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Abstract. A version of the discrete-ordinates method is used to solve in a unified manner some
classical flow problems based on the Bhatnagar, Gross and Krook model in the theory of rarefied-
gas dynamics. In particular, the thermal-creep problem and the viscous-slip (Kramers’) problem
are solved for the case of a semi-infinite medium, and the Poiseuille-flow problem, the Couette-
flow problem and the thermal-creep problem are all solved for a wide range of the Knudsen
number.
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1. Introduction

Having used in some recent works a new variation of the discrete-ordinates method
[1–3] and a method based on an expansion in terms of Hermite polynomials [4] to
solve a class of basic problems based on the Bhatnagar, Gross and Krook model
[5] in the general area of rarefied-gas dynamics, we would like in this work to
revisit and solve in a unified manner a collection of the standard problems often
studied [6,7] in regard to flow in plane-parallel media. We note first of all that the
literature concerning the basic problems we solve here is very extensive, and so to
keep this work to a modest length we do not attempt to review the many works
already devoted to this subject. Instead we consider that a recent review article
by Sharipov and Seleznev [8] and the books by Cercignani [6] and Williams [7] are
available, and so we rely on these books and two basic papers by Loyalka, Petrellis
and Storvick [9,10] for the background material we require here. In addition to
making use of the older works mentioned, we base the definitions of the considered
problems on a recent work [11] by Williams who formulated all of the problems
we solve here.
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2. The Problems

In this section we present a mathematical formulation of the various problems we
intend to solve and we introduce the notation, taken mostly from Refs. [1] and
[9–11], we use throughout this work. While our emphasis here is on solving well
the considered problems, and not on the derivations of these problems from basic
physics, we consider that the recent (parallel) work by Williams [11], that starts
with the nonlinear Boltzmann equation and gives unified derivations of all the
problems we solve here, is particularly useful for understanding the importance of
these classical problems in the kinetic theory of gases.

2.1. Half-Space Thermal-Creep Problem

For the half-space thermal-creep problem, we follow Refs. [9] and [11] and so seek
a solution to (what we call) the reduced BGK equation

ξ
∂

∂τ
Y (τ, ξ) + Y (τ, ξ) =

∫ ∞

−∞
Ψ(u)Y (τ, u) du, (1)

for τ ∈ (0,∞) and ξ ∈ (−∞,∞) , subject to

lim
τ→∞Y (τ, ξ) =

1
2
AT (2a)

and the boundary condition

Y (0, ξ)− (1− α)Y (0,−ξ) =
1
2
α(ξ2 − 1

2
) (2b)

for ξ ∈ (0,∞) . Here and throughout this work (what we call) the characteristic
function is

Ψ(u) = π−1/2 exp{−u2} (3)

and α ∈ (0, 1] is the accommodation coefficient. In regard to the quantities of
physical interest that we wish to establish and in order to be consistent with
previous work to which we wish to compare our numerical results, we follow the
definitions from Ref. [9] and thus will compute the thermal-slip coefficient AT and
the macroscopic velocity profile

qT(τ) = 2Y0(τ) (4)

where, in general,

Y0(τ) =
∫ ∞

−∞
Ψ(u)Y (τ, u) du. (5)
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2.2. Half-Space Viscous-Slip (Kramers’) Problem

In regard to the viscous-slip problem for a half space (also known as Kramers’
problem) we base our considerations again on Refs. [9] and [11], and so we wish
to establish a solution to

ξ
∂

∂τ
Y (τ, ξ) + Y (τ, ξ) =

∫ ∞

−∞
Ψ(u)Y (τ, u) du, (6)

for τ ∈ (0,∞) and ξ ∈ (−∞,∞) , subject to

lim
τ→∞Y (τ, ξ) = AP (7a)

and the boundary condition

Y (0, ξ)− (1− α)Y (0,−ξ) = (2− α)ξ (7b)

for ξ ∈ (0,∞) . In regard to quantities of physical interest, we again follow the
definitions from Ref. [9], and so we seek to compute the viscous-slip coefficient AP

and the macroscopic velocity profile

qP(τ) = τ + Y0(τ) . (8)

2.3. Poiseuille Flow in a Plane Channel

We note, for example from Refs. [1] and [11], that the Poiseuille-flow problem in
a plane channel can be formulated in terms of the reduced BGK equation

ξ
∂

∂τ
Y (τ, ξ) + Y (τ, ξ) =

∫ ∞

−∞
Ψ(u)Y (τ, u) du, (9)

for τ ∈ (−a, a) and ξ ∈ (−∞,∞) , and the boundary conditions

Y (−a, ξ)− (1− α)Y (−a,−ξ) = αξ2 + a(2− α)ξ (10a)

and
Y (a,−ξ)− (1− α)Y (a, ξ) = αξ2 + a(2− α)ξ (10b)

for ξ ∈ (0,∞) . Here 2a (the inverse Knudsen number) is the channel width
(in nondimensional units). Making use of the definitions from Ref. [10], we will
compute the macroscopic velocity profile

qP(τ) =
1
2
(
1− a2 + τ2

)− Y0(τ) (11)

and the flow rate

QP = − 1
2a2

∫ a

−a

qP(τ) dτ . (12)



520 L. B Barichello et al. ZAMP

2.4. Couette Flow in a Plane Channel

For the problem of Couette flow, we make use of the extension [11] of the formu-
lations used in Refs. [10] and [12] to the case where the accommodation coefficient
α can have any value in the interval (0, 1] , and so we seek a solution of

ξ
∂

∂τ
Y (τ, ξ) + Y (τ, ξ) =

∫ ∞

−∞
Ψ(u)Y (τ, u) du, (13)

for τ ∈ (−a, a) and ξ ∈ (−∞,∞) , subject to the boundary conditions [11]

Y (−a, ξ)− (1− α)Y (−a,−ξ) = α (14a)

and
Y (a,−ξ)− (1− α)Y (a, ξ) = −α (14b)

for ξ ∈ (0,∞) . Again 2a is the inverse Knudsen number, and for this problem
we wish to compute the (constant) normalized stress [11]

Pxz = π1/2

∫ ∞

−∞
Ψ(u)Y (τ, u)u du . (15)

2.5. Thermal Creep in a Plane Channel

Again we refer to Refs. [10] and [11] and consider the reduced BGK equation

ξ
∂

∂τ
Y (τ, ξ) + Y (τ, ξ) =

∫ ∞

−∞
Ψ(u)Y (τ, u) du, (16)

for τ ∈ (−a, a) and ξ ∈ (−∞,∞) , and the boundary conditions

Y (−a, ξ)− (1− α)Y (−a,−ξ) =
1
2
α(ξ2 − 1

2
) (17a)

and
Y (a,−ξ)− (1− α)Y (a, ξ) =

1
2
α(ξ2 − 1

2
) (17b)

for ξ ∈ (0,∞) . As for the problem of Poiseuille flow, we again follow the definitions
from Ref. [10] and thus will compute the macroscopic velocity profile

qT(τ) = Y0(τ) (18)

and the flow rate

QT = − 1
2a2

∫ a

−a

qT(τ) dτ . (19)

Having defined the five basic problems we intend to solve in this work, we now
formulate the variation of the discrete-ordinates method that we use to solve these
problems.
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3. A Discrete-Ordinates Solution

The variation of the discrete-ordinates method [13–15] we use in this work was
developed in Refs. [1] and [16], and so we can make use of that material now
to solve the half-space problems and the problems for finite channels that were
formulated in Section 2. We thus approximate the integral term in Eq. (1) by a
quadrature formula and write our discrete-ordinates equations as

ξi
d
dτ

Y (τ, ξi) + Y (τ, ξi) =
N∑

k=1

wkΨ(ξk)[Y (τ, ξk) + Y (τ,−ξk)] (20a)

and

−ξi
d
dτ

Y (τ,−ξi) + Y (τ,−ξi) =
N∑

k=1

wkΨ(ξk)[Y (τ, ξk) + Y (τ,−ξk)] (20b)

for i = 1, 2, . . . , N . In writing Eqs. (20) we have taken into account the fact that
the characteristic function defined by Eq. (3) is an even function. In addition, we
clearly are considering that the N quadrature points {ξk} and the N weights
{wk} are defined for use on the integration interval [0,∞) . We note that it is to
this feature of using a “half-range” quadrature scheme that we partially attribute
the especially good accuracy we have obtained from the solution reported here.

Seeking exponential solutions, we substitute

Y (τ,±ξi) = φ(ν,±ξi)e−τ/ν (21)

into Eqs. (20) to find
1
ν
MΦ+ = (I−W)Φ+ −WΦ− (22a)

and
−1

ν
MΦ− = (I−W)Φ− −WΦ+ (22b)

where I is the N ×N identity matrix,

Φ± =
[
φ(ν,±ξ1), φ(ν,±ξ2), . . . , φ(ν,±ξN )

]T
, (23)

the superscript T denotes the transpose operation, the elements of the matrix W
are

(W)i,j = wjΨ(ξj) (24)

and
M = diag

{
ξ1, ξ2, . . . , ξN

}
. (25)

If we now let
U = Φ+ + Φ− (26)

then we can eliminate between the sum and the difference of Eqs. (22) to find

(D− 2M−1WM−1)MU =
1
ν2

MU (27)
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where
D = diag

{
ξ−2
1 , ξ−2

2 , . . . , ξ−2
N

}
. (28)

Multiplying Eq. (27) by a diagonal matrix T , we find

(D− 2V)X =
1
ν2

X (29)

where
V = M−1TWT−1M−1 (30)

and
X = TMU . (31)

As discussed in Ref. [16], we can define the elements t1, t2, . . . , tN of T so as to
make V symmetric; and therefore, since V is a symmetric, rank one matrix, we
can write our eigenvalue problem in the form

(D− 2zzT)X = λX (32)

where λ = 1/ν2 and

z =

[√
w1Ψ(ξ1)

ξ1
,

√
w2Ψ(ξ2)

ξ2
, . . . ,

√
wNΨ(ξN )

ξN

]T

. (33)

We note that the eigenvalue problem defined by Eq. (32) is of a form that is en-
countered when the so-called “divide and conquer” method [17] is used to find the
eigenvalues of tridiagonal matrices. In addition, we see from Eq. (28) that, because
of the way our basic eigenvalue problem is formulated, we must exclude zero from
the set of quadrature points. Of course to exclude zero from the quadrature set
is not considered a serious restriction since typical Gauss quadrature schemes do
not include the end points of the integration interval.

Considering that we have found the required eigenvalues from Eq. (32), we
impose the normalization condition

N∑
k=1

wkΨ(ξk)[φ(ν, ξk) + φ(ν,−ξk)] = 1 (34)

so that we can write our discrete-ordinates solution as

Y (τ,±ξi) =
N∑

j=1

[
Aj

νj

νj ∓ ξi
e−(a+τ)/νj + Bj

νj

νj ± ξi
e−(a−τ)/νj

]
(35)

where the arbitrary constants {Aj} and {Bj} are to be determined from the
boundary conditions and the separation constants {νj} are the reciprocals of
the positive square roots of the eigenvalues defined by Eq. (32). It is clear from
Eq. (35) that we cannot allow any separation constant to be equal to one of the
quadrature points. In addition, the scaling constant a in Eq. (35) is, at this point,
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also arbitrary (we will use a = 0 for half-space applications and 2a equal to the
full channel width for plane-channel problems).

At this point we find it convenient to modify slightly the discrete-ordinates
solution we reported in Ref. [16]. We note that problems based on Eq. (1) are
“conservative” since ∫ ∞

−∞
Ψ(ξ) dξ = 1, (36)

and so we expect that one of the eigenvalues defined by Eq. (32) should tend
to zero as N tends to infinity. We choose to take this fact into account by
explicitly neglecting νN , the largest of the computed separation constants {νj}
and, subsequently, by writing Eq. (35) as

Y (τ,±ξi) = A+B(τ∓ξi)+
N−1∑
j=1

[
Aj

νj

νj ∓ ξi
e−(a+τ)/νj +Bj

νj

νj ± ξi
e−(a−τ)/νj

]
. (37)

Of course, the constants A , B , {Aj} and {Bj} that are present in Eq. (37)
will, as discussed in Section 4 of this work, be determined by fixing the behavior
of Y (τ, ξi) at infinity (for half-space problems) and/or by constraining Y (τ, ξi)
to meet discrete-ordinates versions of the relevant boundary conditions. Finally
we note that with the discrete-ordinates solution given by Eq. (37) we can use
Eq. (34) to obtain, from the definition given by Eq. (5), the discrete-ordinates
result [1]

Y0(τ) = A + Bτ +
N−1∑
j=1

[
Aje−(a+τ)/νj + Bje−(a−τ)/νj

]
. (38)

In a similar way we find that

Y1(τ) =
∫ ∞

−∞
Ψ(u)Y (τ, u)u du (39)

can be expressed simply in terms of our discrete-ordinates solution, viz.

Y1(τ) = −1
2
B . (40)

We consider it important to record some additional comments in regard to Eqs. (37),
(38) and (40): as mentioned, in writing Eq. (37) we have not used the largest (in-
finite) separation constant νN and have replaced the two “missing” solutions by
the two “exact” terms that appear as the first elements in Eq. (37). Consider-
ing subsequently that Eq. (37) is a mixture of exact terms and discrete-ordinates
terms, we have, in obtaining Eqs. (38) and (40), integrated the exact terms ex-
actly and the discrete-ordinates terms by making use of our numerical quadrature
scheme. Finally, in obtaining Eq. (40), we have replaced the quadrature version
of the integral in Eq. (36) with the exact value, viz. one.

To conclude this section we should mention that as an alternative to using
the analytical expressions for the functions φ(νj ,±ξi) as we have in Eq. (37), we



524 L. B Barichello et al. ZAMP

could, as was done in Ref. [3], make use of the numerical eigenvectors that are
available when, for example, DZPACK [18] is used to solve the eigenvalue problem
defined by Eq. (32).

4. Solutions to the Problems

Having developed our discrete-ordinates formalism, we are now ready to solve in
a unified manner the specific problems defined in Section 2.

4.1. Half-Space Problems

Considering the half-space problems defined by either Eqs. (1) and (2) or by
Eqs. (6) and (7), we set the constants B and {Bj} in Eq. (37) all equal to
zero and write the desired solution as

Y (τ,±ξi) = A +
N−1∑
j=1

Aj
νj

νj ∓ ξi
e−τ/νj . (41)

Now substituting Eq. (41) into the boundary conditions, either Eq. (2b) or Eq. (7b)
evaluated at the quadrature points, we find the system of linear algebraic equations

αA +
N−1∑
j=1

Mi,jAj = F(ξi) (42)

for i = 1, 2, . . . , N . Here

Mi,j = νj

[ανj + ξi(2− α)
ν2

j − ξ2
i

]
(43)

and F(ξ) is either

FT(ξ) =
1
2
α(ξ2 − 1

2
) (44a)

or
FP(ξ) = (2− α)ξ (44b)

depending on which of the two problems we are considering. Now, of course, all we
have to do is to define a quadrature scheme, solve the eigenvalue problem defined
by Eq. (32), thus obtaining the separation constants {νj} , and solve the linear
system defined by Eq. (42). In this way all that we seek here is established, viz.

AT = 2A (45)

and
qT(τ) = 2Y0(τ) (46)
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for the thermal-creep problem and

AP = A (47)

and
qP(τ) = τ + Y0(τ) (48)

for Kramers’ problem. Here

Y0(τ) = A +
N−1∑
j=1

Aje−τ/νj . (49)

A discussion of the quadrature scheme we use and some numerical results for
these two half-space problems are given in Section 5 of this work.

4.2. Plane-Channel Problems

Looking now at the problems defined in Section 2 to describe flow in a plane
channel, we consider the boundary conditions, subject to which we must solve
Eq. (9), written as

Y (−a, ξ)− (1− α)Y (−a,−ξ) = F1(ξ) (50a)

and
Y (a,−ξ)− (1− α)Y (a, ξ) = F2(ξ) (50b)

for ξ ∈ (0,∞) . To be explicit, we note that

F1(ξ) = αξ2 + a(2− α)ξ (51a)

and
F2(ξ) = αξ2 + a(2− α)ξ (51b)

for Poiseuille flow,
F1(ξ) = α (52a)

and
F2(ξ) = −α (52b)

for Couette flow and

F1(ξ) =
1
2
α(ξ2 − 1

2
) (53a)

and

F2(ξ) =
1
2
α(ξ2 − 1

2
) (53b)

for thermal creep. So to solve these three problems we substitute Eq. (37) into
Eqs. (50) evaluated at the quadrature points to find the system of linear algebraic
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equations

N−1∑
j=1

{
Mi,jAj + Ni,jBje−2a/νj

}
+ αA− B[αa + ξi(2− α)] = F1(ξi) (54a)

and

N−1∑
j=1

{
Mi,jBj + Ni,jAje−2a/νj

}
+ αA + B[αa + ξi(2− α)] = F2(ξi) (54b)

for i = 1, 2, . . . , N . Here the matrix elements Mi,j are given by Eq. (43) and

Ni,j = νj

[ανj − ξi(2− α)
ν2

j − ξ2
i

]
. (55)

Of course once we have solved Eqs. (54) to find the constants A , B and {Aj ,Bj}
we have Y0(τ) and Y1(τ) , as given by Eqs. (38) and (40), established. Again, to
be explicit we have

qP(τ) =
1
2
(
1− a2 + τ2

)− Y0(τ) (56)

and

QP =
1

2a2

[
2aA +

N−1∑
j=1

νj

(
Aj + Bj

)(
1− e−2a/νj

)]− 1
2a

(
1− 2

3
a2

)
(57)

for the Poiseuille-flow problem,

Pxz = −1
2
π1/2B (58)

for Couette flow and

qT(τ) = Y0(τ) (59)

and

QT = − 1
2a2

[
2aA +

N−1∑
j=1

νj

(
Aj + Bj

)(
1− e−2a/νj

)]
(60)

for the thermal-creep problem. Here, in general,

Y0(τ) = A + B τ +
N−1∑
j=1

[
Aje−(a+τ)/νj + Bje−(a−τ)/νj

]
. (61)

Having developed our discrete-ordinates solution, we are ready to discuss the
computational aspects of the solution and to report some numerical results.
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Table 1. The slip coefficients AT and AP

α AT AP

0.01 5.028545(–1) 1.766386(2)
0.10 5.283566(–1) 1.710313(1)
0.20 5.563021(–1) 8.224902
0.30 5.838476(–1) 5.255112
0.40 6.110039(–1) 3.762619
0.50 6.377813(–1) 2.861190
0.60 6.641898(–1) 2.255410
0.70 6.902391(–1) 1.818667
0.80 7.159384(–1) 1.487654
0.90 7.412966(–1) 1.227198
1.00 7.663225(–1) 1.016191

5. Numerical Results

The first thing we must do is to define the quadrature scheme to be used in
our discrete-ordinates solution. In this work we have used one of the (nonlinear)
transformations

u(ξ) = exp{−ξ} (62a)

or
u(ξ) =

1
1 + ξ

(62b)

to map ξ ∈ [0,∞) into u ∈ [0, 1] , and we then used a Gauss-Legendre scheme
mapped (linearly) onto the interval [0, 1] . Of course other quadrature schemes
could be used. In fact we note that recent works by Garcia [19] and Gander and
Karp [20] have reported special quadrature schemes for use in the general area of
particle-transport theory. Such an approach clearly could be used here. In fact
the choice of a quadrature scheme based on the integration interval [0,∞) with a
weight function as defined by Eq. (3) seems a natural choice for this work. However,
we have found the use of a mapping defined by either of Eqs. (62) followed by the
use of the Gauss-Legendre integration formulas to be so effective that we have not
developed any special-purpose quadrature schemes.

Having defined our quadrature scheme and in developing a FORTRAN imple-
mentation of our solution, we found the required separation constants {νj} by
using the special numerical package DZPACK [18] that was developed to take ad-
vantage of the special structure of Eq. (32) to solve our eigenvalue problem. The
required separation constants were then available as the reciprocals of the square
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Table 2. The macroscopic velocity profile qT(τ) for a half space

τ α = 0.20 α = 0.40 α = 0.60 α = 0.80 α = 1.00

0.0 4.377443(–1) 3.786517(–1) 3.225358(–1) 2.692240(–1) 2.185558(–1)
0.2 4.760866(–1) 4.529236(–1) 4.304719(–1) 4.086951(–1) 3.875591(–1)
0.4 4.938872(–1) 4.877829(–1) 4.816888(–1) 4.756064(–1) 4.695371(–1)
0.6 5.058782(–1) 5.113450(–1) 5.164243(–1) 5.211386(–1) 5.255086(–1)
0.8 5.146970(–1) 5.287087(–1) 5.420738(–1) 5.548278(–1) 5.670040(–1)
1.0 5.214841(–1) 5.420912(–1) 5.618698(–1) 5.808647(–1) 5.991177(–1)
1.4 5.312026(–1) 5.612809(–1) 5.902961(–1) 6.183047(–1) 6.453593(–1)
1.8 5.377202(–1) 5.741684(–1) 6.094128(–1) 6.435172(–1) 6.765404(–1)
2.0 5.401959(–1) 5.790673(–1) 6.166854(–1) 6.531161(–1) 6.884206(–1)
2.5 5.448495(–1) 5.882823(–1) 6.303740(–1) 6.711948(–1) 7.108100(–1)
3.0 5.480059(–1) 5.945373(–1) 6.396728(–1) 6.834851(–1) 7.260418(–1)
5.0 5.537261(–1) 6.058853(–1) 6.565604(–1) 7.058284(–1) 7.537610(–1)
7.0 5.554011(–1) 6.092125(–1) 6.615180(–1) 7.123957(–1) 7.619180(–1)

10.0 5.560896(–1) 6.105812(–1) 6.635590(–1) 7.151015(–1) 7.652814(–1)
15.0 5.562784(–1) 6.109567(–1) 6.641194(–1) 7.158449(–1) 7.662061(–1)
20.0 5.562989(–1) 6.109976(–1) 6.641805(–1) 7.159260(–1) 7.663071(–1)

roots of these eigenvalues. We then used the subroutines DGECO and DGESL
from the LINPACK package [21] to solve the linear system defined by Eqs. (42)
or (54), and so the solutions to the various problems were considered established.

Finally, but importantly, we note that since the function Ψ(u) defined by
Eq. (3) can be zero, from a computational point-of-view, we can have some, say
a total of N0 , of the separation constants {νj} equal to some of the quadrature
points {ξi} . Of course this is not allowed in Eq. (35), and so, since the quadrature
points where Ψ(ξk) is effectively zero make no contribution to the right-hand
side of Eqs. (20), we have seen that we can simply omit these quadrature points
from our calculation. Of course, in omitting these N0 quadrature points we have
effectively changed N to N −N0 in some aspects of our final solution.

In order to illustrate one of the merits of our developed discrete-ordinates
solutions to the considered problems, we list some typical results in Tables 1–8.
We note that these numerical results are valid for a wide range of the Knudsen
number and are given with what we believe to be seven figures of accuracy for all
but the Couette-flow problem where we believe we have eight figures of accuracy
for the computation of the normalized stress (Table 8). Of course, we have no
definitive proof of the accuracy of our results, but we have done various things
to establish the confidence we have. First of all, we have found basic agreement,
except for the typographical errors [22] in Tables I, II and V of Ref. [10], with
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Table 3. The macroscopic velocity profile qP(τ) for a half space

τ α = 0.20 α = 0.40 α = 0.60 α = 0.80 α = 1.00

0.0 7.622844 3.238196 1.805584 1.109556 7.071068(–1)
0.2 8.063202 3.646240 2.182908 1.457664 1.027415
0.4 8.357992 3.928844 2.453793 1.717270 1.276161
0.6 8.617267 4.180609 2.698309 1.954782 1.506903
0.8 8.858622 4.416772 2.929448 2.181057 1.728463
1.0 9.089163 4.643505 3.152488 2.400515 1.944445
1.4 9.530897 5.080070 3.584033 2.827181 2.366367
1.8 9.957489 5.503391 4.004171 3.244222 2.780389
2.0 1.016727(1) 5.711974 4.211588 3.450500 2.985559
2.5 1.068513(1) 6.227655 4.725143 3.961982 3.495016
3.0 1.119681(1) 6.737914 5.234016 4.469502 4.001214
5.0 1.321680(1) 8.755485 7.249226 6.482403 6.011854
7.0 1.522221(1) 1.076024(1) 9.253350 8.485905 8.014746

10.0 1.822430(1) 1.376209(1) 1.225495(1) 1.148726(1) 1.101587(1)
15.0 2.322484(1) 1.876256(1) 1.725536(1) 1.648761(1) 1.601616(1)
20.0 2.822489(1) 2.376261(1) 2.225540(1) 2.148765(1) 2.101619(1)

the results reported in Refs. [9] and [10] for the various problems we have solved
here, and we have confirmed precisely the Poiseuille-flow results from Ref. [23].
In addition, we have increased the value of N used in our computations until we
found stability in the final results. We have also used numerical linear-algebra
packages other than those mentioned and both nonlinear maps given by Eqs. (62)
to obtain the same results as given in our tables. Finally, we have established
our numerical results with two independent FORTRAN implementations of our
solutions.

We note that we have typically used N = 50 to generate the results listed in
our tables, and to have an idea of the computational time required for a typical
case, we note that our FORTRAN implementation (no special effort was made to
make the code especially efficient) of our discrete-ordinates solution (with N = 50 )
runs in less than 0.2 seconds on a 166 MHz Pentium-based PC.

6. Final Comments

In regard to additional work in the general area of rarefied gas dynamics
[24–26], we note that our variation of the discrete-ordinates method has been
used to solve a heat-transfer problem in a plane channel where the coupled effects
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Table 4. The macroscopic velocity profile qT(τ) for a channel of width 2a = 2.0

τ α = 0.50 α = 0.80 α = 0.88 α = 0.96 α = 1.00

0.0 2.439084(–1) 2.420532(–1) 2.417017(–1) 2.413991(–1) 2.412645(–1)
0.1 2.434617(–1) 2.413836(–1) 2.409771(–1) 2.406209(–1) 2.404602(–1)
0.2 2.421049(–1) 2.393495(–1) 2.387756(–1) 2.382569(–1) 2.380167(–1)
0.3 2.397858(–1) 2.358715(–1) 2.350111(–1) 2.342144(–1) 2.338381(–1)
0.4 2.364086(–1) 2.308045(–1) 2.295260(–1) 2.283235(–1) 2.277487(–1)
0.5 2.318176(–1) 2.239126(–1) 2.220646(–1) 2.203091(–1) 2.194636(–1)
0.6 2.257644(–1) 2.148202(–1) 2.122195(–1) 2.097328(–1) 2.085296(–1)
0.7 2.178377(–1) 2.029065(–1) 1.993179(–1) 1.958715(–1) 1.941984(–1)
0.8 2.072854(–1) 1.870416(–1) 1.821364(–1) 1.774110(–1) 1.751119(–1)
0.9 1.924101(–1) 1.646908(–1) 1.579355(–1) 1.514142(–1) 1.482365(–1)
1.0 1.643019(–1) 1.227565(–1) 1.126193(–1) 1.028313(–1) 9.806183(–2)

Table 5. The thermal-creep flow rate QT

2a α = 0.50 α = 0.80 α = 0.88 α = 0.96 α = 1.00

0.05 –1.653689 –1.080865 –9.775525(–1) –8.867589(–1) –8.452893(–1)
0.10 –1.266442 –8.659805(–1) –7.914282(–1) –7.253123(–1) –6.949272(–1)
0.30 –7.580824(–1) –5.712072(–1) –5.338214(–1) –4.999736(–1) –4.841992(–1)
0.50 –5.705723(–1) –4.551664(–1) –4.310383(–1) –4.089057(–1) –3.984993(–1)
0.70 –4.649666(–1) –3.864581(–1) –3.695099(–1) –3.538098(–1) –3.463781(–1)
0.90 –3.953837(–1) –3.392428(–1) –3.268193(–1) –3.152202(–1) –3.097001(–1)
1.00 –3.685435(–1) –3.205049(–1) –3.097630(–1) –2.997001(–1) –2.948999(–1)
2.00 –2.245046(–1) –2.129203(–1) –2.101613(–1) –2.075212(–1) –2.062429(–1)
5.00 –1.075322(–1) –1.116570(–1) –1.127116(–1) –1.137481(–1) –1.142597(–1)
7.00 –8.036291(–2) –8.533480(–2) –8.661542(–2) –8.787780(–2) –8.850228(–2)
9.00 –6.421908(–2) –6.907720(–2) –7.033298(–2) –7.157270(–2) –7.218664(–2)

of temperature and density must be resolved simultaneously [2], and new works
[27–30] devoted to flow in cylindrical tubes, to the temperature-jump problem and
to binary gas mixtures also have been completed. And so in this basic work, we
believe we have shown our unified discrete-ordinates solutions to be very effective
(especially accurate and easy to implement) for what we consider to be a set of
classical problems based on the BGK model. It seems, therefore, that we are jus-
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Table 6. The macroscopic velocity profile qP(τ) for a channel of width 2a = 2.0

τ α = 0.50 α = 0.80 α = 0.88 α = 0.96 α = 1.00

0.0 –3.652222 –2.319616 –2.117410 –1.948801 –1.874577
0.1 –3.644836 –2.312148 –2.109921 –1.941293 –1.867059
0.2 –3.622577 –2.289638 –2.087351 –1.918663 –1.844401
0.3 –3.585117 –2.251759 –2.049368 –1.880582 –1.806271
0.4 –3.531852 –2.197901 –1.995366 –1.826440 –1.752062
0.5 –3.461789 –2.127072 –1.924350 –1.755244 –1.680778
0.6 –3.373321 –2.037666 –1.834718 –1.665394 –1.590822
0.7 –3.263728 –1.926991 –1.723784 –1.554211 –1.479519
0.8 –3.127917 –1.790039 –1.586566 –1.416741 –1.341927
0.9 –2.954020 –1.615281 –1.411628 –1.241643 –1.166756
1.0 –2.676407 –1.340372 –1.137527 –9.683813(–1) –8.939247(–1)

Table 7. The Poiseuille flow rate QP

2a α = 0.50 α = 0.80 α = 0.88 α = 0.96 α = 1.00

0.05 5.223296 3.089711 2.738340 2.437354 2.302256
0.10 4.556406 2.707741 2.406046 2.148241 2.032714
0.30 3.778472 2.244771 2.001067 1.794509 1.702474
0.50 3.544371 2.102266 1.876620 1.686342 1.601874
0.70 3.437669 2.038767 1.822011 1.639850 1.559186
0.90 3.383887 2.009241 1.797636 1.620223 1.541800
1.00 3.368218 2.001867 1.792059 1.616312 1.538678
2.00 3.376574 2.041385 1.838563 1.669366 1.594857
5.00 3.774402 2.438234 2.235059 2.065478 1.990767
7.00 4.088108 2.746112 2.541436 2.370375 2.294932
9.00 4.410190 3.063464 2.857565 2.685295 2.609254

tified in believing that the methods reported here can now be extended to solve
even more challenging problems based on improved physical models derived from
the Boltzmann equation.
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