
Journal of Quantitative Spectroscopy &
Radiative Transfer 64 (2000) 227}254

A discrete-ordinates solution for radiative-transfer models that
include polarization e!ects

C.E. Siewert

Mathematics Department, North Carolina State University, Raleigh, NC 27695-8205, USA

Received 22 December 1998

Abstract

A recently developed version of the discrete-ordinates method is used along with elementary numer-
ical linear-algebra techniques to establish an accurate solution for all components in a Fourier repres-
entation of the Stokes vector basic to the scattering of polarized light. Computational aspects of the
solution are discussed, and numerical results for each of the four Stokes parameters are given for a test case
based on an atmosphere of randomly orientated oblate spheroids. ( 1999 Elsevier Science Ltd. All rights
reserved.

1. Introduction

One of the more challenging problems in the basic theory of radiative transfer in plane-parallel
media is the one initially formulated by Kus\ c\ er and Ribaric\ [1] so as to include what we consider
to be a (rather) general model for the scattering of polarized light. The original work of Kus\ c\ er and
Ribaric\ was reported in terms of complex parameters, but in 1981 the Kus\ c\ er}Ribaric\ theory was
reformulated [2] in terms of real parameters and thus was made considerably more convenient for
analytical and computational work. And so following Ref. [2]. we let I(q,k,/) denote a column
vector, with the four Stokes parameters I(q, k,/), Q(q,k, /), ;(q,k,/) and <(q,k,/) as components,
and consider the (vector) equation of transfer written as
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for q3(0, q
0
), k3[!1, 1] and /3[0, 2p]. Here - is the albedo for single scattering, q3[0, q

0
] is the

optical variable, q
0
is the optical thickness of the plane-parallel medium, k3[!1, 1] is the cosine of

the polar angle (as measured from the positive q-axis) and / is the azimuthal angle. Together the
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polar and azimuthal angles de"ne the direction of propagation of the radiation. Here, as in
Refs. [2,3], the phase matrix has the analytical representation
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In addition, using a slightly di!erent notation from Refs. [2,3], we write
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is used to denote the normalized Legendre function and where the normalized R and ¹ functions are
de"ned as [2,3]
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where, for l5sup(DmD,DnD),
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Continuing to follow Refs. [2,3], we note that the scattering law is de"ned by the collection of
Greek constants Ma
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for 04l4¸.
In this work we seek a solution of Eq. (1), for all q3(0, q

0
), k3[!1, 1] and /3[0, 2p], subject to

the boundary conditions
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for k3(0, 1] and /3[0, 2p]. Here, j
0

is the coe$cient for Lambert re#ection,

L"diagM1, 0, 0, 0N (14)

and

F"[F
I

F
Q

F
U

F
V
]T (15)

is the #ux vector. Note that we use the superscript T to denote the transpose operation. Naturally,
we consider that the #ux vector F and the direction, de"ned by Mk

0
,/

0
N, of the incident beam are

speci"ed along with the optical thickness of the layer q
0
, the albedo for single scattering - and the

scattering law, de"ned by B
l
for 04l4¸.

2. The reduced problem

Since the boundary condition given by Eq. (13a) introduces into I(q,k,/) a component that is
a generalized function, we express the complete solution to the problem de"ned by Eqs. (1) and (13)
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in the form
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where IH(q,k,/) is the reduced or di!use "eld. Continuing, we introduce
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and note that we can write the phase matrix as
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where Am(k,k@) is given by Eq. (4) and where
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Now, to accomplish the desired Fourier decomposition, we let
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and substitute Eq. (20) into Eq. (16) and the resulting equation into Eqs. (1) and (13) to "nd that the
Fourier components, for m"0, 1,2,¸ and k"1 and 2, must satisfy the equation of transfer
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for k3(0,1]. Here the inhomogeneous source term is
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To obtain the complete solution we seek, we now must solve the collection of problems de"ned by
Eqs. (21)}(23).
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3. A discrete-ordinates solution

In a recent paper [4] concerning a radiative-transfer problem based on the scalar version (the
intensity is the only unknown) of the model considered in this work a variation of the discrete-
ordinates method was developed, evaluated and found to be very e!ective. And so here we wish to
generalize the solution reported in Ref. [4] in order to solve e$ciently and accurately the collection
of problems de"ned by Eqs. (21)}(23). Before starting with our solution, we point out that while
there are many features in the work we now report that are common to the solution developed in
Ref. [4], there are signi"cant di!erences (to be noted) as well.

We would like also to note that we exclude in our development here the conservative case as
de"ned and discussed in Section 8.

As a matter of strategy, we note that, as in Ref. [4], we intend to use the discrete-ordinates
method only to "nd approximate values for the integral terms in Eq. (21), and once that is done we
will solve Eq. (21), with the integral terms replaced by discrete-ordinates approximations to those
terms, to "nd the desired Fourier component Im

k
(q,k) for all q and k. This second aspect of our

approach is what we refer to as a `post-processinga step [5]. And so, we suppress some of the
explicit notation of the Fourier indices m and k and start with our discrete-ordinates equations,
relevant to the homogeneous version of Eq. (21), written as
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for i"1, 2,2,N. Here, to compact our notation we have introduced

I
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In writing Eqs. (24) as we have, we clearly are considering that the N quadrature points MkaN and
the N weights MwaN are de"ned for use on the integration interval [0,1]. We note also that [6]
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Eqs. (24) clearly have exponential solutions, so we substitute
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for i"1, 2,2,N and where
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In order to compact our formulation we make use of more matrix notation. We introduce the
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where
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Clearly we can eliminate between Eqs. (36) to obtain the eigenvalue problems
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where j"1/l2. We note that the required separation constants Ml
j
N are readily available once we

"nd the eigenvalues Mj
j
N de"ned by either of Eqs. (39). We choose to express our results in terms of

the eigenvalues and eigenvectors de"ned by Eq. (39a).
Continuing, we have seen that the eigenvalues de"ned by Eq. (39a) can be complex numbers, and

so here we assume only that Eq. (39a) de"nes a full set of eigenvectors. We therefore let j
j
and X(j

j
),

for j"1,2,2,4N, denote the collection of eigenvalues and eigenvectors of Eq. (39a). The separ-
ation constants we require clearly occur in plus}minus pairs, and so letting l
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j
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and so at this point we have available all we require for de"ning our solution to Eqs. (24). To be
speci"c we consider that l

j
has a real part that is positive or zero (in our computations we have not

found a case where l
j
has a real part equal to zero). We let
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so we can express our discrete-ordinates solution to the homogeneous version of Eq. (21) as
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where the 4N]4N matrix D is given by

D"diagMD, D,2, DN (44)

and where the constants MA
j
N and MB

j
N are at this point arbitrary. Note that in Eqs. (43) we have
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for the scalar case [4].
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complex separation constants Ml
j
N. And so letting J

3
denote the number of real separation
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and
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To be complete, we note that all of the 8N"2(J
3
#2J

#
) constants (A's and B's) in Eqs. (46) are to

be determined from the boundary conditions of our problem.

4. The in5nite-medium Green's functions

Having developed our discrete-ordinates solution to the homogeneous version of Eq. (21), we
now require a particular solution to account for the inhomogeneous term Qm

k
(q,k) that appears

there. Our way [7] of constructing the desired particular solution is based on expressing the
particular solution in terms of the in"nite-medium Green's function, and so we now follow Ref. [7]
and consider the following two problems: in regard to G(q,$k

i
: x,ka) we have
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for i, a"1, 2,2, N. In Eqs. (47) and (48), I is the (4]4) identity matrix,
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Here we take the source location to be x3(0, q
0
). Further, we consider that the source direction is

de"ned by ka3Mk
i
N. We note that d(q!x) is the Dirac delta `functiona and that d

i,a is the
Kronecker delta. In addition, we point out that by including the identity matrix in the source term
of Eqs. (47a) and (48b) we clearly are considering that each of the two Green's functions we seek is
a (4]4) matrix.
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To develop the desired solution for G(q, mb : x,$ka) we can, as discussed for example by Case and
Zweifel [8], write one solution (of the homogeneous equation) valid for q'x and another solution
valid for q(x; we can then match-up these two solutions with the `jumpa conditions, for
i, a"1, 2,2, N,

k
i
lim
e?0

[G(x#e,k
i
: x,ka)!G(x!e, k

i
: x,ka)]"Id

i,a (50a)

and

!k
i
lim
e?0

[G(x#e,!k
i
: x,ka)!G(x!e,!k

i
: x,ka)]"0 (50b)

for G(q,$k
i
: x,ka) and

k
i
lim
e?0

[G(x#e,k
i
: x,!ka)!G(x!e,k

i
: x,!ka)]"0 (51a)

along with

!k
i
lim
e?0

[G(x#e,!k
i
: x,!ka)!G(x!e,!k

i
: x,!ka)]"Id

i,a (51b)

for G(q,$k
i
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To "nd the constants MA
j
N and MB

j
N required to complete the Green's functions we substitute

Eqs. (53) and (54) into Eqs. (50) and (51) to "nd the systems of linear algebraic equations
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for the "rst problem and

M
4N
+
j/1

[U
`

(l
j
)A

j
(!ka)#U

~
(l

j
)B

j
(!ka)]"0 (57a)

and

!MD
4N
+
j/1

[U
~

(l
j
)A

j
(!ka)#U

`
(l

j
)B

j
(!ka)]"Ra (57b)

for the second problem. Here we have introduced the (4N]4) matrix

Ra"[Id
1,a, Id2,a,2, Id

N,a]T (58)

where we continue to use I to denote the (4]4) identity matrix.
To solve Eqs. (56) and (57) we wish to make use of some basic orthogonality properties of the

vectors U
B

(l
j
). To establish these properties we "rst consider an adjoint problem de"ned by

replacing B
l
in Eqs. (33) with BT

l
to obtain

AI!
1
l

MBW`
(l)"

-
2

L
+
l/m

P(l,m)BT
l
Cm

l
(l) (59a)

and

AI#
1
l

MBW~
(l)"

-
2

L
+
l/m

(!1)l~mP(l,m)DBT
l
Cm

l
(l) (59b)

where

Cm
l
(l)"PT(l,m)WW

`
(l)#(!1)l~mDPT(l,m)WW

~
(l). (60)

It is not di$cult to show that the eigenvalues de"ned by Eqs. (39), with E and F given by Eqs. (37),
will not be changed if B

l
in Eqs. (37) is replaced by BT

l
, and so the adjoint vectors W

B
(l

k
) are de"ned

over the same spectrum as the vectors U
B

(l
j
). We now consider Eq. (33) evaluated at l"l

j
, then we

premultiply Eq. (33a) by WT
`
(l

k
)W and Eq. (33b) by WT

~
(l

k
)W and add the resulting two equations.

At this point we form a second equation (from the one just obtained) by interchanging the indices
j and k, interchanging the direct and adjoint vectors, changing B

l
to BT

l
and taking the transpose of
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the resulting equation. Now we subtract this second equation from the "rst to "nd

WT
`

(l
k
)WMU

`
(l

j
)!WT

~
(l

k
)WMU

~
(l

j
)"0, l

k
Ol

j
. (61)

In a similar way we can show that

WT
`

(l
k
)WMU

~
(l

j
)!WT

~
(l

k
)WMU

`
(l

j
)"0. (62)

Now we can premultiply Eq. (56a) by WT
`

(l
k
)W and Eq. (56b) by WT

~
(l

k
)WD and add the two

resulting equations to "nd, after noting Eqs. (61) and (62),

A
j
(ka)"

1
N(l

j
)
WT

`
(l

j
)WRa (63)

where

N(l
j
)"WT

`
(l

j
)WMU

`
(l

j
)!WT

~
(l

j
)WMU

~
(l

j
). (64)

Continuing, we premultiply Eq. (56a) by WT
~
(l

k
)W and Eq. (56b) by WT

`
(l

k
)WD, add the two

resulting equations and note Eqs. (61) and (62) to obtain

B
j
(ka)"!

1
N(l

j
)
WT

~
(l

j
)WRa. (65)

In a similar way we "nd from Eqs. (57)

A
j
(!ka)"

1
N(l

j
)
WT

~
(l

j
)WDRa (66)

and

B
j
(!ka)"!

1
N(l

j
)
WT

`
(l

j
)WDRa. (67)

Since Eqs. (63) and (65)}(67) de"ne the constants A and B required in Eqs. (53) and (54), we consider
that our two Green's functions are established, and so we are ready to use them to "nd the
particular solution we seek.

5. A particular solution

We now consider the discrete-ordinates version of Eq. (21) written as

k
i

d
dq

I(q,k
i
)#I(q,k

i
)"

-
2

L
+
l/m

Pm
l
(k

i
)B

l

N
+

b/1

wbIl,b(q)#Q(q,k
i
) (68a)

and

!k
i

d
dq

I(q,!k
i
)#I(q,!k

i
)"

-
2

L
+
l/m

Pm
l
(!k

i
)B

l

N
+
b/1

wbIl,b(q)#Q(q,!k
i
) (68b)
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for i"1, 2,2,N. In writing Eqs. (68), we have used

I
l,b(q)"Pm

l
(kb)I(q,kb)#Pm

l
(!kb)I(q,!kb). (69)

Since in Section 3 we have already developed our general solution to the homogeneous version of
Eqs. (68), we lack only a particular solution of Eqs. (68) to account for the inhomogeneous source
terms. In fact, a particular solution is immediately available since we can express our particular
solution in terms of the two Green's functions from Section 4. Our general result is

Ip(q,$k
i
)"

N
+
a/1
P

q0

0

[G(q,$k
i
: x,ka)Q(x,ka)#G(q,$k

i
: x,!ka)Q(x,!ka)] dx (70)

or

Ip
B

(q)"
N
+
a/1
P

q0

0

[G
B

(q : x,ka)Q(x,ka)#G
B

(q :x,!ka)Q(x,!ka)] dx. (71)

Now using Eqs. (53) and (54), we can rewrite Eq. (71) as

Ip
`

(q)"
4N
+
j/1

[A
j
(q)U

`
(l

j
)#B

j
(q)U

~
(l

j
)] (72a)

and

Ip
~

(q)"D
4N
+
j/1

[A
j
(q)U

~
(l

j
)#B

j
(q)U

`
(l

j
)] (72b)

where

A
j
(q)"P

q

0

N
+
a/1

[A
j
(ka)Q(x,ka)#A

j
(!ka)Q(x,!ka)] e~(q~x)@lj dx (73a)

and

B
j
(q)"!P

q0

q

N
+
a/1

[B
j
(ka)Q(x,ka)#B

j
(!ka)Q(x,!ka)] e~(x~q)@lj dx. (73b)

To complete our general result we now use Eqs. (63) and(65)}(67) in Eqs. (73) to obtain

A
j
(q)"P

q

0

a
j
(x) e~(q~x)@lj dx (74a)

and

B
j
(q)"P

q0

q
b
j
(x) e~(x~q)@lj dx (74b)
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where

a
j
(x)"

1
N(l

j
)
[WT

`
(l

j
)WQ

`
(x)#WT

~
(l

j
)WDQ

~
(x)] (75a)

and

b
j
(x)"

1
N(l

j
)
[WT

~
(l

j
)WQ

`
(x)#WT

`
(l

j
)WDQ

~
(x)] (75b)

and where

Q
`
(x)"[QT(x,k

1
), QT (x,k

2
),2, QT(x,k

N
)]T (76a)

and

Q
~
(x)"[QT(x,!k

1
), QT(x,!k

2
),2, QT(x,!k

N
)]T. (76b)

While Eqs. (74) and (75) are our general results (and so cannot be simpli"ed without specifying
the source terms) we now see from Eq. (23) that for the problem considered in this work we can
write

Q
`
(x)"Q

`
e~x@k0 (77a)

and

Q
~
(x)"Q

~
e~x@k0 (77b)

where Q
B

are constants. If we now use Eqs. (74), (75) and (77) we "nd the special results we need
here, namely

A
j
(q)"k

0
l
j
a
j
C(q : l

j
,k

0
) (78a)

and

B
j
(q)"k

0
l
j
b
j
e~q@k0S(q

0
!q : l

j
,k

0
) (78b)

where now

a
j
"

1
N(l

j
)
[WT

`
(l

j
)WQ

`
#WT

~
(l

j
)WDQ

~
] (79a)

and

b
j
"

1
N(l

j
)
[WT

~
(l

j
)WQ

`
#WT

`
(l

j
)WDQ

~
]. (79b)

In addition, the S and C functions are given by

S(q :x, y)"
1!e~q@xe~q@y

x#y
(80a)

and

C(q :x, y)"
e~q@x!e~q@y

x!y
. (80b)
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Even though some of the separation constants can be complex, we can express our particular
solution in terms of real quantities. If we let

A
B

(q, l
j
)"A

j
(q)U

B
(l

j
)#AH

j
(q)UH

B
(l

j
) (81a)

and

B
B

(q, l
j
)"B

j
(q)U

B
(l

j
)#BH

j
(q)UH

B
(l

j
), (81b)

where we use the superscript asterisk to denote the operation of complex conjugation, then we can
write

Ip
`

(q)"
J3

+
j/1

[A
j
(q)U

`
(l

j
)#B

j
(q)U

~
(l

j
)]#

J#

+
j/1

[A
`

(q, l
j
)#B

~
(q, l

j
)] (82a)

and

Ip
~

(q)"D
J3

+
j/1

[A
j
(q)U

~
(l

j
)#B

j
(q)U

`
(l

j
)]#D

J#

+
j/1

[A
~

(q, l
j
)#B

`
(q, l

j
)]. (82b)

6. A 5rst solution and post-processing

Having found a particular solution, we are ready to construct the complete solution we seek. We
note Eqs. (45) and write

I
`

(q)"R
`

(q)#C
`

(q)#Ip
`

(q) (83a)

and

I
~

(q)"R
~

(q)#C
~

(q)#Ip
~

(q) (83b)

where the R and C components are given by Eqs. (46) and where the known particular solution is
given by Eqs. (82). So all we have to do now is to substitute Eqs. (83) into the boundary conditions,
listed as Eqs. (22), to "nd the A and B coe$cients required in Eqs. (83). Continuing to suppress
some of the explicit notation (m and k) we "nd the linear systems

J3

+
j/1

MM
j
A

j
#N

j
B

j
N#

J#

+
j/1

2
+
a/1

MM(a)
j

A(a)
j
#N(a)

j
B(a)

j
N"K

`
(84a)

and

J3

+
j/1

MNK
j
A

j
#MK

j
B

j
N#

J#

+
j/1

2
+
a/1

MNK (a)
j

A(a)
j
#MK (a)

j
B(a)

j
N"K

~
(84b)

where

M
j
"U

`
(l

j
), (85a)

N
j
"U

~
(l

j
) e~q0@lj, (85b)
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M (a)
j

"F (a)
`

(0, l
j
), (85c)

N (a)
j

"F (a)
~

(q
0
, l

j
), (85d)

MK
j
"M

j
!R

b,j
, (85e)

NK
j
"N

j
!R

a,j
, (85f )

MK (a)
j

"M (a)
j

!R(a)
b,j

(85g)

and

NK (a)
j

"N (a)
j

!R(a)
a,j

. (85h)

In addition

K
`
"!Ip

`
(0) (86a)

and

K
~
"!Ip

~
(q

0
)#"E

1
. (86b)

Here

""2j
0
d
0,m

d
1,k

[k
0
F

I
e~q0@k0#ET

1
WMIp

`
(q

0
)]. (86c)

Also, in writing Eqs. (86b) and (86c) we have introduced the (4N] 1) vector

E
1
"[e

1
, e

1
,2, e

1
]T (87)

with

e
1
"[1 0 0 0]. (88)

To complete our de"nitions of Eqs. (84) and (85) we note that the R terms are present to account for
the Lambertian re#ection. To be explicit, we can write

R
a,j
"2j

0
d
0,m

d
1,k

[ET
1
WMU

`
(l

j
)]E

1
e~q0@lj, (89a)

R
b,j
"2j

0
d
0,m

d
1,k

[ET
1
WMU

~
(l

j
)]E

1
, (89b)

R(a)
a,j
"2j

0
d
0,m

d
1,k

[ET
1
WMF(a)

`
(q

0
, l

j
)]E

1
(89c)

and

R(a)
b,j
"2j

0
d
0,m

d
1,k

[ET
1
WMF(a)

~
(0, l

j
)]E

1
. (89d)

Clearly once we have solved Eqs. (84) to "nd the A and B constants we have available, by way of
Eqs. (82) and (83), a "rst version of the desired solution. However, we wish to improve on this "rst
solution, which clearly in not even de"ned for all k, by following a post-processing procedure [5].
And so to obtain our "nal results we substitute Eqs. (83) into the right-hand side of

k
L
Lq

I(q,k)#I(q,k)"
-
2

L
+
l/m

Pm
l
(k)B

l

N
+

b/1

wbIl,b(q)#Q(q,k), (90)
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where

I
l,b(q)"Pm

l
(kb)I(q,kb)#Pm

l
(!kb)I(q,!kb), (91)

to "nd

I(q,k)"k
0
C(q :k

0
, k)Q(k)#

-
2

[N(q,k)#!(q, k)] (92a)

and

I(q,!k)"Re~(q0~q)@k#k
0
¹(q

0
,q
0
!q :k

0
, k)Q(!k)#

-
2

[N(q,!k)#!(q,!k)] (92b)

for k3[0, 1] and q3[0, q
0
]. Here

R"2j
0
d
0,m

d
1,k

[k
0
F
I
e~q0@k0#ET

1
WMI

`
(q

0
)]C

1

0

0

0D, (93)

the S and C functions are given by Eqs. (80),

¹(q
0
, q : x, y)"e~(q0~q)@xS(q :x, y) (94)

and

Q(k)"
-
2

L
+
l/m

Pm
l
(k)B

l
Pm
l
(k

0
)D

k
F. (95)

In order to express our results in terms of real quantities, we write

!(q,$k)"!
3
(q,$k)#!

#
(q,$k) (96)

where

!
3
(q,k)"

L
+
l/m

Pm
l
(k)B

l

J3

+
j/1

[Am
l
(q : l

j
, k)#(!1)l~mDBm

l
(q : l

j
,k)], (97a)

!
3
(q,!k)"D

L
+
l/m

Pm
l
(k)B

l

J3

+
j/1

[Cm
l
(q : l

j
, k)#(!1)l~mDDm

l
(q : l

j
, k)], (97b)

!
#
(q,k)"

L
+
l/m

Pm
l
(k)B

l

J#

+
j/1

[Sm
l
(q : l

j
,k)#(!1)l~mDTm

l
(q : l

j
, k)] (97c)

and

!
#
(q,!k)"D

L
+
l/m

Pm
l
(k)B

l

J#

+
j/1

[Um
l
(q : l

j
, k)#(!1)l~mDVm

l
(q : l

j
, k)]. (97d)
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In writing Eqs. (97) we have introduced

Am
l
(q : l

j
, k)"l

j
A

j
C(q : l

j
, k)Gm

l
(l

j
), (98a)

Bm
l
(q : l

j
, k)"l

j
B

j
¹(q

0
,q : l

j
, k)Gm

l
(l

j
), (98b)

Cm
l
(q : l

j
, k)"l

j
B

j
C(q

0
!q : l

j
, k)Gm

l
(l

j
), (98c)

Dm
l
(q : l

j
,k)"l

j
A

j
¹(q

0
,q
0
!q : l

j
, k)Gm

l
(l

j
), (98d)

Sm
l
(q : l

j
, k)"ReMl

j
C(q : l

j
,k)NAm

l
(1, l

j
)#ImMl

j
C(q : l

j
, k)NAm

l
(2, l

j
), (98e)

Tm
l
(q : l

j
, k)"ReMl

j
¹(q

0
,q : l

j
, k)NBm

l
(1, l

j
)#ImMl

j
¹(q

0
, q : l

j
,k)NBm

l
(2, l

j
), (98f )

Um
l
(q : l

j
,k)"ReMl

j
C(q

0
!q : l

j
, k)NBm

l
(1, l

j
)#ImMl

j
C(q

0
!q : l

j
, k)NBm

l
(2, l

j
) (98g)

and

Vm
l
(q : l

j
, k)"ReMl

j
¹(q

0
, q

0
!q : l

j
,k)NAm

l
(1, l

j
)#ImMl

j
¹(q

0
, q

0
!q : l

j
,k)NAm

l
(2, l

j
) (98h)

where

Am
l
(1, l

j
)"A(1)

j
ReMGm

l
(l

j
)N#A(2)

j
ImMGm

l
(l

j
)N, (99a)

Am
l
(2, l

j
)"A(2)

j
ReMGm

l
(l

j
)N!A(1)

j
ImMGm

l
(l

j
)N, (99b)

Bm
l
(1, l

j
)"B(1)

j
ReMGm

l
(l

j
)N#B(2)

j
ImMGm

l
(l

j
)N (99c)

and

Bm
l
(2, l

j
)"B(2)

j
ReMGm

l
(l

j
)N!B(1)

j
ImMGm

l
(l

j
)N. (99d)

We note that Gm
l
(l

j
) is de"ned by Eq. (34). In order to complete the de"nitions required to establish

Eqs. (92) we now write

N(q,$k)"N
3
(q,$k)#N

#
(q,$k), (100)

where

N
3
(q,k)"

L
+
l/m

Pm
l
(k)B

l

J3

+
j/1

l
j
[X

j
(q,k)#(!1)l~m>

j
(q,k)D]Gm

l
(l

j
), (101a)

N
3
(q,!k)"D

L
+
l/m

Pm
l
(k)B

l

J3

+
j/1

l
j
[=

j
(q,k)#(!1)l~mZ

j
(q,k)D]Gm

l
(l

j
) , (101b)

N
#
(q,k)"

L
+
l/m

Pm
l
(k)B

l

J#

+
j/1

[Xm
l
(l

j
, q,k)#(!1)l~mDYm

l
(l

j
, q,k)] (101c)

and

N
#
(q,!k)"D

L
+
l/m

Pm
l
(k)B

l

J#

+
j/1

[Wm
l
(l

j
, q,k)#(!1)l~mDZm

l
(l

j
, q,k)]. (101d)
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Here, to de"ne Eqs. (101a) and (101b) we have introduced

X
j
(q,k)"k

0
a
jC

l
j
C(q : l

j
, k)!k

0
C(q : k

0
, k)

l
j
!k

0
D, (102a)

>
j
(q,k)"k

0
b
jC

k
0
C(q :k

0
, k)!l

j
e~q0@k0¹(q

0
, q : l

j
, k)

l
j
#k

0
D, (102b)

Z
j
(q,k)"k

0
a
jC

l
j
¹(q

0
, q

0
!q : l

j
, k)!k

0
¹(q

0
, q

0
!q : k

0
,k)

l
j
!k

0
D (102c)

and

=
j
(q,k)"k

0
b
jC

k
0
¹(q

0
, q

0
!q :k

0
, k)!l

j
e~q0@k0C(q

0
!q : l

j
, k)

l
j
#k

0
D (102d)

with the Ma
j
N and Mb

j
N as de"ned by Eqs. (79). Finally to complete Eqs. (101c) and (101d) we have

used

Xm
l
(l

j
, q,k)"2[ReMl

j
X

j
(q,k)NReMGm

l
(l

j
)N!ImMl

j
X

j
(q,k)NImMGm

l
(l

j
)N], (103a)

Ym
l
(l

j
, q,k)"2[ReMl

j
>

j
(q,k)NReMGm

l
(l

j
)N!ImMl

j
>

j
(q,k)NImMGm

l
(l

j
)N], (103b)

Zm
l
(l

j
, q,k)"2[ReMl

j
Z

j
(q, k)NReMGm

l
(l

j
)N!ImMl

j
Z

j
(q,k)NImMGm

l
(l

j
)N] (104a)

and

Wm
l
(l

j
, q,k)"2[ReMl

j
=

j
(q,k)NReMGm

l
(l

j
)N!ImMl

j
=

j
(q,k)NImMGm

l
(l

j
)N]. (104b)

To conclude this section we note that while in the beginning of the development of our solution
we have used a numerical quadrature scheme to approximate certain integrals, our "nal results for
the four Stokes parameters are continuous in all three variables (q,k, /).

7. Computational details and numerical results

Of course the "rst thing we must do in order to evaluate our discrete-ordinates solution
numerically is to de"ne a quadrature scheme. In that regard, we consider it important to note that
our discrete-ordinates solution is essentially independent of the quadrature scheme to be used. The
only two restrictions we have imposed are that the N quadrature points Mk

k
N and the N weights

Mw
k
N must be de"ned for use on the integration interval [0, 1] and, because of the way our basic

eigenvalue problem is formulated, that we must exclude zero from the set of quadrature points.
While our experience with the discrete-ordinates method for the general polarization model
considered here is essentially zero, we have made some observations from the scalar theory that
have guided us here. First of all, in a recent work [9] concerning the equivalence between the
spherical-harmonics method and the classical discrete-ordinates method that uses a quadrature
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scheme de"ned for use on the integration interval [!1, 1], we con"rmed that the weights and
nodes de"ned by the zeros of the associated Legendre functions Pm

m`2N
(k) were a natural choice for

a `full-rangea quadrature scheme. We therefore can suggest that a `half-rangea quadrature scheme
de"ned in terms of the `weight functiona (1!k2)m on the integration interval [0,1] seems the
natural choice [10,11] for applications based on the scalar model of the equation of transfer. As
reported by Chalhoub and Garcia in Refs. [10,11], this quadrature scheme has been used to good
e!ect in radiative-transfer calculations, and so the extension of this scheme to the case of
polarization is something that deserves consideration. On the other hand, we have seen [12] a case
where the inclusion in the boundary data of a `step functiona was well solved by subdividing
the integration interval [0, 1] so as to have a `break pointa that coincided with the rise in the
step-function boundary data. And so we consider there to be some merit in using a simple
integration scheme that can easily be mapped onto the integration interval [0,1] or various
subintervals of that basic interval. While we intend to investigate (in future work) the e!ectiveness
of other integration schemes, in this work we follow a simple approach: we start with the usual
Gauss}Legendre scheme (of order N) de"ned by the zeros of the Legendre polynomial P

N
(k) for use

on the integration interval [!1, 1], and then we map (linearly) this scheme into a scheme de"ned
for use on the interval [0,1].

Having de"ned our quadrature scheme, our next computational job is to compute the separation
constants Ml

j
N and both the direct and the adjoint eigenvectors. Considering Eq. (39a) to de"ne the

basic eigenvalue problem to be solved, we clearly can express the direct vectors U
B
(l

j
) in terms of

the eigenvectors of the matrix FE. Not surprisingly, we can express the adjoint vectors W
B

(l
j
) in

terms of the left eigenvectors of FE. And so we have used the subroutine DGEEV from the
LAPACK collection [13] to compute the eigenvalues and both the left and right eigenvectors of
FE. With the separation constants Ml

j
N and the direct and adjoint vectors available, we have used

the subroutines DGETRF and DGETRS, also from the LAPACK package, to "nd the required
A and B constants from the linear system de"ned by Eqs. (84). Therefore, we consider our solution
established.

In order to test our FORTRAN implementation of the discrete-ordinates solution developed in
this work, we "rst looked at the numerical results for the two test problems we have already solved,
initially with a method based on generalized spherical harmonics [14] and then with the
F
N

method [6]. The "rst of these two test problems [6,14] is de"ned by a set of `Greek constantsa
with ¸"13 and the second with ¸"60. In Ref. [14] the numerical results for the four Stokes
parameters were reported for the ¸"13 problem and the ¸"60 problem with "ve "gures of
accuracy, and in Ref. [6] results for the same problems were reported with six "gures of accuracy.
In evaluating our implementation of the discrete-ordinates solution developed here, we found with
N"30, 40,2, 90 that we could con"rm with "ve "gures of agreement all the results given in
Refs. [6,14], and, as a matter of fact, all of our results for the Stokes parameters I, Q and ; and,
with only a few exceptions, all of our results for the Stokes parameter < agreed with six "gures of
accuracy with the results of Ref. [6]. Continuing with an evaluation of our solution, we considered
next the three basic problems that Wauben and Hovenier [15] used to test their solution, based on
the `adding/doublingamethod [16], for the general class of polarization problems considered here.
Wauben and Hovenier's results were reported with "ve "gures of accuracy, and so, again with
N"30, 40,2, 90, we found essentially perfect agreement with previously reported, highly accurate
solutions.
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In the process of evaluating the numerical results obtained from our FORTRAN implementa-
tion of the discrete-ordinates solution developed here, we saw again a situation that deserves
comment. For polarization, in contrast to the scalar theory where only the intensity is sought, three
of the Stokes parameters, Q, ; and <, can be positive, negative and, in fact, zero. And so there
clearly will be certain values of the independent variables for which a numerical computation
(carried out on a machine with a "nite word length) such as the one reported here (and elsewhere
[6,14,15]) can yield values for which none of the signi"cant "gures are correct. While we may think
of these special cases as truly exceptional, we must at the same time not take all suggestions of
achieved accuracy to be de"nitive statements.

Naturally we would now like to report some numerical results, but in order not to be
excessive in our tabulations we have chosen to focus our attention of the second of the three
test problems introduced by Wauben and Hovenier [15]. Quoting from Ref. [15], we note that
this problem is for scattering in an atmosphere of randomly oriented oblate spheroids with
aspect ratio 1.999987, size parameter 3 and index of refraction 1.53!0.006i. We note that the
Greek constants for this ¸"11 problem have been accurately computed and reported by Kuik,
de Haan and Hovenier [17]. However, to be complete we choose to list in Table 1 these
de"ning Greek constants in the notation used in this work. Continuing, we follow Ref. [15] and
consider the case of q

0
"1, -"0.973527 and k

0
"0.6. While from Eqs. (13a) and (15) it is

clear that the solution we have developed is valid even for a beam of incident light that is already
polarized we consider, in regard to our tabulations of results, that the incident beam is de"ned by
having F

I
"1 as the only nonzero component of F.

Hence, we list in Tables 2}9 our results for the four Stokes parameters. We note that in listing
our results with six digits, we are of the opinion that essentially all of these results are correct to
within one unit in the last place. While we have no de"nitive proof that all six digits of our results
are correct we have done two things to establish the con"dence we do have. As mentioned, our
results agree with the "ve-"gure results of Wauben and Hovenier [15] and we have seen what we
consider to be a reasonable degree of stability in the results as we varied the number of quadrature
points N from 30 to 90, say.

Table 1
The Greek constants
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Table 2
The Stokes parameter IH(gq

0
, k,/) for q

0
"1.0, -"0.973527, k

0
"0.6 and /!/

0
"0

Table 3
The Stokes parameter Q(gq

0
, k,/) for q

0
"1.0, -"0.973527, k

0
"0.6 and /!/

0
"0
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Table 4
The Stokes parameter I(gq

0
,k,/) for q

0
"1.0, -"0.973527, k

0
"0.6 and /!/

0
"p/2

Table 5
The Stokes parameter Q(gq

0
, k,/) for q

0
"1.0, -"0.973527, k

0
"0.6 and /!/

0
"p/2
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Table 6
The Stokes parameter ;(gq

0
, k,/) for q

0
"1.0, -"0.973527, k

0
"0.6 and /!/

0
"p/2

Table 7
The Stokes parameter <(gq

0
, k,/) for q

0
"1.0, -"0.973527, k

0
"0.6 and /!/

0
"p/2
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Table 8
The Stokes parameter I(gq

0
, k,/) for q

0
"1.0, -"0.973527, k

0
"0.6 and /!/

0
"p

Table 9
The Stokes parameter Q(gq

0
, k,/) for q

0
"1.0, -"0.973527, k

0
"0.6 and /!/

0
"p
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8. The conservative case

We now would like to discuss brie#y the conservative case, which we have implicitly excluded
from our analysis in the preceding sections of this work. While it is possible that the term
conservative case can be interpreted in various ways, we use the term here to mean those values of
the albedo for single scattering - and the Greek constants a, b, c, d, e and f, for a given ¸, which
allow the separation constant l in Eq. (27) to be unbounded. Continuing, we see from Eq. (27) that
allowing l to be unbounded implies that Eqs. (24) can be satis"ed by a solution of the form

I(q,$k
i
)"U($k

i
). (105)

So now if we substitute Eq. (105) into Eqs. (24) we "nd

U(k
i
)"

-
2

L
+
l/m

Pm
l
(k

i
)B

l
Gm

l
(106a)

and

U(!k
i
)"

-
2

L
+
l/m

Pm
l
(!k

i
)B

l
Gm

l
(106b)

for i"1, 2,2,N. Here

Gm
l
"

N
+
n/1

w
n
[Pm

l
(k

n
)U(k

n
)#Pm

l
(!k

n
)U(!k

n
)]. (107)

We now multiply Eq. (106a) by w
i
Pma (k

i
) and Eq. (106b) by w

i
Pma (!k

i
), sum the resulting equations

over the index i and then add the results to obtain

[(2a#1)I!-Ba]Gma "0 (108)

for a"m,m#1,2,¸. At this point we can rewrite Eq. (108), for a"m,m#1,2,¸, as

diagMA
m
, A

m`1
,2, A

L
NC

Gm
m

Gm
m`1
F

Gm
L
D"0, (109)

where

A
l
"(2l#1)I!-B

l
. (110)

Clearly any combination of parameters that makes the coe$cient matrix in Eq. (109) singular will
yield what we have de"ned to be a conservative case. However, more can be said. In a fundamental
work concerning the expansion of the scattering matrix in terms of generalized spherical functions,
van der Mee and Hovenier [18] have shown that the matrices A

l
, for l'0, cannot be singular for
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any physically meaningful case. Based on this result of van der Mee and Hovenier [18] we see that
we can have a conservative case only if m"0 and only if

(1!-b
0
)(1!-d

0
)"0. (111)

Now, since b
0
"1, we see that -"1 yields the conservative case. We note also that in the (unlikely)

event [18] that d
0
"1 both factors in Eq. (111) would be zero. Finally since the m"0 problem

splits into two two-vector problems (an I}Q problem and a ;}< problem) we clearly must, if
-"1, modify our developed discrete-ordinates solution of the I}Q problem and, if d

0
"1, also the

;}< problem.
From an analytical and computational point of view, the problem with the conservative case is

that the largest separation constant becomes in"nite, and so the exponential form introduced by
Eq. (27), does not always generate the two independent forms of the solution that are needed.
Rather than report the (minor) modi"cations to our solution that are required for the conservative
case, we note that these modi"cations have been developed and used [4] for the scalar version of
this problem. Similar results can be expected for the polarization model considered here.

9. Concluding comment

In regard to the literature on the subject of seriously developed computational methods that
have been shown capable of establishing, for the polarization problem considered here, the
complete Stokes vector for arbitrary values of the independent variables we know only of
Refs. [6,14,15]. In fact, it seems that the solution given here and the ones developed in Refs. [6,14]
are the only ones that are continuous in all variables and that have been shown to work well for
quite general cases.
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