=
0
(q, k)"

2
k P

q0

q
B(x) [x#(b

1
/h

1
)k]e~(x~q)@kdx (67d)

where A(q) and B(q) are given by Eqs. (62). Finally, we can use Eqs. (62) in Eqs. (67) to obtain, after
we note Eqs. (66), the explicit results

$
0
(q, k)"!(q, k)!(k

0
)2 (3k

0
#b

1
k)C(q: k

0
, k) (68a)

and

$
0
(q, !k)"! (q, !k)!(k

0
)2 (3k

0
!b

1
k) e~q@k0 S(q

0
!q : k

0
, k) (68b)

for q3[0, q
0
] and k3[0, 1]. Here we continue to use the S and C functions de"ned by Eqs. (34), and

in addition

!(q, k)"
3(k

0
)2

q
0

Mq
0
(1!e~q@k)!q (1!e~q0@k0)#(3k/h

1
) (1!e~q@k ) (1!e~q0 @k0)N (69a)

and

!(q,!k)"
3(k

0
)2

q
0

Mq
0
[1!e!(q

0
!q)/k]#(q

0
!q) (1!e!q

0
/k

0 )

!(q
0
#3k/h

1
) [1!e!(q

0
!q)/k] (1!e~q

0
/k

0)N . (69b)

Now, to conclude our formulation for the conservative case, we note that for the partial #uxes we
have modi"ed Eqs. (49) to obtain

q
`
(q)"nk

0
e!q/k

0#n [A#A(q)] [(q
0
!q)/2#1/h

1
]#n[B#B(q)] (q/2!1/h

1
)

#n
N~1
+
j/1

[A
j
e!q/l

j#A
j
(q)]Q

`
(l

j
)#n

N~1
+
j/1

[B
j
e~(q

0
!q)/l

j#B
j
(q)]Q

~
(l

j
) (70a)

and

q
~
(q)"n [A#A(q)] [(q

0
!q)/2!1/h

1
]#n[B#B(q)] (q/2#1/h

1
)

#n
N~1
+
j/1

[A
j
e!q/l

j#A
j
(q)]Q

~
(l

j
)#n

N~1
+
j/1

[B
j
e~(q

0
!q)/l

j#B
j
(q)]Q

`
(l

j
) . (70b)
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Table 1
The Legendre coe$cients for the cloud C

1
phase function

7. Computational details and numerical results

Of course, the "rst thing we must do in order to evaluate our discrete-ordinates solution
numerically is to de"ne a quadrature scheme, and so at this point we can emphasize that our
discrete-ordinates solution is essentially independent of the quadrature scheme to be used. The
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Table 2
The di!use component of the intensity I

*
(gq

0
, k, /) for the cloud C

1
phase function with q

0
"64.0,

-"0.9, k
0
"0.2 and /!/

0
"0

only restriction we have imposed is that the N quadrature points Mk
k
N and the N weights Mw

k
N must

be de"ned for use on the integration interval [0, 1]. In a recent work [10] concerning the
equivalence between the spherical-harmonics method and the classical discrete-ordinates method
that uses a quadrature scheme de"ned for use on the integration interval [!1, 1], we con"rmed
that the weights and nodes de"ned by the zeros of the associated Legendre functions Pm

m`2N
(k)

were a natural choice for a &&full-range'' quadrature scheme. We therefore can suggest that
a &&half-range'' quadrature scheme de"ned in terms of the &&weight function'' (1!k2)m on the
integration interval [0, 1] seems the natural choice [11, 12] to use in this work. As reported by
Chalhoub and Garcia in Refs. [11, 12], this quadrature scheme has been used to good e!ect in
radiative-transfer calculations. On the other hand, we have seen [13] a case where the inclusion in
the boundary data of a &&step function'' was well solved by subdividing the integration interval
[0, 1] so as to have a &&break point'' that coincided with the rise in the step-function boundary data.
And so we consider there to be some merit in using a simple integration scheme that can naturally
be mapped onto the integration interval [0, 1] or various subintervals of that basic interval. While
we intend to investigate (in future work) the e!ectiveness of other integration schemes, in this work
we follow a simple approach: we start with the usual Gauss-Legendre scheme (of order N)
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Table 3
The di!use component of the intensity I

*
(gq

0
, k, /) for the cloud C

1
phase function with q

0
"64.0,

-"0.9, k
0
"0.2 and /!/

0
"n/2

de"ned by the zeros of the Legendre polynomial P
N
(k) for use on the integration interval

[!1, 1], and then we map (linearly) this scheme into a scheme de"ned for use on the interval
[0, 1].

Having de"ned our quadrature scheme, we obtain the required separation constants Ml
j
N and the

associated eigenvectors by using the driver program RG from the EISPACK collection [14] to
solve the eigenvalue problem de"ned by Eq. (23a). We have also used a Gaussian elimination
package from the LINPACK collection [15] to solve the system of linear algebraic equations
de"ned by Eqs. (39). At this point our solution is complete, and so we are ready to look at some
numerical results.

For our example calculations we consider the cloud C
1

problem that was posed as a basic test
problem by the Radiation Commission of the International Association of Meteorology and
Atmospheric Physics [16]. This cloud problem was also used to de"ne test cases in Refs. [2, 3]. For
this model the 300-term phase function is de"ned by the Legendre coe$cients that were accurately
computed by de Haan [17] and Karp [18]. For the sake of completeness we reproduce in our
Table 1 the de"ning Legendre coe$cients that were "rst tabulated in Ref. [2]. Our "rst problem is
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Table 4
The di!use component of the intensity I

*
(gq

0
, k, /) for the cloud C

1
phase function with q

0
"64.0,

-"0.9, k
0
"0.2 and /!/

0
"n

for a layer of optical thickness q
0
"64 with -"0.9, and the incident beam is de"ned by the

direction cosine k
0
"0.2. In Ref. [2] the spherical-harmonics method was used to solve this

problem, with essentially "ve "gures of accuracy, for the case of normal incidence (k
0
"1) which

requires only the m"0 Fourier component to de"ne the complete solution. In a more recent work
[3], the F

N
method was used to solve, again with essentially "ve "gures of accuracy, a case of

non-normal incidence (k
0
"0.2). This problem is considered a severe test of a computational

method since all 300 Fourier components Im(q, k) are required for the complete solution. And so
with our test problem de"ned, we have used a FORTRAN implementation of our solution to
obtain the results listed for three values of the azimuthal angle in Tables 2}4. These results given
with what we believe to be six "gures of accuracy were obtained using various orders N of the
quadrature scheme for each of the Fourier component problems. For example, the results listed in
our tables were obtained with a maximum value of N"350 for m3[0, 6] and a minimum value of
N"100 for m3[201, 299]. While we did not attempt to "nd minimum values of N that would
yield the six-"gure results that are listed in Tables 2}4, we did double the mentioned values of N to
see that our algorithm was in fact very stable and that the results listed in Tables 2}4 did not
change.
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Table 5
The di!use component of the intensity I

*
(gq

0
, k, /) for the cloud C

1
phase function with q

0
"64.0,

-"1.0, k
0
"0.2 and /!/

0
"0

Finally, to test our solution for the conservative case we consider a second problem de"ned by
the same data as our "rst problem except that now we take -"1. As mentioned in Section 6, the
conservative case must be treated di!erently (for the m"0 Fourier component), and so this case is
considered an important test of our general solution. In Tables 5}7 we list our results which (again)
we believe to be correct to all of the six "gures given.

8. Concluding remarks

Needless to say, this is not the "rst work concerning the use of the discrete-ordinates method
for solving radiative-transfer problems in plane geometry. However, we consider that we have
de"ned (and tested numerically for a quite di$cult problem) a very e$cient and concise version
of the method. Having said that, we must note that Stamnes, Tsay, Wiscombe and Jayaweera
[19] have reported a discrete-ordinates algorithm that has many features common to our
work here. However, we note something we "nd strange about the development reported in
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Table 6
The di!use component of the intensity I

*
(gq

0
, k, /) for the cloud C

1
phase function with q

0
"64.0,

-"1.0, k
0
"0.2 and /!/

0
"n/2

Ref. [19]: the order of the Legendre expansion of the phase function (our ¸) and the order
of the half-range quadrature scheme (our N) seem to be related by the (impossible) condition
2N!1"¸.

While we have also used (for the incident-beam problem) a particular solution (see Section 5)
of the form given by Eq. (9a) of Ref. [19], we are of the opinion that the particular solution as
given by Eqs. (28) and (33) has two advantages over the form used in Ref. [19]: (i) our particular
solution, as de"ned by Eqs. (28) and (33), is given explicitly and so does not depend on solutions
to systems of linear algebraic equations, and (ii) our particular solution is not singular in the
event that k

0
happens to be one of the separation constants Ml

j
N. We are happy to report,

however, that we have obtained the results given in our tables from formulations based on the two
di!erent forms of the particular solution. Finally, we note that our particular solution as given by
Eqs. (28) and (29) is general in the sense that it is valid for a general form of the inhomogeneous
source term.
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Table 7
The di!use component of the intensity I

*
(gq

0
, k, /) for the cloud C

1
phase function with q

0
"64.0,

-"1.0, k
0
"0.2 and /!/

0
"n
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