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Abstract —An analytical version of the discrete ordinates method is used to solve a class of boundary-
value problems based on a linear Boltzmann equation relevant to the transport of neutral hydrogen atoms
in a hydrogen plasma. In addition to a complete development of the discrete ordinates method for the
considered application, the computational algorithm is implemented to yield very accurate results for a
number of half-space and finite-slab problems. The developed code is also used to correct some entries in
a previously reported tabulation of results. The established algorithm is considered especially easy to use,
and the code runs (typically) irc1 s on a 400-MHz Pentium-based personal computer.

I. INTRODUCTION neutral species, a spatially dependent ion temperature,
and a combination of specular and diffuse reflection at
In this work, we consider the transport of neutral parthe wall. In regard to techniques for analyzing the vari-
ticles in a plasma that, as pointed out by Tendler and Heibus models used to describe the transport of neutral at-
fetz! is a subject of concern in fusion research. It wasoms in a plasma, we note that analytical, semianalytical,
also noted, in Tendler and Heifetz's review pap@m neu- numerical, and stochastic methods have all been inves-
tral particle kinetics in fusion devices, that knowledge oftigated, and since both the important models and the im-
the distribution of neutral particles in a plasma is impor-portant transport techniques relevant to this work have
tant in analyzing the energy balance in the plasma andeen thoroughly reviewed in Ref. 1, we do not address
the role played by the neutrals in the mechanism of plasmthese issues here.
refueling and exhaust, in estimating the damage to the In this work, we use an analytical version of the dis-
device walls, and in the designing of diagnostic tools. crete ordinates method recently developed and used to
Since there are situations in plasma physics whersolve problems in radiative transfer, neutron trans-
the neutral mean free path in the plasma can be compaert and rarefied gas dynamits!to study the trans-
rable to the plasma scale length, the Boltzmann equatigmort of neutral hydrogen atoms in a hydrogen plasma.
(rather than low-order fluid equationss usually re- We consider both half-space and finite-slab problems with
quired for modeling the physics of the problem accu-spatially constantion temperatures and different amounts
rately. Early kinetic models have been put forward byof specular and diffuse reflection at the walls upon which
SakharoV, Zubarev and Klimov, and Konstantinov and neutral particles are incident. We also implement the de-
Perel* In the following years, more sophisticated mod-veloped solution to obtain especially accurate numerical
els and methods of solution for the ensuing Boltzmanmesults that are compared to dey results that were re-
equations were reported in the literature. The modelported, for this class of problems, a few years ago in a
evolved to consider the more realistic cases of multiplgoint work with Pomraning?
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TRANSPORT OF NEUTRAL HYDROGEN ATOMS IN A HYDROGEN PLASMA 141

II. THE TRANSPORT EQUATION AND where we have defined, far =0 ora = n,
BOUNDARY CONDITIONS

We base our development in this section on the equiv- 9(2,02) foofoo fa (1, V) docloy ®
alent material that was formulatddimost exclusively ) ) )

by Pomraning in our previous work? on this subject. Introducing the optical variable

The steady-state Boltzmann equation that describes the z

transport of low-energy<<5-keV) neutral hydrogen at- T= (1/5)[ N (z')((oxv) + (oev))dz’ (6)
oms in a hydrogen plasma can be writteA?as 0

v-Vio(r,v) + o (r,v)fo(r,v) wheret is a characteristic speed, and letting= v,/
and ¢ (7,u) — dgo(z,v,), we can rewrite Eq(4) for

=fi(r,V)f IV =V |ay (v — V') fo(r,v)av' , (1) U € (-o0,00) as

u 9 Y(7,u) + ¢ (7,u) = cF(7,u) foo Y(r,u)du
oT e

where
ot = [ V= Vllv = v DY) @
v where
+ox([v—=v'Dfi(r,v)ldv' , (2) (o)
c=——""""""— (8)
and wherefy(r,v), fo(r,v) andfi(r,v) are, respectively, (oyv) + (oev)

the neutral, electron and ion distribution functions, and _
oo(v) ando(v) are the cross sections for electron ion-a1d F(7.U) = 9Ga(2z,v,). Usually, F(7,u) can be well
ization and charge exchange. In Ref. 12, it was noted th gpresented by a local Maxwellian for the ion distribu-
Eqg. (1) can be simplified if we use the experimental re- ion, namely,

sult that the charge-exchange cross section varies approx- F(r,u) = o[r Y20 ()] Le W27 (9)
imately with the inverse of the speed and if, considering

the large difference in mass between the electron and thehere the thermal speegl(7) is related to the local ion
hydrogen atom, we take the ionization rate to be indetemperaturd;(7) by

pendent of the neutral velocity. We therefore rewrite

Eq (1) as Ui(T) _ |:2|(T| (T):|1/2 . (10)
V-Vio(r,v) + N (Do) + (oe0)) fol(1,V) m

Here, as in Ref. 12, we consider the case whi(e)

=N o) (r, fo(rv)av’ | 3 and, by extensiony;(7) are independent of. Hence,
(ol V) f\, o(r, V') v @ choosings = v;, we can write Eq(7) as

whereN;(r) is the ion density, which we assume to be 0 e [ o
the same as the electron density by imposing charge nel-; Y(7,u) + ¢(r,u) = cr e B g(ru)du” .
trality, f,(r,v) = fi(r,v)/N;(r) is a spatially normalized “

ion distribution, and thé- - -) notation means that an av- (11
erage has been taken over the appropriate electron or i

distribution. We note that in the case of the quantigy, % complete the definition of the problem, we now turn

our attention to the boundary conditions subject to which

the averaging notation is superfluous since, as men= ;
tioned beforeg,(v) o 1/v and thereforerv is constant. rkq' (11) shou_ld be sol_ved. Assuming that the plasma ex-
Hands fromz = 0 to z = 7y, we follow Ref. 12 and con-

In the approach to the reactor regime, the density and: -

the size of the plasma increase, and the neutrals are corjder. forz =0 andv; € (0.00),

fined to arelatively narrow surface layer, and so it makes,(r,,v) = y_(v) + p3 fo(rs,v;) + pdh_(v)
sense to specialize EQ3) to plane geometry. This al-

lows us to integrate the resulting equation ovgandv, A R R
(two of the components of the velocity to obtain o m”ZfO(rS'Vr)dUdeydUZ’ (12)

0 .
2 _ wherers= (X, V,0), v, = (vy,vy, — v5), Y- (V) is a known
"2 oz %o(2,02) + N (2)(oxv) + (7o) Go(Z,02) incident distribution of neutryalspi andp? are, respec-
o tively, the coefficients of specular and diffuse reflection,
- Ni(Z)<0'xU>gn(zaUz)f Oo(z,v)) dvy | (4)  and the redistribution functioh_(v) is normalized to a
—o0 unit partial flux in the positivez direction, that is,
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(13

f J J v.h_(v) dvydoydv, = 1 .
0 —oo v —co

We note that in terms of the optical varialiteand the
reduced speed, Eq.(12) yields, foru € (0,c0),

YO,u) = T_(u) + p2¢(0,— u) + p2H_(u)

% fo %0, — u)u du’ (14)
where
rw= [Ty maa, 15)
and
H_(u) = Ezfo:ofo; h_(v) duvydo, (16)
with H_ (u) normalized as
JOOOH(u)udu=1 . (17)

At 7 = 7q, a similarly general boundary condition can be G(u) = 2ae (@b

considered. We thus write, far € (0,00),

(70, —u) = I (U) + pSh(70,u) + p$ H, (U)

X J:Ogb(ro,u’)u/ du’ . (18

GARCIA and SIEWERT

for 7 € (0,00) andu € (—o0,00), the condition at infinity,
namely,

lim Y(r,u) =0 ,

T—00

(223

and the boundary condition
Y(O,u) = F(u) + psY(0,— u)

+pdG(U)f0 Y(0,— we * udu  (22b)

for u € (0,00). Here and throughout this wokkvhat we
call) the characteristic function is

V(U) = e Y2e v | (23

We consider that the knowspecified terms in Eq(22b)
can be written as

e’ )
F(u) =A m 8(u—Up) + (1 — A)2be~ P~ Du
(249

and

(24b

where the parametess> 0, b > 0, andug > 0O are as-
sumed to be given and where the arbitrary consaist
used in order to be able simply to include the two bound-
ary conditiong A = 1 andA = 0) considered in Ref. 12.
We note that because of the way the functifiis) and

To close this section, we note that in the case of £ () are normalized, we can write

plasma filling the half-space> 0, itis clear that instead

of Eq. (18), we must consider the condition

lim ¢ (r,u) =0 . (19)

Ill. THE PROBLEMS

In this section, we restate, in strictly mathematical
terms, the basic problems that were defined in our earlier
work X2 which are also discussed in Sec. Il and which we

intend to solve here.

[lI.A. Half-Space Problems
In regard to Eq(11), we let

Y(r,u) = e’y(r,u) , (20)

and so, for half-spacer > 0) applications, we consider

our problem to be defined by tiransformedtransport
equation

a o0
u Py Y(7,u) + Y(7,u) = f V() Y(r,w)du (21

NUCLEAR SCIENCE AND ENGINEERING

I* =1+ (ps+ pa)O* , (25
where the partial fluxet* andO* are defined as

| = fOOOY(O,u)euzudu (263
and

o* = Jowv(o,— we Yudu . (26b)

And so, in regard to these half-space applications, we
intend to use our discrete ordinates method to compute
the partial flux O* for various values of the defining
parameters.

I11.B. Finite-Slab Problems

For the applications in a finite slab, we again follow
Ref. 12 and seek a solution to

a [e'e)
u P Y(7,u) + Y(7,u) = f U(w)Y(r, ) du  (27)
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TRANSPORT OF NEUTRAL HYDROGEN ATOMS IN A HYDROGEN PLASMA 143

for r € (0,79) andu € (—o0,00), subject to the boundary for r € (0,00) andu € (—o0,00), the condition at infinity,
conditions namely,

Y(O,u) = F(u) + psY(0,— u) lim Z(r,u) =0 , (333

T—>00

+ pyG(U) foo Y(0,— we* udy (289 @andthe boundary condition
’ Z(0,u) = R(W) + psZ(0, ~ u)
and

Y(7, — U) = F(u) + psY(7o,u) + pdG(u)jo Z(0,— we *udu (330

+ pd(_;(u)f Y(ro, e # uwdu  (28b for u € (0,00). We note that the known terms in E¢32)
0 and(33b) are given by

for u € (0,00). While a nonsymmetric version of Eq28) A B .
was defined in Ref. 12, we consider it sufficient, for the Q(r) = U Crr~Y/2e 7/ (34)
purpose of illustrating the fundamental aspects of our dis-
crete ordinates solution, to base our numerical work oand
the symmetric case. Here, we intend to compute the par- ,
tial flux R(u) = (1— A)2be~P~Du" | (35)
o , Now, making use of Eq31), we rewrite Eq(26b) as
o = Y0, —ue “udu (29)

0 oo

o o* = f Z(0,— uye “’udu . (36)
and the neutral distribution 0

#.(7,u) = e W Z(7,u) (30) IV.B. Finite-Slab Problems

for various values of the defining parameters and se- Here, to avoid the generalized function in our dis-
lected values of € [0,7o] andu € (—oo,0). Here, we  crete ordinates solution, we let

useZ(7,u) to denote the component ¥f 7, u) that is not B

a generalizeddelta function. Y(7,u) = Yo(r,u) + Z(7,u) , (37

where after substituting E¢37) into Eqs.(28), we choose
to define
IV. THE REDUCED PROBLEMS
Yo(7,u) = K(u)e "4 (389
Since the boundary conditions listed as E2Rb),
for the half-space case, and E¢®9), for the finite-slab
problems, introduce into the desired solutions a compo- Yo(7, — u) = K(u)e (o= (38b)
nent that is a generalized function, we make use of a con-
venient decomposition of the solution before proceedingvhere
with our discrete ordinates method.

and

A 2
IV.A. Half-Space Problems K(u) = u T(Wes(u=uo) (39

For half-space applications, we write and
A 2 = —_ —To/u\—1
Y(7,u) = a e s(u— Uo)efT/u +Z(7,u) , (31) T(u) = (1— pee ) (40)

for u € (0,00). Now, if we substitute the decomposition
where after substituting E¢31) into Eqs.(21) and(22), given by Eq.(37) into Egs.(27) and (28), we find that
we see thaZ(r,u) is defined by the transport equation the requiredZ(r,u) is defined by

Jd 0 0 o]
u-—Z(r,u) + Z(7,u) = f V(WZ(r,w)du+Q(r) U= Z(r.u) + Z(1,0) = f W(p)Z(7, w) du + Q(7)
T —o0 T —c0

(32 (41)
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144 GARCIA and SIEWERT

for r € (0,79) andu € (—o0,0) and the boundary and
conditions

d
Z(0,u) = R(u) + psZ(0, — u) —U ar Z(r,—u) + Z(7, — u;)

T paG(U) fo “ 200, we F udu (423 = 3 WrWIZ(r,u) + Z(r, ~u)]  (@7h

fori =1,2,...N. In writing Egs.(47), we have taken
into account the fact that the characteristic function de-
) = fined by Eq.(23) is an even function. In addition, we
Z(70, = U) = R(W + psZ(70,U) clearly are considering that tiNquadrature pointéuy}
o and theN weights{w,} are defined for use on the inte-
+ pg G(u)f Z(ro,w)e * wdu (42b)  grationinterval0,00). We note that it is to this feature of
0 using a “half-range” quadrature scheme that we partially
o attribute the especially good accuracy we have obtained
for u € (0,00). Here, for the case of the finite slab, we fom the solution reported here.

have Seeking exponential solutions, we substitute
Z(r,£u;) = p(v,tu)e” ™" (48)
into Eqgs.(47) to find

and

A
Q(r) = o e YT (up)[e" ™ + @ (o=t (43
o

and 1
—Me, =(1-W)®, —Wd_ (493
R(u) = (1- A)Zbei(bfl)uz + pq G(U)T(Uo)AefTo/uo ) v
and
(44)

1
To conclude this section, we express the quantities we T Mo_ = (I -W)e_ - Wo. ,
intend to compute, namely, the outgoing partial flux and (49b)

the neutral distribution, as . . . .
wherel is theN X N identity matrix,

O* = T(uo)Ae_To/Uo +fooz(0, — u)e_uzu du (45) (I)i = [¢(V1iul)1¢(yviu2)v e ,¢(V,iUN )]T ’ (50)

0 the superscripT denotes the transpose operation, the ele-

and ments of the matrixV are
2 W), i = w; W(u; 51
h(r.0) = e Z(r0) (@6) W =) oY
and
M = diag{uq,u,,...,uy} . (52
V. THE DISCRETE ORDINATES METHOD

If we now let

The discrete ordinates solution we use in this work U=&, +&_ (53

was developed in Ref. 5, and so we can make use of that o )
material now to solve the half-space problems and théhen we can eliminate between the sum and the differ-
finite-slab problems that were defined in Sec. IV. We con€nce of Egs(49) to find

sider first the homogeneous version of Eg2), and so 1

we approximate the integral term in E®2) by a quad- (D-2M*"WMH)MU = — MU , (54
rature formula and write the homogeneous discrete ordi- v

nates equations to be solved as where

d — di -2 =2 -2
u d_Z(T,Ui)+Z(T,Ui) D = diag{u; %, uz?,...,uy“} . (59
4 Multiplying Eqg. (54) by a diagonal matrix, we find

Mz

W (U)[Z(r,u) + Z(r, —ug)] (474 (D - 2V)X = i X | (56)

k=1
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TRANSPORT OF NEUTRAL HYDROGEN ATOMS IN A HYDROGEN PLASMA 145

where meet discrete ordinates versions of the relevant bound-
ary conditions.

V=MTITWTIM (57) Of course, Egs(32) and(41) are driven by inhomo-
and geneous source terms, and so we now construct a partic-
ular solution to the inhomogeneous discrete ordinates
X=TMU . (58) equations

As discussed, for example, in Ref. 13, we can define the
elementsTy, Ty, ..., Ty of T so as to mak& symmetric, =*u, — Z(7,=u;) + Z(7,£u;)
and therefore, sinc¥ is a symmetric, rank one matrix,
we can write our eigenvalue problem in the form

(D—-2zz")X = AX , (59
whereA = 1/»2 and (63
T where, in generalQ(7) is given by Eq(43). Now, seek-
7= \/Wlw(ul), YW, ¥ (up) L Y W (Un) _ ing exponential solutions of E¢63), we obtain the par-
Uz Uz Un ticular solution

(60) e—-r/u0 e—(To—T)/Uo
. . Zp(T,iUi) = FoT(Uo) — + y (64)
We note that the eigenvalue problem defined by (5§) Up + U Uo * Ui
is of a form that is encountered when the so-called “dividey, hqre
and-conquer” methdd is used to find the eigenvalues

of tridiagonal matrices. In addition, we see from E8b) CcA

ngk‘I’(Uk)[Z(T,Uk) +Z(7, = u)] + Q(7) ,

that, because of the way our basic eigenvalue problem is To= 720, (Up) (65

formulated, we must exclude zero from the set of quad-

rature points. Of course, to exclude zero from the quad*'lmd

rature set is not considered a serious restriction since N W P (Uy)

typical Gauss quadrature schemes do not include the end Q(up) = 1+ 2u2 >, ) (66)
k=1 Yk — Yo

points of the integration interval.

Considering that we have found the required eigenwe note that while the particular solution given by
values from Eq.(59), we impose the normalization Eq. (64) has the merit of being simple, it must be used
condition with caution since we cannot, without some algebraic

N reductions, allowuy € {u,} and we cannot allow to
S wP(u)[e(v,u) + (v, —u)] =1, (61 be azero ofi(z) or, what is equivalenty, € {»;}. A
k=1 particular solution that does not require these restric-

so that we can write our discrete ordinates solution opons is available in a recent papethat reports a gen-

Egs.(47) as eral procedure for constructing particular solutions for

' discrete ordinates approximations to quite general trans-
Zn(7,2u;) port models.

Finally, we believe it is clear that a particular solu-
_— vj e + B o= (7=, tion for the hqlf-_space g:ase,that |s for a source term given
Sy T v U ' by Eq.(34), is immediately available from Eq64) in
the limit of infinite 7.
(62)

where the arbitrary constanté, } and{B;} are to be de-
termined from the boundary conditions, the separation VI. SOLUTIONS TO THE PROBLEMS

constantgy;} are the reciprocals of the positive square . . . .
roots of the eigenvalues defined by E§9), and we have Having developed our discrete ordinates formalism,
added the subscrifitto remind us that Eq(62) defines we are now ready to solve the specific problems defined
our discrete ordinates solution of the homogeneous vef? S€C- IV.
sion of Eq.(32).

It is clear from Eq.(62) that we cannot allow any VIA. Half-Space Problems
separation constant to be equal to one of the quadrature For the half-space problems, we consider E§®)
points. We note that the constaf# } and{B;} thatare and(333 and write
present in Eq(62) will, as discussed in Sec. VI, be de- N
termined by fixing the behavior & (7, u; ) at infinity (for Z(r,xu) = XA —
half-space problemsand/or by constrainingZ(r,u;) to -1ty

Vi

eiT/VJ + Zp(’T,iUi) ) (67)
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146 GARCIA and SIEWERT

where O* = OF + T(up) Ae 70/t
e*T/UO

Zo(1,2U) = To —— (68)

N
Ug + U + ZAJVJ'[H(VJ')"‘H(_Vj)e_To/Vj] , (77)
j=1
and where the constan{t8, } are to be determined. Now,
substituting Eq(67) into a discrete ordinates version of where
Eq. (33b), namely,

Z(0,) ~ psZ(0,~ U) = paG(u) O = LT (W) [H(te) + Hi—to)e™™] . (78

N , In order to compute the neutral distributign(7,u), we
X D Wil Z(0, — u)e M = R(u;) (69 first go back and substitute E(Z4) into
k=1

fori=1,2,... N, we find a system oN linear algebraic 9 _
equations we can solve to obtain the requifégf. And, u or Z(r,u) + Z(7,u) = Q(7)
S0 we can now write the desired solution as
N
N
O* = E:LAJ Vj H(VJ) + OF , (70) + glwkw(uk)[Z(Tvuk) + Z(Ti - uk)] (79)
=
where to obtain, after using the definition of the particular so-
) lution and the normalization condition given by E§1),
. d
and where, in general, u— Z(7,u) + Z(r,u) = S\(7) + S(7) (80)
N T
_ Wi U —uf
H(+¢&) = zl Fu 72 here
VI.B. Finite-Slab Problems N
_ o Si(7) = > Alle ™" + e (o] (813
Turning to the finite-slab problem, we note that the i=1
symmetry of the problem implies that
Z(r,W) = Z(ro—7,~ U | (73 2
; 1
and so we write S(r) = — T, T(ug)[e ™t + e~ (o~ D/w] . (81h)
N e*T/Vj e*(ﬂrofr)/vj Uo
Z(r,£u) = >, Ay —— + L : . .
] v T U v U Considering that the right side of E@O) is known and

keeping in mind the symmetry of the problem, we can

+Zp(r.Eu) (74) solve that equation fé£(7,u), u € [0,00), and use Eq46)
where now to find our final result, namely,
e*T/UO e7(7'077')/uo 2 — —
Z,(1,+u) = ToT(Uo) + Yo (m,u) = e [Y(7,u) + En(7,u) + Ep(7,u)] (82)
P Uo F U, Uo + U;
(75 for r € [0,79] andu € [0,00). Here,

In a manner analogous to that used for the half-space case, Y(7,u) = T(u){(1 — A)2be~b-Dv
we determine th&l required constantsA; } by substitut-
ing the solution given by Ed74) into the boundary con- + ps[ En(7o,u) + Ep(70,W)] + pg G(u)O* e,

dition [we choose to use E¢42a)] written as
83
Z(0,u) ~ psZ(0,~ u) ~ paG(u;) ®3

N where
X WU Z(0, — u ) e = R(u;) (76)
k=1

N
. En(r,u) = D A v [C(7:w,u) + e o MS(r
fori =1,2,...N. Once we have solved the system of n(7,U) zl il Clrv,u) +e (722, 0]
linear algebraic equations so defined, we have the de-
sired solution for the partial flux available from (84a
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TRANSPORT OF NEUTRAL HYDROGEN ATOMS IN A HYDROGEN PLASMA 147

and Finally, but importantly, we note that since the func-
_ _ e _ tion ¥(u) defined by Eq(23) can be zero, from a com-
Ep(7,U) = ToT (Ug)[C(7 : Uo, W) + & ™" S(7 g, U] putational point of view, we can have some, say, a total
(84  Of No, of the separation constarits;} effectively equal
) ] to some of the quadrature poirts }. Of course, this is
Finally, we note that th&andC functions we have used ot allowed in our discrete ordinates solution, and so, since

are defined by the quadrature points whesg uy) is effectively zero make
1— e g2y no contribution to the right side of Eq&47), we have
S(z:x,y) = —— (858  seen thatwe can simply omit these quadrature points from
X+y our calculation. Of course, in omitting theblg quadra-
and ture points, we have effectively changlido N — Ng in
some aspects of our final solution. While this procedure
e r—e 2V can, we believe, be justified in terms of the numerics of
C(zixy) = x—y (85D the problem, a more elegant procedure, as was reported

in Ref. 10, could have been used here.

In regard to numerical results, we must first note that
VII. COMPUTATIONAL DETAILS AND RESULTS the results IiSte(ﬂIabeIed ax = 099) in the last lines of
the Tables 1 through 4 of Ref. 12 are not correct. Having
éeimplemented thEy solution of Ref. 12 for half-spaces

Repeating some of the discussion given in previou and slabs, we have discovered that these results were in-

9-11 H 1
works?ttwe note that what we must now do is to define ended forc = 0.999, notc = 0.99, and that they are ac-

the quadrature scheme to be used in our discrete ord€ .
nates solution. In this work, we used one of thenlin- curate only to two or three figures for the half-space cases

eay) transformations and only to thr_ee or four figures for the _slab cases.
In order to illustrate some of the merits of our devel-
&(u) = exp{—u} (86a  oped discrete ordinates solutions to the considered prob-
lems, we list some typical results in Tables | and Il for
the half-space case and Tables Ill and IV for the case of
finite slabs. We note that these numerical results are given
&(u) = 1tu (86b)  with what we believe to be seven figures of accuracy. Of
course, we have no proof of the accuracy of our results,
to mapu € [0,00) into ¢ € [0,1], and we then used the but we have done various things to establish the confi-
Gauss-Legendre scheme mappkdearly) onto the in- dence we have. First of all, we have increased the value
terval[0,1]. Of course, other quadrature schemes couladf N used in our computations until we found stability in
be used. In fact, we note that recent works by Gafcia the final results, and we have also used numerical linear-
and Gander and Katp have reported special quadra- algebra packages other than those mentioned and both
ture schemes for use in the general area of particle transenlinear maps given by Eq$86) to obtain the same
port theory. Such an approach clearly could be used hereesults as given in our tables. Moreover, when compared
In fact, the choice of a quadrature scheme based on thie converged results of the newly implemented version
integration interva[0,00) with a weight function as de- of the Fy method described in Ref. 12, our discrete or-
fined by Eq.(23) seems a natural choice for this work. dinates results showed perfect agreenisaven figures
However, we have found the use of a mapping definedf accuracy for the half-space cases. In comparing our
by either of Eqs(86) followed by the use of the Gauss- discrete ordinates results to ndw results for the slab
Legendre integration formulas to be so effective that weases, we were able to confirm only five or six figures of
have not developed any special-purpose quadratur@curacy since we were able to genergieresults ac-
schemes. curate only to five or six significant figures. We also have
Continuing, we note that having defined our quadra-evaluated our result, as given by Eg§2), for the neutral
ture scheme and in developing a FORTRAN implemendistribution, but since our results here are identical to those
tation of our solution, we found the required separatioristed in Tables 5, 6, and 7 of Ref. 12, we do not list these
constantgv;} by using the special DZPACK numerical results again.
packagé3that was developed to take advantage ofthe spe- We note that we have typically usét= 50 to gen-
cial structure of Eq(59) to solve the eigenvalue problem. erate the results listed in our tables, and to have an idea
The required separation constants were then available afthe computational time required to solve a typical prob-
the reciprocals of the square roots of these eigenvalues. \em, we note that our FORTRAN implementati@m spe-
then used the subroutines DGECO and DGESL from theial effort was made to make the code especially effigient
LINPACK packagé®to solve the relevant linear systems, of our discrete ordinates solutigwith N = 50) runs in
and so, the solutions to the various problems were consid-1 s on a 400-MHz Pentium-based personal computer.
ered established. Finally, to have some idea abol, the number of

or
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TABLE |

The Partial FluxO* for A =1,up=20,a= 2 andpg =1 — ps

c ps= 0.0 ps=0.2 ps=0.5 ps= 0.8 ps=1.0
0.1 1.504331-3) 1.503308—-3) 1.501774-3) 1.500239-3) 1.49921%-3)
0.6 2.0558856-2) 2.043419-2) 2.024713-2) 2.005997—-2) 1.993512-2)
0.9 1.231198-1) 1.21266%—-1) 1.185094—-1) 1.157781-1) 1.13971@-1)
0.95 2.54887(1-1) 2.500466—1) 2.428879—1) 2.358471-1) 2.312164-1)
0.99 1.178418 1.147835 1.103210 1.060008 1.031958
0.999 7.795792 7.553483 7.204017 6.870232 6.655851

TABLE I
The Partial FluxO* for A =0,b=10,a=2 andpy =1 — ps

C ps= 0.0 ps=0.2 ps=0.5 ps=0.8 ps=1.0
0.1 3.221114-2) 3.220888—-2) 3.220550—-2) 3.220213-2) 3.219989-2)
0.6 3.302428-1) 3.296144—1) 3.286763—1) 3.277427-1) 3.271229-1)
0.9 1.145045 1.134826 1.119652 1.104659 1.094761
0.95 1.789005 1.765409 1.730559 1.696341 1.673867
0.99 4.442183 4.344144 4.,201159 4.062816 3.973035
0.999 1.47058Q) 1.4271641) 1.364555%1) 1.3047641) 1.2663661)

TABLE I
The Partial FluxO* for A =1, ug = 20,a= 2, ps= 0.2 andpg = 0.5

Cc T0=1 T0=2 79=5 70=10 70=20
0.1 1.342815 1.160178 9.38538461) 7.013577-1) 4.040951-1)
0.6 1.668254 1.386900 1.084472 8.105(r91) 4.742326—-1)
0.9 2.444931 2.066536 1.550503 1.145649 6.9608aD
0.95 2.785316 2.466757 1.916750 1.426124 8.86603p
0.99 3.198505 3.087444 2.792396 2.357240 1.671273
0.999 3.319114 3.306183 3.265208 3.181403 2.955801

TABLE IV
The Partial FluxO* for A =0,b=10,a= 2, ps= 0.2 andpq = 0.5

Cc =1 7'0:2 T0=5 70:10 ’7'0:20
0.1 1.053391-1) 4.381968—-2) 3.246525—2) 3.199429-2) 3.197838-2)
0.6 6.447509-1) 4.19965%—1) 3.168462—1) 3.061216—1) 3.056348—1)
0.9 1.903283 1.455076 1.018778 8.937392) 8.762374—1)
0.95 2.451692 2.050882 1.509680 1.262960 1.199360
0.99 3.116524 2.970013 2.642387 2.305978 2.035291
0.999 3.310470 3.293232 3.246483 3.174823 3.051371
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guadrature points not included in some parts of our calquency Redistribution,J. Quant. Spectrosc. Radiat. Transfer

culation, we note that using = 1013 to decide if an 62 665(1999.

eigenvalue and a quadrature point were the same “com-

putationally,” we foundN, = 2 whenN = 50 and the 6. L. B. BARICHELLO and C. E. SIEWERT, “A Discrete-

map defined by Eq(86a were used. Ordinates Solution for a Polarization Model with Complete Fre-
quency Redistribution,Astrophys. J.513 370(1999.

7. C.E. SIEWERT, “A Concise and Accurate Solution to Chan-
VIIl. CONCLUDING REMARKS drasekhar’s Basic Problem in Radiative Transfer, Quant.
Spectrosc. Radiat. Transfeg4, 109(2000.
In this work, we have successfully developed and im-

plemented an analytical version of the discrete ordinates3. C. E. SIEWERT, “ADiscrete-Ordinates Solution for Multi-
method for studying the transport of hydrogen atoms irgroup Transport Theory with Upscatteringl” Quant. Spec-
a hydrogen plasma. And so, in addition to providing verytrosc. Radiat. Transfei64, 255(2000.
high quality results for the considered problem, we have ,
come to the conclusion that the techniques reported hergd- L- B- BARICHELLO and C. E. SIEWERT, “A Discrete-
because of the very simple structure of the developed a Drdinates Solution for Poiseuille Flow in a Plane Channél,
gorithm, can andwe expeck will be extended to ana- ngew. Math. Phys50, 972(1999.
lyze more realistic model8 of the physical processes

. 10. C. E. SIEWERT, “A Discrete-Ordinates Solution for Heat
considered here.

Transfer in a Plane Channell’ Comput. Phys152 251(1999.

Postscript We would like to say here that we con-
sider it an hopnorto be able to makeya contribution to thi 1. L. B. BARICHELLO, M. CAMARGO, P. RODRIGUES,
nd C. E. SIEWERT, “Unified Solutions to Classical Flow Prob-

issue ofNuclear Science and I_Enginee_rimtgadicated 10 |ems Based on the BGK ModelZ. Angew. Math. Physto be
the memory of G. C. Pomraning. While we had manyppjished.
wonderful exchanges with Jerry over the years, we are

especially grateful to him for introducing us to the areaj2. R. D. M. GARCIA, G. C. POMRANING, and C. E. SIE-
of plasma physics we revisited in this current work. OfwERT, “On the Transport of Neutral Hydrogen Atoms in a Hy-
course, it was Jerry who, from basic physics, formulatedrogen Plasma,Plasma Phys.24, 903(1982.
for us the problems that we all went on to solve in our
joint paper referred to in this work as Ref. 12. As allwho13. C. E. SIEWERT and S. J. WRIGHT, “Efficient Eigenvalue
knew him will testify, to collaborate and to develop re- Calculations in Radiative TransferJ. Quant. Spectrosc. Ra-
search work with Jerry were enriching experiences thatiat. Transfer 62, 685(1999.
have made us all more able to see things clearly.
14. G. H. GOLUB and C. F. VAN LOANMatrix Computa-
tions Johns Hopkins University Press, Baltimore, Maryland
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