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Abstract

A recently developed version of the discrete-ordinates method is used along with elementary numerical
linear-algebra techniques to establish an e$cient and especially accurate solution to a class of multigroup
transport problems for which upscattering is an important aspect of the model. The problems considered are
de"ned for "nite plane-parallel media, and anisotropic scattering from any group to any group is included in
the formulation. Computational details of the solution are discussed, and accurate numerical results for two
previously de"ned test problems are established. ( 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

In a recent work [1] concerning multigroup transport theory with upscattering, a review of some
of the earlier works on the subject was given, and an especially accurate solution based on the
F
N

method was reported. Importantly, it was also noted in Ref. [1] that di$culties can be
encountered when some of the well established computer codes are used to solve multigroup
transport problems for which upscattering is an important component of the model. In this work
we use a variation of the discrete-ordinates method to develop a solution to this important class of
multigroup problems. As with the F

N
solution reported in Ref. [1] and the P

N
solution developed in

Ref. [2], the discrete-ordinates solution we construct here is based on solving the vector equation of
transfer and so does not require iterations over the groups, as can (perhaps) be done when
upscattering is weak.

Relying on Refs. [1,2] for additional background material, we consider the multigroup equations
written as
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for z3(0, z
0
) and k3[!1, 1]. Here the Legendre polynomials are denoted by P

l
(k), the group

transfer cross sections de"ne the matrices T
l
and the diagonal matrix S has elements Ms

i
N which are

the total cross sections for each group. To be complete, we also note that z is the spatial variable,
k is the direction cosine that de"nes the direction of propagation and the #ux vector W(z, k) has the
angular #uxes for each group t

i
(z,k), for i"1, 2,2, M, as the de"ned components.

In addition to Eq. (1) we consider boundary conditions of the form

W(0,k)"(1!*)F(k)#*d(k!k
0
)F (2a)

and

W(z
0
,!k)"0 (2b)

for k3(0, 1]. Here the constant *3[0, 1], the vector-valued function F(k), the constant vector F and
the direction cosine of the incident beam k

0
3(0, 1] are all considered speci"ed.

As we wish to rewrite Eqs. (1), (2a) and (2b) in dimensionless units, we let q"zs
.*/

and
q
0
"z

0
s
.*/

, where s
.*/

is the minimum of the total cross-section set, and consider the (vector)
transport equation
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for q3(0, q
0
) and k3[!1, 1], and the boundary conditions

W(0,k)"(1!*)F(k)#*d(k!k
0
)F (4a)

and

W(q
0
,!k)"0 (4b)

for k3(0, 1]. Here p
i
"s

i
/s

.*/
de"ne the elements of the diagonal R matrix, and the transfer

matrices are de"ned by C
l
"T

l
/s

.*/
.

2. The reduced problem

Since the boundary condition given by Eq. (4a) introduces into W(q,k) a component that is
a generalized function, we express the complete solution de"ned by Eqs. (3), (4a) and (4b) in the
form

W(q,k)"WH(q, k)#*d(k!k
0
)e~&q@k0F (5)

where WH(q,k) is to be determined and

e~&x"diagM2, e~pix,2N. (6)

If we now substitute Eq. (5) into Eqs. (3), (4a) and (4b) we "nd that we must solve
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for q3(0, q
0
) and k3[!1, 1], subject to the boundary conditions

WH(0,k)"(1!*)F(k) (8a)

and

WH(q0,!k)"0, (8b)

for k3(0, 1]. We note that the known inhomogeneous term in Eq. (7) is de"ned by

Q(q,k)"
1
2
*

L
+
l/0

P
l
(k)P

l
(k

0
)C

l
e~&q@k0F. (9)

3. A discrete-ordinates solution

In a recent paper [3] concerning a radiative-transfer problem based on completely non-coherent
scattering, a solution based on a new variation of the discrete-ordinates method was developed,
evaluated and found to be very e!ective. And so here we wish to make use of the solution reported
in Ref. [3] in order to solve e$ciently and accurately the class of problems de"ned by Eqs. (7), (8a),
(8b) and (9).

As a matter of strategy, we note that, as in Ref. [3], we intend to use the discrete-ordinates
method only to "nd approximate values for the integral terms in Eq. (7), and once that is done we
can solve Eq. (7), with the integral terms replaced by discrete-ordinates approximations to those
terms, to "nd WH(q,k) for all q and k. This second aspect of our approach is what we refer to as
a `post-processinga step [4]. We note that Chalhoub and Garcia [5] have recently shown, for
a class of scalar transport problems, the equivalence between the post-processing used here and an
angular interpolation method based on the use of `dummya quadrature nodes. It is clear that such
an interpolation procedure could also be used for the multigroup problems considered in this work.

We suppress the `*a notation and start with our discrete-ordinates equations, relevant to the
homogeneous version of Eq. (7), written as
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for i"1, 2,2,N. Here, to compact our notation we have introduced

W
l,a(q)"P

l
(ka)[W(q,ka)#(!1)lW(q,!ka)]. (11)

In writing Eqs. (10a) and (10b) as we have, we clearly are considering that the N quadrature points
MkaN and the N weights MwaN are de"ned for use on the integration interval [0, 1]. Of course, we are
free to use a single quadrature scheme on the interval [0, 1], or we can use a composite quadrature
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de"ned over any number of subintervals of [0, 1]. For this reason we do not (yet) place any
additional conditions on the quadrature scheme to be used.

Eqs. (10a) and (10b) clearly have exponential solutions, so we substitute

W(q,$k
i
)"U(l,$k

i
)e~q@l (12)

into those equations to "nd
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for i"1, 2,2,N. Here

U
l,a(l)"P

l
(ka)[U(l, ka)#(!1)lU(l,!ka)]. (14)

We note also that I as it appears in Eqs. (13a) and (13b) is the M]M identity matrix. In order to
rewrite Eqs. (13a) and (13b) more compactly we introduce the MN vectors

U
`
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1
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2
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N
)]T (15a)
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U
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N
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the (MN]MN) matrices

W"diagM2, w
i
I,2N, (16a)

M"diagM2, k
i
I,2N (16b)

and

D"diagM2, R,2N (16c)

and the (MN]M) matrices
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so that we can rewrite Eqs. (13a) and (13b) as
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where

G
l
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l
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(l)]. (19)

We now let

U"U
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(l)#U
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and
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so that we can take the sum and the di!erence of Eqs. (18a) and (18b) to obtain
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X"MU (23a)

and

Y"MV. (23b)

Clearly, we can eliminate between Eqs. (21a) and (21b) to obtain the eigenvalue problems

(HE)X"jX (24a)

and

(EH)Y"jY (24b)

where j"1/l2. We note that the required separation constants Ml
j
N are readily available once we

"nd the eigenvalues Mj
j
N de"ned by either Eq. (24a) or Eq. (24b). We choose to express our results in

terms of the eigenvalues and eigenvectors de"ned by Eq. (24a).
Since the matrices E and H have, to the best of our knowledge, no special properties that would

allow us to know the de"ning properties of the eigenvalue spectrum and the dimension of the space
spanned by the resulting eigenvectors, we can at this point only make some restricting assumptions
about these matters. And so, we consider that the eigenvalue problem de"ned by, say, Eq. (24a)
yields positive (non-zero) eigenvalues and a complete set of eigenvectors. Of course, we already
know of situations where these assumptions are not valid: one such case is that of a `conservativea
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medium where, in fact, one of the eigenvalues is zero. Another such exception is the degenerate case
discussed and resolved in an application of the P

N
method by Caldeira et al. [6]. These singular

cases that are well explained in Ref. [6] would manifest themselves in the current analysis by the
fact that the set of eigenvectors de"ned by Eq. (24a) or Eq. (24b) would be defective. Finally, we
have also seen, in the terms of the P

N
method for the multigroup model [2], that some of the

separation constants Ml
j
N can be complex which, of course, in the current context would imply that

some of the eigenvalues de"ned by Eq. (24a) or Eq. (24b) would be complex. In order to keep our
development (somewhat) brief and to focus attention on the principal aspects of our solution, we do
not consider any of these special cases in this work.

Continuing, we let j
j
and X(j

j
), for j"1, 2,2,J"MN, denote the collection of eigenvalues and

eigenvectors of Eq. (24a). The separation constants we require clearly occur in plus}minus pairs,
and so letting l

j
, for j"1, 2,2,J, denote the reciprocal of the positive square root of j

j
, we can use

Eqs. (20a), (20b), (21a), (21b), (23a) and (23b) to obtain
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for j"1, 2,2,J. We note that I in Eqs. (25a) and (25b) is the MN]MN identity matrix and that

U
`
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j
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j
), (26)

and so at this point we have available all we require for de"ning our solution to Eqs. (10a) and
(10b). We let
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so we can express our discrete-ordinates solution relevant to the homogeneous version of Eq. (7) as
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where the constants MA
j
N and MB

j
N are at this point arbitrary. Note that in Eqs. (28a) and (28b) we

have added the superscript `ha to remind us that these solutions refer to the homogeneous version
of Eq. (7).

4. A particular solution

Having established Eqs. (28a) and (28b) as our discrete-ordinates solution to the homogeneous
version of Eq. (7), we now wish to report our particular solution required for the inhomogeneous
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equations
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for i"1, 2,2, N. We note that by seeking a particular solution proportional to exp(!q/k
0
),

Chandrasekhar [4] was able to "nd a quite simple form for a particular solution appropriate to
a scalar version of our Eqs. (29a) and (29b). However, as was pointed out in a work on the spherical
harmonics method [7], Chandrasekhar's particular solution is not valid if, for example, k

0
happens

to be one of the separation constants Ml
j
N used in the solution of the homogeneous equation. While

the singular nature of Chandrasekhar's particular solution was pointed out in Ref. [7] and
a suitably modi"ed form was also reported there [7], some authors have not worried about this
singularity. However, some recent works on the discrete-ordinates method [8}10] have taken this
issue seriously and have used the in"nite-medium Green's function [11] to construct a particular
solution that is not singular and, at the same time, is su$ciently general so as to be appropriate for
general inhomogeneous source terms. Rather than repeat much of the analysis that is reported in
Refs. [8}10], we simply quote some required results here. We note, in particular, that the
discrete-ordinates solution reported in Ref. [10] is relevant to the four-vector equation of transfer
for the four Stokes parameters that are used to describe the radiation "eld when polarization e!ects
are included in the model, and so the results listed in that work can (with a few leaps of faith) readily
be extended to serve our requirements here.

We write our particular solution to Eqs. (29a) and (29b) as [10]
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where the known functions A
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and
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In addition, we note that the normalization constants used in Eqs. (32a) and (32b) are given by [10]
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Finally, to complete the de"nition of our particular solution, we note that the adjoint vectors
U)

B
(l

j
) are de"ned in a way parallel to the way the direct vectors U

B
(l

j
) are de"ned except that the

transposes of matrices C
l
are used in Eqs. (22a) and (22b) instead of the C

l
matrices.

5. A 5rst solution and post processing

Having found a particular solution, we are ready to construct the complete solution we seek. We
note Eqs. (28a) and (28b) and write
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So all we have to do now is to substitute Eqs. (35a) and (35b) into the boundary conditions
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j
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"nd a linear system de"ned by
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where
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`
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1
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Clearly, once we have solved Eqs. (37a) and (37b) to "nd the constants A
j
and B

j
we have available,

by way of Eqs. (30a), (30b), (35a) and (35b), a "rst version of the desired solution.
Now, assuming that we have established the constants A

j
and B

j
, we can immediately compute

the group #uxes
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In addition to computing the group #uxes and currents we wish, in order to solve the second of
the two test problems discussed in Section 6 of this work, to evaluate the group angular #uxes
exiting the surface at q"0. That is to say, we seek W(0,!k) for k3(0,1]. As mentioned previously
we use the discrete-ordinates method only to evaluate the integral terms in Eq. (7). And so we
substitute Eqs. (35a) and (35b) into the right-hand side of Eq. (29b) to obtain, after noting Eq. (11)
and changing k

i
to k,

!k
L
Lq

W(q,!k)#RW(q,!k)"R(q,!k) (47)

for k3(0,1]. Here
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the functions AK
j
(q) and BK

j
(q) are as de"ned by Eqs. (43a) and (43b) and G

l
(l

j
) is given by Eq. (44).

Now, considering that the right-hand side is known, we can solve Eq. (47) to obtain
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1
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for k3(0, 1]. Of course, we can now substitute Eq. (48) into Eq. (49) and evaluate some resulting
integrals to have our "nal result. However, before doing that we can, for our application here,
obtain more explicit results for the functions A

j
(q) and B

j
(q).

In developing the particular solution given by Eqs. (30a), (30b), (31a) and (31b), we did not
consider that the source term Q(q,k) in Eq. (7) had any special form. And so now if we assume that
Q(q,k) is de"ned by Eq. (9) we can obtain more explicit results for A

j
(q) and B

j
(q). Making use of

Eqs. (9) (31a), (31b), (32a), (32b), (33a) and (33b) and evaluating some elementary integrals, we "nd
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are used to de"ne the diagonal matrix-valued functions
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i
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and

C(q:x, yR~1)"diagM2, C(q:x, y/p
i
),2N. (52b)

In addition, the (1]M) vectors a
j
and b

j
can be expressed as

a
j
"

*
2
k
0
l
j

1
N(l

j
)

L
+
l/0

P
l
(k

0
)GK T

l
(l

j
)C

l
R~1 (53a)

and

b
j
"

*
2
k
0
l
j

1
N(l

j
)

L
+
l/0

(!1)lP
l
(k

0
)GK T

l
(l

j
)C

l
R~1 (53b)

where the adjoint G vectors are given by

GK
l
(l

j
)"PT

l
W[U)

`
(l

j
)#(!1)lU)

~
(l

j
)]. (54)

At this point we are ready to substitute Eq. (48) into Eq. (49) to "nd, again after evaluating some
elementary integrals,

W(0,!k)"!(0,!k)#N(0,!k)#C(0,!k) (55)

for k3(0,1]. The ! term in Eq. (55) comes from the component of R(q,!k) that is based on the
solution of homogeneous discrete-ordinates equations. We "nd we can write

!(0,!k)"
1
2

L
+
l/0

P
l
(k)

J
+
j/1

l
j
[B

j
C(q

0
: l

j
, kR~1)#(!1)lA

j
S(q

0
: l

j
, kR~1)]R~1C

l
G

l
(l

j
) (56)

for k3(0, 1]. The N term in Eq. (55) derives from the component of R(q,!k) de"ned by our
particular solution. Here we "nd

N(0,!k)"
1
2

L
+
l/0

P
l
(k)

J
+
j/1

[W(q
0
: l

j
, kR~1)#(!1)lZ(q

0
: l

j
, kR~1)]R~1C

l
G

l
(l

j
) (57)

for k3(0, 1]. Here

W(q
0
: l

j
,kR~1)"

1
k
RP

q0

0

e~&x@kB
j
(x) dx (58a)

and

Z(q
0
: l

j
, kR~1)"

1
k
RP

q0

0

e~&x@kA
j
(x) dx (58b)

which can be expressed, after we note Eqs. (50a) and (50b), as

W(q
0
: l

j
,kR~1)"diagG2,

M
+
k/1

b
j
(k) f

k
=(q

0
: l

j
, k/p

i
, k

0
/p

k
),2H (59a)

and

Z(q
0
: l

j
, kR~1)"diagG2,

M
+
k/1

a
j
(k) f

k
Z(q

0
: l

j
,k/p

i
, k

0
/p

k
),2H, (59b)
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where the components of a
j
, b

j
and F are, respectively, a

j
(k), b

j
(k) and f

k
. In addition

=(a: x, y, z)"
1
y P

a

0

e~m@ye~m@zS(a!m: x, z) dm (60a)

and

Z(a: x, y, z)"
1
yP

a

0

e~m@yC(m: x, z) dm (60b)

which, after noting Eqs. (51a) and (51b), we can integrate to obtain

Z(a: x, y, z)"
xS(a: x, y)!zS(a: y, z)

x!z
(61a)

and

=(a: x, y, z)"
zS(a: y, z)!xe~a@zC(a: x, y)

x#z
. (61b)

Finally, the C term in Eq. (55) comes from the source-term component of R(q,!k), and so here we
obtain

C(0,!k)"
*
2
k
0

L
+
l/0

(!1)lP
l
(k)P

l
(k

0
)R~1K

l
(q

0
, k

0
R~1,kR~1)R~1F (62)

for k3(0, 1] and where the elements of K are given by

[K
l
(q

0
,k

0
R~1,kR~1)]

i, j
"[C

l
]
i,j

S(q
0
, k

0
/p

j
, k/p

i
) (63)

for i, j"1, 2,2, M.
Here we have elected to evaluate the exiting angular #uxes at the surface at q"0. However, only

a minor e!ort would be required to make available the angular #uxes exiting the surface at q"q
0
.

In fact, analysis similar to that leading to Eq. (55) can be used to establish the group angular #uxes
at any point in the slab.

6. Computational details and numerical results

Of course, the "rst thing we must do in order to evaluate our discrete-ordinates solution
numerically is to de"ne a quadrature scheme. In that regard, we consider it important to note that
the formulation of our discrete-ordinates solution is essentially independent of the quadrature
scheme to be used. The only two restrictions we have imposed are that the N quadrature points
Mk

k
N and the N weights Mw

k
N must be de"ned for use on the integration interval [0, 1] and, because

of the way our basic eigenvalue problem is formulated, that we must exclude zero from the set of
quadrature points. Of course, to exclude zero from the quadrature set is not considered a serious
restriction since typical Gauss quadrature schemes do not include the end points of the integration
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interval. In passing, we note that we have seen [12] a case where the inclusion in the boundary data
of a `step functiona was well solved by subdividing the integration interval [0, 1] so as to have
a `break pointa that coincided with the rise in the step-function boundary data. And so we consider
there to be some merit in using a simple integration scheme that can easily be mapped on to the
integration interval [0, 1] or various subintervals of that basic interval. In this work, we follow
a simple approach: we start with the usual Gauss}Legendre scheme (of order N) de"ned by the
zeros of the Legendre polynomial P

N
(k) for use on the integration interval [!1, 1], and then we

map (linearly) this scheme into one de"ned for use on the interval [0, 1].
Having de"ned our quadrature scheme, our next computational job is to compute the separation

constants Ml
j
N and both the direct and the adjoint eigenvectors. Considering Eq. (24a) to de"ne the

basic eigenvalue problem to be solved, we clearly can express the direct vectors U
B
(l

j
) in terms of

the eigenvectors of the matrix HE. Not surprisingly, we can express the adjoint vectors U)
B

(l
j
) in

terms of the left eigenvectors of HE. And so, as a "rst computational method, we have used the
subroutine DGEEV from the LAPACK collection [13] to compute the eigenvalues and both the
left and right eigenvectors of HE. With the separation constants Ml

j
N and the direct and adjoint

vectors available, we have used the subroutines DGECO and DGESL from the LINPACK
package [14] to "nd the required constants A

j
and B

j
from the linear system de"ned by Eqs. (37a)

and (37b). And so, in a sense, we can consider our solution established. However, we have also used
variations on this scheme. For example, in order to have a version of our calculation that does not
require any LAPACK routines, we have also used the driver program RG from the EISPACK
collection [15] to "nd the eigenvalues and the right eigenvectors de"ned by Eq. (24a), and then we
found the adjoint eigenvectors from the inverse of the matrix of right eigenvectors of Eq. (24a). This
approach, while perhaps more time consuming, can appeal to workers without convenient access
to the LAPACK collection.

In attempting to solve the two test problems de"ned and well solved in a recent work [1] on this
subject of multigroup transport theory with strong upscattering included in the data sets, we found
some success by basing our calculation, as mentioned above, on the eigenvalue problem de"ned by
Eq. (24a); however, we found better results by basing our computation on the equivalent eigenvalue
problem:

(HE)~1X"

1
j
X. (64)

Needless to say, Eqs. (24a) and (64) must, in principle, yield the same collection of eigenvalues and
eigenvectors; however this is not the case when numerical methods (based on "nite word-length
computations) must be used.

As mentioned, we were able to improve our "rst computation by considering Eq. (64), rather
than Eq. (24a), to de"ne our eigenvalue problem. As we still were not completely satis"ed with our
results, we introduced an additional variation to our calculation. Having found the vectors U

B
(l

j
)

from the eigenvectors de"ned by Eq. (64), we used the U vectors only to compute the G vectors
de"ned by Eq. (19), and then we solved Eqs. (18a) and (18b) to get new U vectors. We also did
a similar calculation to get `improveda adjoint vectors.

As a "rst test of our discrete-ordinates solution here in the context of multigroup theory we
consider the six-group problem that was used as a test case for a previously reported multigroup
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P
N

solution. Since the de"ning cross sections that were provided by Garcia [16] are listed in Ref.
[2] we do not repeat them here; however, we note that this problem is for a layer of water
(thickness"30 cm) bombarded by an isotropic distribution (*"0) incident only in the "rst group.
While quite good results for group #uxes and currents for this problem were reported in Ref. [2],
considerably better results were obtained by the F

N
method and are given in Ref. [1]. In addition to

the numerical results for the #uxes and currents, Garcia and Siewert [1] also reported "ve-"gure
results for the group angular #uxes for this problem. Here, basing our computation on the
eigenvalue problem de"ned by Eq. (64), we were able (with N"10) to con"rm all of the six-"gure
results for the group #uxes and currents that are reported in Ref. [1]. We have not computed the
group angular #uxes. We note that no e!ort was made to optimize our FORTRAN implementa-
tion of the solution, but even so this calculation for a six-group problem with anisotropic scattering
(¸"3) yielded six-"gure results for the group #uxes and currents in less than 10 s on a 166 MHz
Pentium-based notebook computer. Since we found perfect agreement with the results tabulated in
Ref. [1], we do not list our results for this problem here. However, we would like to record one
observation about this problem that we have not previously mentioned: the de"ning transfer cross
sections are defective in the sense that some transfer probabilities are negative.

In order to test our discrete-ordinates solution with a more di$cult problem we next considered
the 42-group problem de"ned in Ref. [1]. While the prescription for de"ning the required cross
sections for this problem has been carefully given [1], the data set has not been published; however,
should someone wish a de"ning data "le, one is available from either of the authors of Ref. [1]. We
note that this problem, which is based on a concrete slab of thickness 100 cm, also has de"ning
transfer cross sections that are such that some transfer probabilities are negative. For this problem,
there is a delta beam (*"1 with k

0
"1) incident in the fourth group, and in addition to the group

#uxes and currents, we have computed a set of results for the `double-di!erential albedoa
de"ned as

a
i,j

(k, k
0
)"

kt
i
(0,!k)
k
0
f
j

(65)

for k3(0,1]. Here t
i
(0,!k) is the ith component of W(0,!k) and f

j
is the jth component of the

vector F used in Eq. (2a). In Tables 1 and 2 we list our results for the group #uxes and currents for
this problem, and in Tables 3 and 4 we list the computed values of a

i, j
(k,k

0
) for j"4 and k

0
"1.

Having varied the order of our discrete-ordinates solution to this problem from N"10 to N"40,
we are of the opinion that the numerical results reported here are correct to all "gures given. We
note that the entries in Tables 3 and 4 con"rm all of the four-"gure results reported previously [1].

While we found no problems in solving the considered six-group problem on a notebook
computer, we did encounter some problems with the 42-group problem working on normal
(short-word) computers. For example, with N"10 we got quite good results for Tables 3 and
4 (while some of the very small values for the #uxes and currents were wrong); however, the results
did not improve as we increased N. Attributing the mentioned lack of improvement with increasing
N to a loss of accuracy in the linear-algebra packages we were using, we moved the calculation to
a long-word machine (Cray T90) and immediately obtained the results shown in Tables 1}4.
Needless to say, we have no proof that programming errors have not been made, but a reasonable
e!ort has been made to establish the con"dence we have in our reported results.
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Table 1
The group #uxes W

0
(q)

Group q/q
0
"0.0 q/q

0
"0.25 q/q

0
"0.5 q/q

0
"0.75 q/q

0
"1.0

1 4.96518(!9) 8.64072(!12) 2.18074(!16) 3.20297(!21) 3.20438(!26)
2 2.23596(!6) 1.60969(!9) 2.94360(!14) 3.57928(!19) 3.22032(!24)
3 7.93524(!4) 1.82984(!7) 2.24948(!12) 2.16280(!17) 1.69139(!22)
4 1.09471 2.04896(!5) 1.76353(!10) 1.39914(!15) 9.75948(!21)
5 6.93240(!2) 1.18778(!5) 1.37589(!10) 1.26991(!15) 9.93776(!21)
6 4.04478(!2) 1.24194(!5) 1.73007(!10) 1.77766(!15) 3.14997(!20)
7 5.64627(!3) 2.69933(!6) 4.05845(!11) 4.37521(!16) 3.29844(!20)
8 5.18539(!3) 2.76917(!6) 4.28771(!11) 4.73018(!16) 7.92793(!20)
9 5.00475(!3) 2.93625(!6) 4.67850(!11) 5.33060(!16) 2.48393(!19)

10 4.90053(!3) 3.12576(!6) 5.13084(!11) 6.15326(!16) 6.94359(!19)
11 4.66951(!3) 3.19057(!6) 5.39501(!11) 7.01555(!16) 1.66202(!18)
12 4.48519(!3) 3.28224(!6) 5.72145(!11) 8.52033(!16) 3.86618(!18)
13 4.49358(!3) 3.47157(!6) 6.23047(!11) 1.17132(!15) 9.35404(!18)
14 4.18275(!3) 3.41005(!6) 6.30777(!11) 1.68808(!15) 2.05608(!17)
15 7.68814(!3) 6.62260(!6) 1.27404(!10) 7.26297(!15) 1.29587(!16)
16 1.21541(!2) 1.14136(!5) 2.36138(!10) 6.23511(!14) 1.38872(!15)
17 1.52716(!2) 1.60546(!5) 3.76096(!10) 7.22845(!13) 1.75652(!14)
18 3.95297(!2) 5.12769(!5) 1.94521(!9) 4.19809(!11) 9.95768(!13)
19 4.01948(!2) 6.77147(!5) 1.82278(!8) 1.31689(!9) 2.99503(!11)
20 4.02726(!2) 9.07856(!5) 3.04930(!7) 2.50891(!8) 5.39760(!10)
21 2.40618(!2) 7.57612(!5) 1.04130(!6) 8.65220(!8) 1.88431(!9)
22 1.61057(!2) 7.42718(!5) 2.18812(!6) 1.82171(!7) 3.97289(!9)
23 1.15838(!2) 7.81078(!5) 3.37626(!6) 2.81259(!7) 6.14365(!9)
24 1.24090(!2) 1.24900(!4) 6.80973(!6) 5.67450(!7) 1.24343(!8)
25 2.04748(!2) 3.73698(!4) 2.47258(!5) 2.06083(!6) 4.50958(!8)
26 2.34741(!2) 9.13061(!4) 6.83151(!5) 5.69459(!6) 1.24534(!7)
27 3.89506(!2) 3.67458(!3) 2.94160(!4) 2.45223(!5) 5.31348(!7)
28 5.63357(!2) 1.24528(!2) 1.02805(!3) 8.57052(!5) 1.82757(!6)
29 9.69697(!2) 3.98362(!2) 3.32947(!3) 2.77573(!4) 5.74934(!6)
30 7.96625(!2) 4.41601(!2) 3.70618(!3) 3.08981(!4) 6.23701(!6)
31 7.00493(!2) 4.40713(!2) 3.70413(!3) 3.08811(!4) 6.12796(!6)
32 5.87020(!2) 3.96673(!2) 3.33622(!3) 2.78139(!4) 5.41878(!6)
33 5.95617(!2) 4.22911(!2) 3.55818(!3) 2.96644(!4) 5.66755(!6)
34 6.61925(!2) 4.90571(!2) 4.12837(!3) 3.44180(!4) 6.42571(!6)
35 6.19816(!2) 4.77440(!2) 4.01830(!3) 3.35004(!4) 6.08050(!6)
36 4.56052(!2) 3.62589(!2) 3.05177(!3) 2.54424(!4) 4.48826(!6)
37 4.53271(!2) 3.70537(!2) 3.11861(!3) 2.59997(!4) 4.45198(!6)
38 4.33848(!2) 3.65441(!2) 3.07556(!3) 2.56408(!4) 4.23415(!6)
39 3.92843(!2) 3.42537(!2) 2.88256(!3) 2.40317(!4) 3.79150(!6)
40 3.23311(!2) 2.94450(!2) 2.47762(!3) 2.06558(!4) 3.06800(!6)
41 2.17523(!2) 2.10877(!2) 1.77415(!3) 1.47910(!4) 2.01236(!6)
42 7.68075(!3) 8.35121(!3) 7.02499(!4) 5.85669(!5) 6.86126(!7)
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Table 2
The group currents W

1
(q)

Group q/q
0
"0.0 q/q

0
"0.25 q/q

0
"0.5 q/q

0
"0.75 q/q

0
"1.0

1 !2.62992(!9) 3.68157(!12) 1.11650(!16) 1.76723(!21) 2.30589(!26)
2 !1.14451(!6) 7.79315(!10) 1.63653(!14) 2.10309(!19) 2.34917(!24)
3 !3.17450(!4) 1.01131(!7) 1.35696(!12) 1.35059(!17) 1.25359(!22)
4 9.69181(!1) 1.35846(!5) 1.15091(!10) 9.07522(!16) 7.32620(!21)
5 !2.92256(!2) 6.50407(!6) 8.30410(!11) 7.95923(!16) 7.32638(!21)
6 !1.75448(!2) 6.60245(!6) 1.02535(!10) 1.10080(!15) 2.05312(!20)
7 !2.30492(!3) 1.42343(!6) 2.37710(!11) 2.67218(!16) 1.95791(!20)
8 !2.09481(!3) 1.45316(!6) 2.50187(!11) 2.87084(!16) 4.63555(!20)
9 !2.00873(!3) 1.53385(!6) 2.72109(!11) 3.19118(!16) 1.44071(!19)

10 !1.96314(!3) 1.62989(!6) 2.98092(!11) 3.58273(!16) 4.00305(!19)
11 !1.87527(!3) 1.65319(!6) 3.12056(!11) 3.86735(!16) 9.57853(!19)
12 !1.80760(!3) 1.69558(!6) 3.30060(!11) 4.25976(!16) 2.22906(!18)
13 !1.81940(!3) 1.78211(!6) 3.57803(!11) 4.92563(!16) 5.39758(!18)
14 !1.70651(!3) 1.74109(!6) 3.60429(!11) 5.52556(!16) 1.18800(!17)
15 !3.16107(!3) 3.37333(!6) 7.27418(!11) 1.51904(!15) 7.50264(!17)
16 !5.10740(!3) 5.73936(!6) 1.33193(!10) 7.93363(!15) 8.06584(!16)
17 !6.57964(!3) 7.95269(!6) 2.06322(!10) 8.47884(!14) 1.02837(!14)
18 !1.77346(!2) 2.47184(!5) 8.42117(!10) 4.61586(!12) 5.83262(!13)
19 !1.88662(!2) 3.14937(!5) 2.92301(!9) 1.37287(!10) 1.75629(!11)
20 !1.95407(!2) 3.97957(!5) 3.04318(!8) 2.38804(!9) 3.15611(!10)
21 !1.19187(!2) 2.92322(!5) 1.00549(!7) 8.31801(!9) 1.10055(!9)
22 !8.06531(!3) 2.35094(!5) 2.09736(!7) 1.75353(!8) 2.31983(!9)
23 !5.84094(!3) 2.01792(!5) 3.24331(!7) 2.72050(!8) 3.58853(!9)
24 !6.29331(!3) 2.64741(!5) 6.59455(!7) 5.54018(!8) 7.26827(!9)
25 !1.04612(!2) 6.16176(!5) 2.39529(!6) 2.01457(!7) 2.63696(!8)
26 !1.21126(!2) 1.19590(!4) 6.65077(!6) 5.59741(!7) 7.28848(!8)
27 !2.03822(!2) 4.04083(!4) 2.83716(!5) 2.38870(!6) 3.11098(!7)
28 !3.00614(!2) 1.23117(!3) 9.72933(!5) 8.19297(!6) 1.07036(!6)
29 !5.28144(!2) 3.63592(!3) 3.01760(!4) 2.54130(!5) 3.36462(!6)
30 !4.39324(!2) 3.82859(!3) 3.23158(!4) 2.72160(!5) 3.64733(!6)
31 !3.88611(!2) 3.71270(!3) 3.15264(!4) 2.65515(!5) 3.58269(!6)
32 !3.26643(!2) 3.23584(!3) 2.75513(!4) 2.32038(!5) 3.16544(!6)
33 !3.32023(!2) 3.33096(!3) 2.83999(!4) 2.39185(!5) 3.30698(!6)
34 !3.69452(!2) 3.70449(!3) 3.16082(!4) 2.66207(!5) 3.74380(!6)
35 !3.46176(!2) 3.41831(!3) 2.91730(!4) 2.45698(!5) 3.53521(!6)
36 !2.54742(!2) 2.45588(!3) 2.09570(!4) 1.76502(!5) 2.60337(!6)
37 !2.53102(!2) 2.36381(!3) 2.01652(!4) 1.69832(!5) 2.57544(!6)
38 !2.42045(!2) 2.16199(!3) 1.84348(!4) 1.55259(!5) 2.44088(!6)
39 !2.18811(!2) 1.83483(!3) 1.56353(!4) 1.31682(!5) 2.17516(!6)
40 !1.79560(!2) 1.37161(!3) 1.16790(!4) 9.83610(!6) 1.74763(!6)
41 !1.20099(!2) 7.85792(!4) 6.68482(!5) 5.62997(!6) 1.13287(!6)
42 !4.18058(!3) 1.97591(!4) 1.67933(!5) 1.41434(!6) 3.77257(!7)
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Table 3
The double-di!erential albedo a

i,j
(k, k

0
) with j"4 and k

0
"1.0 for k"0.1(0.1)0.5

Group k"0.1 k"0.2 k"0.3 k"0.4 k"0.5

1 3.95438(!10) 8.99764(!10) 1.46207(!9) 2.04990(!9) 2.64204(!9)
2 1.95672(!7) 4.42615(!7) 7.02412(!7) 9.57962(!7) 1.20074(!6)
3 1.19705(!4) 2.18031(!4) 2.93845(!4) 3.48946(!4) 3.85623(!4)
4 1.81797(!2) 3.09646(!2) 3.89665(!2) 4.29013(!2) 4.33965(!2)
5 9.69764(!3) 1.79384(!2) 2.46328(!2) 2.99033(!2) 3.39075(!2)
6 5.33609(!3) 1.01749(!2) 1.42767(!2) 1.76200(!2) 2.02445(!2)
7 8.14791(!4) 1.53048(!3) 2.10447(!3) 2.53312(!3) 2.82392(!3)
8 7.58311(!4) 1.42266(!3) 1.95137(!3) 2.34030(!3) 2.59626(!3)
9 7.37521(!4) 1.38349(!3) 1.89550(!3) 2.26869(!3) 2.50933(!3)

10 7.22944(!4) 1.35813(!3) 1.86181(!3) 2.22805(!3) 2.46237(!3)
11 6.85664(!4) 1.29103(!3) 1.77298(!3) 2.12482(!3) 2.35115(!3)
12 6.54410(!4) 1.23585(!3) 1.70116(!3) 2.04273(!3) 2.26414(!3)
13 6.50808(!4) 1.23208(!3) 1.69980(!3) 2.04556(!3) 2.27233(!3)
14 5.98481(!4) 1.13755(!3) 1.57508(!3) 1.90212(!3) 2.12064(!3)
15 1.08670(!3) 2.07292(!3) 2.88017(!3) 3.49047(!3) 3.90601(!3)
16 1.65950(!3) 3.19598(!3) 4.48244(!3) 5.48530(!3) 6.20322(!3)
17 1.99983(!3) 3.89573(!3) 5.52560(!3) 6.84054(!3) 7.83218(!3)
18 4.80936(!3) 9.56204(!3) 1.38327(!2) 1.74692(!2) 2.04229(!2)
19 4.45923(!3) 9.10329(!3) 1.34992(!2) 1.74664(!2) 2.09257(!2)
20 4.14194(!3) 8.64293(!3) 1.30786(!2) 1.72532(!2) 2.10670(!2)
21 2.35153(!3) 4.98039(!3) 7.63952(!3) 1.02079(!2) 1.26189(!2)
22 1.53038(!3) 3.26717(!3) 5.04875(!3) 6.79341(!3) 8.45447(!3)
23 1.08095(!3) 2.31937(!3) 3.60110(!3) 4.86727(!3) 6.08349(!3)
24 1.14026(!3) 2.45691(!3) 3.82986(!3) 5.19617(!3) 6.51836(!3)
25 1.84407(!3) 3.99484(!3) 6.25932(!3) 8.53432(!3) 1.07569(!2)
26 2.05769(!3) 4.48882(!3) 7.08153(!3) 9.71959(!3) 1.23299(!2)
27 3.28257(!3) 7.23026(!3) 1.15176(!2) 1.59600(!2) 2.04365(!2)
28 4.48460(!3) 1.00099(!2) 1.61664(!2) 2.27112(!2) 2.94757(!2)
29 7.24652(!3) 1.64075(!2) 2.69006(!2) 3.83633(!2) 5.05266(!2)
30 5.71676(!3) 1.30619(!2) 2.16215(!2) 3.11299(!2) 4.13806(!2)
31 4.92774(!3) 1.13101(!2) 1.88098(!2) 2.72075(!2) 3.63285(!2)
32 4.08846(!3) 9.40313(!3) 1.56739(!2) 2.27241(!2) 3.04116(!2)
33 4.12457(!3) 9.49562(!3) 1.58475(!2) 2.30065(!2) 3.08318(!2)
34 4.56643(!3) 1.05177(!2) 1.75660(!2) 2.55237(!2) 3.42379(!2)
35 4.26993(!3) 9.83152(!3) 1.64214(!2) 2.38685(!2) 3.20338(!2)
36 3.14368(!3) 7.23174(!3) 1.20737(!2) 1.75471(!2) 2.35522(!2)
37 3.13213(!3) 7.19424(!3) 1.20000(!2) 1.74307(!2) 2.33903(!2)
38 3.01205(!3) 6.90185(!3) 1.14940(!2) 1.66785(!2) 2.23667(!2)
39 2.74939(!3) 6.27600(!3) 1.04247(!2) 1.51002(!2) 2.02263(!2)
40 2.29371(!3) 5.20359(!3) 8.60665(!3) 1.24295(!2) 1.66145(!2)
41 1.58378(!3) 3.55243(!3) 5.82919(!3) 8.37033(!3) 1.11424(!2)
42 5.92661(!4) 1.29713(!3) 2.09177(!3) 2.96518(!3) 3.90907(!3)
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Table 4
The double-di!erential albedo a

i,j
(k, k

0
) with j"4 and k

0
"1.0 for k"0.6(0.1)1.0

Group k"0.6 k"0.7 k"0.8 k"0.9 k"1.0

1 3.22487(!9) 3.78985(!9) 4.33186(!9) 4.84805(!9) 5.33707(!9)
2 1.42660(!6) 1.63382(!6) 1.82200(!6) 1.99151(!6) 2.14311(!6)
3 4.06101(!4) 4.12387(!4) 4.06236(!4) 3.89162(!4) 3.62467(!4)
4 4.09761(!2) 3.60715(!2) 2.90380(!2) 2.01690(!2) 9.70781(!3)
5 3.67992(!2) 3.87167(!2) 3.97810(!2) 4.00966(!2) 3.97529(!2)
6 2.22100(!2) 2.35798(!2) 2.44151(!2) 2.47718(!2) 2.47004(!2)
7 2.98808(!3) 3.03755(!3) 2.98387(!3) 2.83767(!3) 2.60852(!3)
8 2.72972(!3) 2.75205(!3) 2.67425(!3) 2.50651(!3) 2.25805(!3)
9 2.62754(!3) 2.63443(!3) 2.54084(!3) 2.35688(!3) 2.09168(!3)

10 2.57437(!3) 2.57483(!3) 2.47439(!3) 2.28302(!3) 2.00979(!3)
11 2.46068(!3) 2.46341(!3) 2.36933(!3) 2.18782(!3) 1.92749(!3)
12 2.37327(!3) 2.37938(!3) 2.29185(!3) 2.11961(!3) 1.87084(!3)
13 2.38753(!3) 2.40012(!3) 2.31924(!3) 2.15365(!3) 1.91145(!3)
14 2.23691(!3) 2.25880(!3) 2.19449(!3) 2.05189(!3) 1.83835(!3)
15 4.13725(!3) 4.19779(!3) 4.10203(!3) 3.86396(!3) 3.49671(!3)
16 6.64864(!3) 6.83974(!3) 6.79656(!3) 6.53906(!3) 6.08622(!3)
17 8.51031(!3) 8.89289(!3) 9.00106(!3) 8.85665(!3) 8.48081(!3)
18 2.26946(!2) 2.43099(!2) 2.53061(!2) 2.57251(!2) 2.56099(!2)
19 2.38503(!2) 2.62419(!2) 2.81177(!2) 2.95031(!2) 3.04273(!2)
20 2.44727(!2) 2.74536(!2) 3.00107(!2) 3.21556(!2) 3.39058(!2)
21 1.48368(!2) 1.68445(!2) 1.86364(!2) 2.02139(!2) 2.15827(!2)
22 1.00055(!2) 1.14326(!2) 1.27296(!2) 1.38955(!2) 1.49324(!2)
23 7.22964(!3) 8.29459(!3) 9.27291(!3) 1.01629(!2) 1.09653(!2)
24 7.77400(!3) 8.95017(!3) 1.00401(!2) 1.10412(!2) 1.19533(!2)
25 1.28882(!2) 1.49049(!2) 1.67940(!2) 1.85491(!2) 2.01685(!2)
26 1.48657(!2) 1.72974(!2) 1.96070(!2) 2.17845(!2) 2.38251(!2)
27 2.48657(!2) 2.91928(!2) 3.33815(!2) 3.74086(!2) 4.12598(!2)
28 3.63386(!2) 4.32117(!2) 5.00310(!2) 5.67496(!2) 6.33340(!2)
29 6.31825(!2) 7.61678(!2) 8.93536(!2) 1.02638(!1) 1.15939(!1)
30 5.22062(!2) 6.34694(!2) 7.50565(!2) 8.68737(!2) 9.88428(!2)
31 4.60282(!2) 5.61852(!2) 6.66971(!2) 7.74775(!2) 8.84535(!2)
32 3.86172(!2) 4.72397(!2) 5.61927(!2) 6.54028(!2) 7.48073(!2)
33 3.92043(!2) 4.80224(!2) 5.71988(!2) 6.66585(!2) 7.63371(!2)
34 4.35790(!2) 5.34355(!2) 6.37110(!2) 7.43224(!2) 8.51978(!2)
35 4.07988(!2) 5.00612(!2) 5.97321(!2) 6.97344(!2) 8.00014(!2)
36 3.00042(!2) 3.68293(!2) 4.39637(!2) 5.13514(!2) 5.89438(!2)
37 2.97968(!2) 3.65790(!2) 4.36750(!2) 5.10303(!2) 5.85976(!2)
38 2.84832(!2) 3.49624(!2) 4.17470(!2) 4.87867(!2) 5.60374(!2)
39 2.57386(!2) 3.15809(!2) 3.77040(!2) 4.40645(!2) 5.06243(!2)
40 2.11130(!2) 2.58827(!2) 3.08865(!2) 3.60913(!2) 4.14680(!2)
41 1.41177(!2) 1.72719(!2) 2.05838(!2) 2.40344(!2) 2.76067(!2)
42 4.91674(!3) 5.98249(!3) 7.10128(!3) 8.26859(!3) 9.48032(!3)
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7. Concluding remarks

While the developed discrete-ordinates solution has been shown to yield what we believe to be
excellent six-"gure results for two meaningful test problems (especially the challenging 42-group
problem), it should be remembered that we have made some assumptions here that can be violated
by other data sets. For example, as discussed in Section 3, we have assumed that our eigenvalue
problem yields a full set of eigenvectors. Also we have not included (or encountered, so far) the
possibility of complex eigenvalues* a situation that could be resolved, as it was done in Ref. [10],
with additional programming work. Finally, we are hopeful of making additional improvements in
our calculation so that (with the exception of the very small numbers) all of the digits given in our
tables can be obtained on short-word machines.

Acknowledgements

The author would like to express his gratitude to L.B. Barichello, E.S. Chalhoub, R.D. da Cunha,
R.D.M. Garcia and A.M. Yacout for some helpful discussions concerning this (and other) work. In
addition, the author would like to express his thanks to the Curso de PoH s-Graduac7 a8 o em
MatemaH tica Aplicada da Universidade Federal do Rio Grande do Sul and Fundac7 a8 o de Amparo
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