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A version of the discrete-ordinates method is used to solve, for the case of flow
in a cylindrical tube, the classical Poiseuille and thermal-creep problems based on
the Bhatnagar, Gross, and Krook model in the theory of rarefied-gas dynamics. In
addition to the development of a discrete-ordinates solution that is valid for a wide
range of the Knudsen number, the solution is evaluated numerically for selected
cases to yield results, thought to be correct to many significant figures, for the slip
velocities, the macroscopic velocity profiles, and the flow rates.c© 2000 Academic Press

1. INTRODUCTION

In a recent work [1] a newly developed version [2] of the discrete-ordinates method [3]
was used to solve in a definitive manner the most important of the classical, plane-geometry
flow problems defined in terms of the Bhatnagaret al.model [4] basic to the general area
of rarefied-gas dynamics [5, 6]. In this work, we extend that earlier work [1] to the cases of
Poiseuille flow and thermal creep in a cylindrical tube. Since much of what we use in this
work was developed in Refs. [1] and [2] and in a paper by Valougeorgis and Thomas [7],
our presentation here is brief.

We start with a mathematical formulation of the problems we intend to solve in this
work. This formulation was developed by Ferziger [8] and Loyalka [9] and was used by
Valougeorgis and Thomas [7] as a starting point in developing a solution, based on theFN

method [10], to the same problems we consider here. And so we begin with the integral
equation

Z(r ) =
∫ R

0
t Z(t)K (t → r ) dt + S(r ) (1)

for r ∈ [0, R]. Here, as will be explicitly noted, the basic unknownZ(r ) is related to the
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desired macroscopic velocity profile,S(r ) is a specified inhomogeneous source term, and

K (t → r ) = 2π−1/2
∫ ∞

0
e−u2

K0(r/u)I0(t/u)
du

u2
, t ∈ [0, r ], (2a)

and

K (t → r ) = 2π−1/2
∫ ∞

0
e−u2

K0(t/u)I0(r/u)
du

u2
, t ∈ [r, R], (2b)

where we useIn(x)andKn(x) to denote the modified Bessel functions of the first and second
kind [11]. Following previously mentioned works [7–9], we note that for the problem of
Poiseuille flow the source term in Eq. (1) is

SP(r ) = 1

2
π1/2. (3)

In regard to the quantities of physical interest that we wish to establish and in order to
be consistent with previous works to which we wish to compare our numerical results,
we follow the definitions from Refs. [7] and [12] and thus will compute the macroscopic
velocity profile

qP(r ) = π−1/2ZP(r )− 1

2
(4)

and the flow rate

QP = 4

R3

∫ R

0
qP(r )r dr. (5)

On the other hand, for the thermal-creep problem the source term in Eq. (1) is given [7] by

ST (r ) = R
∫ ∞

0
uK1(R/u)I0(r/u)e

−u2
du, (6)

and again, following previously defined [7, 12] quantities of physical interest, we intend to
compute the macroscopic velocity profile

qT (r ) = π−1/2ZT (r )− 1

4
(7)

and the flow rate

QT = 4

R3

∫ R

0
qT (r )r dr. (8)

Note that we have added the subscriptsP andT to distinguish between the Poiseuille-flow
and the thermal-creep problems. We note also that Ref. [12] provides numerical results
for the considered problems with an arbitrary mixture of specular and diffuse reflection of
particles from the wall of the tube, and so we should make it clear that this work here is
restricted to the case of purely diffuse reflection [6].
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2. A REFORMULATION OF THE PROBLEM

As was done some years ago in two works concerning neutron-transport theory in cylin-
drical geometry [13, 14], we make use of a convenient transformation [15] to reformulate
the problems defined by Eq. (1) in terms of a “pseudo problem” for which we can use much
of our experience with flow problems for plane channels. And so, as did Valougeorgis and
Thomas [7], we let

8(r, ξ) = ξ−2

[
K0(r/ξ)

∫ r

0
t Z(t)I0(t/ξ) dt + I0(r/ξ)

∫ R

r
t Z(t)K0(t/ξ) dt

]
(9)

which we can differentiate twice and use along with Eq. (1) to find that8(r, ξ) satisfies

ξ2 ∂
2

∂r 2
8(r, ξ)+ ξ

2

r

∂

∂r
8(r, ξ)−8(r, ξ)+ 2

∫ ∞
0
9(u)8(r, u) du = −S(r ), (10)

for ξ ∈ (0,∞), and that

Z(r ) = 2
∫ ∞

0
9(ξ)8(r, ξ)dξ + S(r ). (11)

Here we use

9(u) = π−1/2e−u2
. (12)

The definition of8(r, ξ) as given by Eq. (9) allows us to deduce a boundary condition
subject to which we intend to solve Eq. (10), viz.,

8(R, ξ)+ ξ0(ξ) ∂
∂r
8(r, ξ)

∣∣∣∣
r=R

= 0 (13)

for ξ ∈ (0,∞). Here

0(ξ) = K0(R/ξ)

K1(R/ξ)
. (14)

At this point we can use the particular solutions reported by Valougeorgis and Thomas
[7], viz.

GP(r, ξ) = −1

4
π1/2(r 2− R2+ 4ξ2) (15a)

for the Poiseuille-flow problem and

GT (r, ξ) = −1

2
π1/2RξK1(R/ξ)I0(r/ξ) (15b)

for the thermal-creep problem to obtain a homogeneous version of Eq. (10). And so we
substitute the general decomposition

8(r, ξ) = Y(r, ξ)+ G(r, ξ) (16)
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into Eqs. (10) and (13) to obtain

ξ2 ∂
2

∂r 2
Y(r, ξ)+ ξ

2

r

∂

∂r
Y(r, ξ)− Y(r, ξ)+ 2

∫ ∞
0
9(u)Y(r, u) du = 0 (17)

for ξ ∈ (0,∞) and the boundary condition

Y(R, ξ)+ ξ0(ξ) ∂
∂r

Y(r, ξ)

∣∣∣∣
r=R

= F(ξ) (18)

for ξ ∈ (0,∞). Here

FP(ξ) = 1

2
π1/2ξ [2ξ + R0(ξ)] (19a)

for the Poiseuille-flow problem and

FT (ξ) = 1

2
π1/2ξ2 (19b)

for the thermal-creep problem.
At this point we can use Eqs. (11), (12), (15a), and (16) in Eq. (4) to express the macro-

scopic velocity profile for the Poiseuille-flow problem in terms ofY(r, ξ ), viz.

qP(r ) = YP(r )− 1

4
(r 2− R2+ 2), (20)

and so using Eq. (5), we express the flow rate as

QP = 4

R3

∫ R

0
YP(r )r dr + 1

4R
(R2− 4). (21)

Here

YP(r ) = 2π−1/2
∫ ∞

0
9(ξ)YP(r, ξ)dξ. (22)

In a similar way we can use Eqs. (11), (12), (15b), and (16) in Eq. (7) to obtain

qT (r ) = YT (r )− 1

4
(23)

and

QT = 4

R3

∫ R

0
YT (r )r dr − 1

2R
, (24)

where

YT (r ) = 2π−1/2
∫ ∞

0
9(ξ)YT (r, ξ)dξ. (25)

Having expressed the quantities we wish to compute in terms ofY(r, ξ ) we proceed now to
develop our discrete-ordinates solution to the problem defined by Eqs. (17) and (18).
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3. A DISCRETE-ORDINATES SOLUTION

To start we approximate the integral term in Eq. (17) by a quadrature formula and write
our discrete-ordinates equations as

ξ2
i

d2

dr 2
Y(r, ξi )+ ξ

2
i

r

d

dr
Y(r, ξi )− Y(r, ξi )+ 2

N∑
k=1

wk9(ξk)Y(r, ξk) = 0 (26)

for i = 1, 2, . . . , N. In writing Eq. (26) as we have, we are considering that theN quadrature
points{ξk} and theN weights{wk} are defined for use on the integration interval [0,∞).
Seeking a Bessel function solution (bounded asr→ 0) of Eq. (26), we substitute

Y(r, ξi ) = φ(ν, ξi )I0(r/ν) (27)

into Eq. (26) to find

(
1− ξ

2
i

ν2

)
φ(ν, ξi ) = 2

N∑
k=1

wk9(ξk)φ(ν, ξk) (28)

for i = 1, 2, . . . , N. Now if we letφ(ν, ξk), k= 1, 2, . . . , N, define the elements of anN
vectorΦ(ν) we can rewrite Eq. (28) as

(I − λM2)Φ(ν) = 2WΦ(ν), (29)

whereλ = 1/ν2, I is theN× N identity matrix, the elements ofW are given by

(W)i, j = w j9(ξ j ), (30)

and

M = diag{ξ1, ξ2, . . . , ξN}. (31)

We note that, not surprisingly, the eigenvalue problem defined by Eq. (29) is the same as
the one encountered in Refs. [1] and [2] in the discrete-ordinates solutions of equivalent
problems in plane geometry, and so we take advantage of those works and rewrite Eq. (29)
in the special [16] form

(D− 2zzT)X = λX, (32)

where, again,λ= 1/ν2,

D = diag
{
ξ−2

1 , ξ−2
2 , . . . , ξ−2

N

}
, (33)

and

z=
[√

w19(ξ1)

ξ1
,

√
w29(ξ2)

ξ2
, . . . ,

√
wN9(ξN)

ξN

]T

. (34)
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Here we use the superscript T to denote the transpose operation. Continuing, we note that
the eigenvalue problem defined by Eq. (32) is of a form that is encountered when the
so-called “divide and conquer” method [17] is used to find the eigenvalues of tridiagonal
matrices. In addition, we see from Eq. (33) that, because of the way our basic eigenvalue
problem is formulated, we must exclude zero from the set of quadrature points. Of course
to exclude zero from the quadrature set is not considered a serious restriction since typical
Gauss quadrature schemes do not include the end points of the integration interval.

Now, considering that we have found the eigenvalues defined by Eq. (32) and the required
separation constants from

ν j = λ−1/2
j (35)

for j = 1, 2, . . . , N, we impose the normalization condition

2
N∑

k=1

wk9(ξk)φ(ν, ξk) = 1 (36)

so we can write

φ(ν j , ξi ) =
ν2

j

ν2
j − ξ2

i

, (37)

where clearly, as discussed later in Section 5, we cannot allowν j = ξi . Continuing, we “sum
up” our solutions and write

Y(r, ξi ) =
N∑

j=1

Ajφ(ν j , ξi )I0(r/ν j ), (38)

where the arbitrary constants{Aj } are to be determined from the boundary condition of our
problem.

At this point we wish to modify slightly the discrete-ordinates solution given by Eq. (38).
We note that problems based on Eq. (17) are “conservative” since

2
∫ ∞

0
9(ξ) dξ = 1, (39)

and so we expect that one of the eigenvalues defined by Eq. (32) should tend to zero asN
tends to infinity. We choose to take this fact into account by explicitly neglectingνN , the
largest of the computed separation constants{ν j } and, subsequently, by writing Eq. (38) as

Y(r, ξi ) = A+
N−1∑
j=1

Ajφ(ν j , ξi ) Î 0(r/ν j )e
−(R−r )/ν j . (40)

Of course, the constantsA and{Aj } in Eq. (40) are to be determined by constrainingY(r, ξi )

to meet a discrete-ordinates version of the relevant boundary condition. To complete our
discussion of Eq. (40) we note that we have “rescaled” the solution by introducing (in
general)

Î n(x) = In(x)e
−x (41a)
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and (to be used later)

K̂ n(x) = Kn(x)e
x (41b)

in order to keep “underflows/overflows” in our numerical work from degrading our calcu-
lation.

To conclude this section, we note first of all that we can use the discrete-ordinates solution
given by Eq. (40) in the definition

Y(r ) = 2π−1/2
∫ ∞

0
9(ξ)Y(r, ξ)dξ (42)

to obtain, after we note Eq. (36), the discrete-ordinates results

Y(r ) = π−1/2

[
A+

N−1∑
j=1

Aj Î 0(r/ν j )e
−(R−r )/ν j

]
(43)

and

4

R3

∫ R

0
Y(r )r dr = 2π−1/2

R2

[
AR+ 2

N−1∑
j=1

Aj ν j Î 1(R/ν j )

]
. (44)

Having developed our discrete-ordinates formalism, we are ready to solve the Poiseuille
and thermal-creep problems concerning flow in a cylindrical tube.

4. SOLUTIONS TO THE PROBLEMS

To complete the solutions to the considered problems we now must determine the arbitrary
constantsA and{Aj } in the general expression given by Eq. (40). And so we substitute
Eq. (40) into Eq. (18) evaluated at the quadrature points to obtain

A+
N−1∑
j=1

Mi, j Aj = F(ξi ) (45)

for i = 1, 2, . . . , N. Here

Mi, j = ν j

[
ν j Î 0(R/ν j )+ ξi0(ξi ) Î 1(R/ν j )

ν2
j − ξ2

i

]
(46)

andF(ξi ) is either

FP(ξi ) = 1

2
π1/2ξi [2ξi + R0(ξi )] (47a)

for the Poiseuille-flow problem or

FT (ξi ) = 1

2
π1/2ξ2

i (47b)
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for the thermal-creep problem. In addition (for computational reasons) we use Eq. (41b) to
write 0(ξi ) as

0(ξi ) = K̂ 0(R/ξi )

K̂ 1(R/ξi )
. (48)

Now, of course, all we have to do is to define a quadrature scheme, solve the eigenvalue
problem defined by Eq. (32), thus obtaining the separation constants{ν j }, and solve the
linear system defined by Eq. (45). In this way all that we seek here is established, viz.

qP(r ) = π−1/2

[
A+

N−1∑
j=1

Aj Î 0(r/ν j )e
−(R−r )/ν j

]
− 1

4
(r 2− R2+ 2) (49)

and

QP = 2π−1/2

R2

[
AR+ 2

N−1∑
j=1

Aj ν j Î 1(R/ν j )

]
+ 1

4R
(R2− 4) (50)

for Poiseuille flow and

qT (r ) = π−1/2

[
A+

N−1∑
j=1

Aj Î 0(r/ν j )e
−(R−r )/ν j

]
− 1

4
(51)

and

QT = 2π−1/2

R2

[
AR+ 2

N−1∑
j=1

Aj ν j Î 1(R/ν j )

]
− 1

2R
(52)

for thermal-creep flow. In order to be very clear, we note that the constantsA and{Aj } in
Eqs. (49) and (50) correspond to the solutions of the linear system defined by usingFP(ξi )

for F(ξi ) in Eq. (45), and likewise the constantsA and{Aj } in Eqs. (51) and (52) correspond
to the solutions of the linear system defined by usingFT (ξi ) in Eq. (45).

5. NUMERICAL RESULTS

Repeating the discussion given in Ref. [1], we note that what we must now do is to define
the quadrature scheme to be used in our discrete-ordinates solution. In this work we have
used one of the (nonlinear) transformations

u(ξ) = exp{−ξ} (53a)

or

u(ξ) = 1

1+ ξ (53b)

to mapξ ∈ [0,∞) into u∈ [0, 1], and we then used a Gauss–Legendre scheme mapped
(linearly) onto the interval [0, 1]. Of course other quadrature schemes could be used. In
fact we note that recent works by Garcia [18] and Gander and Karp [19] have reported
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special quadrature schemes for use in the general area of particle transport theory. Such an
approach clearly could be used here. In fact the choice of a quadrature scheme based on the
integration interval [0,∞) with a weight function as defined by Eq. (12) seems a natural
choice for this work. However, we have found the use of a mapping defined by either of
Eqs. (53) followed by the use of the Gauss–Legendre integration formulas to be so effective
that we have not developed any special-purpose quadrature schemes.

Continuing the discussion from Ref. [1], we note that having defined our quadrature
scheme and in developing a FORTRAN implementation of our solution, we found the
required separation constants{ν j }by using the special numerical package DZPACK [16] that
was developed to take advantage of the special structure of Eq. (32) to solve the eigenvalue
problem defined by Eq. (32). The required separation constants were then available as the
reciprocals of the square roots of these eigenvalues. We then used the subroutines DGECO
and DGESL from the LINPACK package [20] to solve the linear system defined by Eq. (45),
and so the solutions to the various problems were considered established.

Finally, but importantly, we note that since the function9(u) defined by Eq. (12) can
be zero, from a computational point-of-view, we can have some, say a total ofN0, of the
separation constants{ν j } equal to some of the quadrature points{ξi }. Of course this is not
allowed in Eq. (37), and so, since the quadrature points where9(ξk) is effectively zero make
no contribution to the right-hand side of Eq. (28), we have seen that we can simply omit
these quadrature points from our calculation. Of course, in omitting theseN0 quadrature
points we have effectively changedN to N− N0 in some parts of our solution.

In order to illustrate the achieved accuracy of our developed discrete-ordinates solutions
to the considered problems we list some typical results in Tables I and II. We note that
these numerical results are given with what we believe to be seven figures of accuracy.

TABLE I

The Velocity ProfilesqP(r) and qT(r) for R= 2

r/R qP(r ) qT (r )

0.00 2.353331 2.970292(−1)
0.05 2.350206 2.967964(−1)
0.10 2.340825 2.960952(−1)
0.15 2.325161 2.949165(−1)
0.20 2.303169 2.932454(−1)
0.25 2.274788 2.910597(−1)
0.30 2.239928 2.883297(−1)
0.35 2.198478 2.850168(−1)
0.40 2.150292 2.810714(−1)
0.45 2.095184 2.764308(−1)
0.50 2.032917 2.710155(−1)
0.55 1.963187 2.647240(−1)
0.60 1.885600 2.574255(−1)
0.65 1.799630 2.489483(−1)
0.70 1.704562 2.390608(−1)
0.75 1.599385 2.274398(−1)
0.80 1.482595 2.136108(−1)
0.85 1.351773 1.968245(−1)
0.90 1.202532 1.757494(−1)
0.95 1.024896 1.474303(−1)
1.00 7.651726(−1) 9.662684(−2)
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TABLE II

The Microscopic Velocity SlipsqP(R) and qT(R) and the Flow RatesQP and QT

R qP(R) qT (R) QP QT

1.0(−2) 5.482193(−3) 2.646031(−3) 1.476313 7.178339(−1)
2.0(−2) 1.076826(−2) 5.068533(−3) 1.460303 6.959018(−1)
3.0(−2) 1.591934(−2) 7.331779(−3) 1.448271 6.781576(−1)
4.0(−2) 2.096360(−2) 9.466208(−3) 1.438589 6.629314(−1)
5.0(−2) 2.591873(−2) 1.149131(−2) 1.430520 6.494603(−1)
7.0(−2) 3.560833(−2) 1.526599(−2) 1.417717 6.262043(−1)
9.0(−2) 4.505667(−2) 1.873396(−2) 1.407986 6.064104(−1)
1.0(−1) 4.970472(−2) 2.036966(−2) 1.403962 5.974787(−1)
3.0(−1) 1.362138(−1) 4.443342(−2) 1.376211 4.824054(−1)
5.0(−1) 2.162008(−1) 5.939122(−2) 1.386652 4.170682(−1)
7.0(−1) 2.929854(−1) 6.971188(−2) 1.410539 3.713404(−1)
9.0(−1) 3.678629(−1) 7.722336(−2) 1.441274 3.364313(−1)
1.0 4.048069(−1) 8.024270(−2) 1.458291 3.217264(−1)
1.5 5.864481(−1) 9.069215(−2) 1.553226 2.655915(−1)
2.0 7.651726(−1) 9.662684(−2) 1.657647 2.271179(−1)
3.0 1.119114 1.026102(−1) 1.879988 1.766334(−1)
3.5 1.295371 1.041933(−1) 1.994994 1.589970(−1)
4.0 1.471454 1.052977(−1) 2.111623 1.445407(−1)
5.0 1.823461 1.066763(−1) 2.348327 1.222287(−1)
6.0 2.175514 1.074573(−1) 2.588211 1.058073(−1)
7.0 2.527721 1.079357(−1) 2.830249 9.322240(−2)
9.0 3.232634 1.084620(−1) 3.318540 7.522751(−2)
1.0(1) 3.585304 1.086153(−1) 3.564118 6.858111(−2)
1.0(2) 3.539559(1) 1.092709(−1) 2.602162(1) 7.582959(−3)

Of course, we have no proof of the accuracy of our results, but we have done various things
to establish the confidence we have. For example, we have increased the value ofN used in
our computations until we found stability in the final results. We have also used numerical
linear-algebra packages other than those mentioned and both nonlinear maps given by
Eqs. (53) to obtain the same results as given in our tables. While we have found agreement
(that varied from three to five significant figures) with relevant results from Refs. [7] and
[12], we believe the results reported here should be considered more definitive than the
already mentioned earlier results [7, 12].

We note that we have typically usedN= 100 to generate the results listed in our tables,
and to have an idea of the computational time required to solve both the Poiseuille-flow and
the thermal-creep problems for a typical case, we note that our FORTRAN implementation
(no special effort was made to make the code especially efficient) of our discrete-ordinates
solutions (withN= 100) runs in less than a second on a 166 MHz Pentium-based notebook
PC. Finally, to have some idea aboutN0, the number of quadrature points not included in
some parts of our calculation, we note that usingε= 10−14 to decide if an eigenvalue and
a quadrature point were the same “computationally,” we foundN0= 3 whenN= 100 and
the map defined by Eq. (53a) were used.
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