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Abstract –An analytical version of the discrete ordinates method is used to solve a class of boundary-
value problems based on a linear Boltzmann equation relevant to the transport of neutral hydrogen atoms
in a hydrogen plasma. In addition to a complete development of the discrete ordinates method for the
considered application, the computational algorithm is implemented to yield very accurate results for a
number of half-space and finite-slab problems. The developed code is also used to correct some entries in
a previously reported tabulation of results. The established algorithm is considered especially easy to use,
and the code runs (typically) in,1 s on a 400-MHz Pentium-based personal computer.

I. INTRODUCTION

In this work, we consider the transport of neutral par-
ticles in a plasma that, as pointed out by Tendler and Hei-
fetz,1 is a subject of concern in fusion research. It was
also noted, in Tendler and Heifetz’s review paper1 on neu-
tral particle kinetics in fusion devices, that knowledge of
the distribution of neutral particles in a plasma is impor-
tant in analyzing the energy balance in the plasma and
the role played by the neutrals in the mechanism of plasma
refueling and exhaust, in estimating the damage to the
device walls, and in the designing of diagnostic tools.

Since there are situations in plasma physics where
the neutral mean free path in the plasma can be compa-
rable to the plasma scale length, the Boltzmann equation
~rather than low-order fluid equations! is usually re-
quired for modeling the physics of the problem accu-
rately. Early kinetic models have been put forward by
Sakharov,2 Zubarev and Klimov,3 and Konstantinov and
Perel.4 In the following years, more sophisticated mod-
els and methods of solution for the ensuing Boltzmann
equations were reported in the literature. The models
evolved to consider the more realistic cases of multiple

neutral species, a spatially dependent ion temperature,
and a combination of specular and diffuse reflection at
the wall. In regard to techniques for analyzing the vari-
ous models used to describe the transport of neutral at-
oms in a plasma, we note that analytical, semianalytical,
numerical, and stochastic methods have all been inves-
tigated, and since both the important models and the im-
portant transport techniques relevant to this work have
been thoroughly reviewed in Ref. 1, we do not address
these issues here.

In this work, we use an analytical version of the dis-
crete ordinates method recently developed and used to
solve problems in radiative transfer,5–7 neutron trans-
port,8 and rarefied gas dynamics9–11 to study the trans-
port of neutral hydrogen atoms in a hydrogen plasma.
We consider both half-space and finite-slab problems with
spatially constant ion temperatures and different amounts
of specular and diffuse reflection at the walls upon which
neutral particles are incident. We also implement the de-
veloped solution to obtain especially accurate numerical
results that are compared to ourFN results that were re-
ported, for this class of problems, a few years ago in a
joint work with Pomraning.12
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II. THE TRANSPORT EQUATION AND
BOUNDARY CONDITIONS

We base our development in this section on the equiv-
alent material that was formulated~almost exclusively
by Pomraning! in our previous work12 on this subject.
The steady-state Boltzmann equation that describes the
transport of low-energy~,5-keV! neutral hydrogen at-
oms in a hydrogen plasma can be written as12

v{¹f0~r ,v! 1 s~r ,v! f0~r ,v!

5 fi ~r ,v!E
v'
6v 2 v' 6sx~6v 2 v' 6! f0~r ,v' ! dv' , ~1!

where

s~r ,v! 5E
v'
6v 2 v' 6@se~6v 2 v' 6! fe~r ,v' !

1 sx~6v 2 v' 6! fi ~r ,v' !#dv' , ~2!

and wheref0~r ,v!, fe~r ,v! and fi ~r ,v! are, respectively,
the neutral, electron and ion distribution functions, and
se~v! andsx~v! are the cross sections for electron ion-
ization and charge exchange. In Ref. 12, it was noted that
Eq. ~1! can be simplified if we use the experimental re-
sult that the charge-exchange cross section varies approx-
imately with the inverse of the speed and if, considering
the large difference in mass between the electron and the
hydrogen atom, we take the ionization rate to be inde-
pendent of the neutral velocity. We therefore rewrite
Eq. ~1! as

v{¹f0~r ,v! 1 Ni ~r !~^sxv& 1 ^sev&! f0~r ,v!

5 Ni ~r !^sxv&fn~r ,v!E
v'

f0~r ,v' ! dv' , ~3!

whereNi ~r ! is the ion density, which we assume to be
the same as the electron density by imposing charge neu-
trality, fn~r ,v! 5 fi ~r ,v!0Ni ~r ! is a spatially normalized
ion distribution, and thê{{{& notation means that an av-
erage has been taken over the appropriate electron or ion
distribution. We note that in the case of the quantitysxv,
the averaging notation is superfluous since, as men-
tioned before,sx~v! @ 10v and thereforesxv is constant.

In the approach to the reactor regime, the density and
the size of the plasma increase, and the neutrals are con-
fined to a relatively narrow surface layer, and so it makes
sense to specialize Eq.~3! to plane geometry. This al-
lows us to integrate the resulting equation overvx andvy
~two of the components of the velocityv! to obtain

vz
]

]z
g0~z,vz! 1 Ni ~z!~^sxv& 1 ^sev&!g0~z,vz!

5 Ni ~z!^sxv&gn~z,vz!E
2`

`

g0~z,vz'! dvz' , ~4!

where we have defined, fora 5 0 or a 5 n,

ga~z,vz! 5 E
2`

`E
2`

`

fa~r ,v! dvxdvy . ~5!

Introducing the optical variable

t 5 ~10 Sv!E
0

z

Ni ~z' !~^sxv& 1 ^sev&!dz' , ~6!

where Sv is a characteristic speed, and lettingu 5 vz0 Sv
and c~t,u! r g0~z,vz!, we can rewrite Eq.~4! for
u [ ~2`,`! as

u
]

]t
c~t,u! 1 c~t,u! 5 cF~t,u!E

2`

`

c~t,u' ! du' ,

~7!

where

c 5
^sxv&

^sxv& 1 ^sev&
~8!

and F~t,u! r Svgn~z,vz!. Usually, F~t,u! can be well
represented by a local Maxwellian for the ion distribu-
tion, namely,

F~t,u! 5 Sv @p102vi ~t!#21e2u2 Sv20vi
2~t! , ~9!

where the thermal speedvi ~t! is related to the local ion
temperatureTi ~t! by

vi ~t! 5 F 2kTi ~t!

mi
G102

. ~10!

Here, as in Ref. 12, we consider the case whereTi ~t!
and, by extension,vi ~t! are independent oft. Hence,
choosing Sv5 vi , we can write Eq.~7! as

u
]

]t
c~t,u! 1 c~t,u! 5 cp2102e2u2E

2`

`

c~t,u' ! du' .

~11!

To complete the definition of the problem, we now turn
our attention to the boundary conditions subject to which
Eq. ~11! should be solved. Assuming that the plasma ex-
tends fromz5 0 to z5 z0, we follow Ref. 12 and con-
sider, forz5 0 andvz [ ~0,`!,

f0~r s,v! 5 g2~v! 1 r2
s f0~r s,vr ! 1 r2

d h2~v!

3 E
0

`E
2`

`E
2`

`

vz' f0~r s,vr
' ! dvx'dvy'dvz' , ~12!

wherer s5 ~x, y,0!, vr 5 ~vx,vy, 2 vz!, g2~v! is a known
incident distribution of neutrals,r2

s andr2
d are, respec-

tively, the coefficients of specular and diffuse reflection,
and the redistribution functionh2~v! is normalized to a
unit partial flux in the positivez direction, that is,
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E
0

`E
2`

`E
2`

`

vzh2~v! dvxdvydvz 5 1 . ~13!

We note that in terms of the optical variablet and the
reduced speedu, Eq. ~12! yields, foru [ ~0,`!,

c~0,u! 5 G2~u! 1 r2
s c~0,2 u! 1 r2

d H2~u!

3 E
0

`

c~0,2 u' !u' du' , ~14!

where

G2~u! 5 E
2`

`E
2`

`

g2~v! dvxdvy ~15!

and

H2~u! 5 Sv2E
2`

`E
2`

`

h2~v! dvxdvy ~16!

with H2~u! normalized as

E
0

`

H2~u!u du 5 1 . ~17!

At t 5 t0, a similarly general boundary condition can be
considered. We thus write, foru [ ~0,`!,

c~t0, 2 u! 5 G1~u! 1 r1
s c~t0,u! 1 r1

d H1~u!

3 E
0

`

c~t0,u' !u' du' . ~18!

To close this section, we note that in the case of a
plasma filling the half-spacet . 0, it is clear that instead
of Eq. ~18!, we must consider the condition

lim
tr`

c~t,u! 5 0 . ~19!

III. THE PROBLEMS

In this section, we restate, in strictly mathematical
terms, the basic problems that were defined in our earlier
work,12 which are also discussed in Sec. II and which we
intend to solve here.

III.A. Half-Space Problems

In regard to Eq.~11!, we let

Y~t,u! 5 eu2
c~t,u! , ~20!

and so, for half-space~t . 0! applications, we consider
our problem to be defined by the~transformed! transport
equation

u
]

]t
Y~t,u! 1 Y~t,u! 5 E

2`

`

C~m!Y~t, m! dm ~21!

for t [ ~0,`! andu [ ~2`,`!, the condition at infinity,
namely,

lim
tr`

Y~t,u! 5 0 , ~22a!

and the boundary condition

Y~0,u! 5 F~u! 1 rsY~0,2 u!

1 rd G~u!E
0

`

Y~0,2 m!e2m2
m dm ~22b!

for u [ ~0,`!. Here and throughout this work~what we
call! the characteristic function is

C~u! 5 cp2102e2u2
. ~23!

We consider that the known~specified! terms in Eq.~22b!
can be written as

F~u! 5 D
eu2

u
d~u 2 u0! 1 ~12 D!2be2~b21!u2

~24a!

and

G~u! 5 2ae2~a21!u2
, ~24b!

where the parametersa . 0, b . 0, andu0 . 0 are as-
sumed to be given and where the arbitrary constantD is
used in order to be able simply to include the two bound-
ary conditions~D 5 1 andD 5 0! considered in Ref. 12.
We note that because of the way the functionsF~u! and
G~u! are normalized, we can write

I * 5 11 ~ rs 1 rd !O* , ~25!

where the partial fluxesI * andO* are defined as

I * 5 E
0

`

Y~0,u!e2u2
u du ~26a!

and

O* 5E
0

`

Y~0,2 u!e2u2
u du . ~26b!

And so, in regard to these half-space applications, we
intend to use our discrete ordinates method to compute
the partial flux O* for various values of the defining
parameters.

III.B. Finite-Slab Problems

For the applications in a finite slab, we again follow
Ref. 12 and seek a solution to

u
]

]t
Y~t,u! 1 Y~t,u! 5 E

2`

`

C~m!Y~t, m! dm ~27!
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for t [ ~0,t0! andu [ ~2`,`!, subject to the boundary
conditions

Y~0,u! 5 F~u! 1 rsY~0,2 u!

1 rd G~u!E
0

`

Y~0,2 m!e2m2
m dm ~28a!

and

Y~t0, 2 u! 5 F~u! 1 rsY~t0,u!

1 rd G~u!E
0

`

Y~t0, m!e2m2
m dm ~28b!

for u [ ~0,`!. While a nonsymmetric version of Eqs.~28!
was defined in Ref. 12, we consider it sufficient, for the
purpose of illustrating the fundamental aspects of our dis-
crete ordinates solution, to base our numerical work on
the symmetric case. Here, we intend to compute the par-
tial flux

O* 5 E
0

`

Y~0,2 u!e2u2
u du ~29!

and the neutral distribution

c*~t,u! 5 e2u2
Z~t,u! ~30!

for various values of the defining parameters and se-
lected values oft [ @0,t0# andu [ ~2`,`!. Here, we
useZ~t,u! to denote the component ofY~t,u! that is not
a generalized~delta! function.

IV. THE REDUCED PROBLEMS

Since the boundary conditions listed as Eq.~22b!,
for the half-space case, and Eqs.~28!, for the finite-slab
problems, introduce into the desired solutions a compo-
nent that is a generalized function, we make use of a con-
venient decomposition of the solution before proceeding
with our discrete ordinates method.

IV.A. Half-Space Problems

For half-space applications, we write

Y~t,u! 5
D

u
eu2

d~u 2 u0!e2t0u 1 Z~t,u! , ~31!

where after substituting Eq.~31! into Eqs.~21! and~22!,
we see thatZ~t,u! is defined by the transport equation

u
]

]t
Z~t,u! 1 Z~t,u! 5 E

2`

`

C~m!Z~t, m! dm 1 Q~t!

~32!

for t [ ~0,`! andu [ ~2`,`!, the condition at infinity,
namely,

lim
tr`

Z~t,u! 5 0 , ~33a!

and the boundary condition

Z~0,u! 5 R~u! 1 rsZ~0,2 u!

1 rd G~u!E
0

`

Z~0,2 m!e2m2
m dm ~33b!

for u [ ~0,`!. We note that the known terms in Eqs.~32!
and~33b! are given by

Q~t! 5
D

u0
cp2102e2t0u0 ~34!

and

R~u! 5 ~12 D!2be2~b21!u2
. ~35!

Now, making use of Eq.~31!, we rewrite Eq.~26b! as

O* 5 E
0

`

Z~0,2 u!e2u2
u du . ~36!

IV.B. Finite-Slab Problems

Here, to avoid the generalized function in our dis-
crete ordinates solution, we let

Y~t,u! 5 Y0~t,u! 1 Z~t,u! , ~37!

where after substituting Eq.~37! into Eqs.~28!, we choose
to define

Y0~t,u! 5 K~u!e2t0u ~38a!

and

Y0~t, 2 u! 5 K~u!e2~t02t!0u , ~38b!

where

K~u! 5
D

u
T~u!eu2

d~u 2 u0! ~39!

and

T~u! 5 ~12 rse2t00u!21 ~40!

for u [ ~0,`!. Now, if we substitute the decomposition
given by Eq.~37! into Eqs.~27! and ~28!, we find that
the requiredZ~t,u! is defined by

u
]

]t
Z~t,u! 1 Z~t,u! 5 E

2`

`

C~m!Z~t, m! dm 1 Q~t!

~41!
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for t [ ~0,t0! and u [ ~2`,`! and the boundary
conditions

Z~0,u! 5 R~u! 1 rsZ~0,2 u!

1 rd G~u!E
0

`

Z~0,2 m!e2m2
m dm ~42a!

and

Z~t0, 2 u! 5 R~u! 1 rsZ~t0,u!

1 rd G~u!E
0

`

Z~t0, m!e2m2
m dm ~42b!

for u [ ~0,`!. Here, for the case of the finite slab, we
have

Q~t! 5
D

u0
cp2102T~u0!@e2t0u0 1 e2~t02t!0u0 # ~43!

and

R~u! 5 ~12 D!2be2~b21!u2
1 rd G~u!T~u0!De2t00u0 .

~44!

To conclude this section, we express the quantities we
intend to compute, namely, the outgoing partial flux and
the neutral distribution, as

O* 5 T~u0!De2t00u0 1E
0

`

Z~0,2 u!e2u2
u du ~45!

and

c*~t,u! 5 e2u2
Z~t,u! . ~46!

V. THE DISCRETE ORDINATES METHOD

The discrete ordinates solution we use in this work
was developed in Ref. 5, and so we can make use of that
material now to solve the half-space problems and the
finite-slab problems that were defined in Sec. IV. We con-
sider first the homogeneous version of Eq.~32!, and so
we approximate the integral term in Eq.~32! by a quad-
rature formula and write the homogeneous discrete ordi-
nates equations to be solved as

ui

d

dt
Z~t,ui ! 1 Z~t,ui !

5 (
k51

N

wkC~uk!@Z~t,uk! 1 Z~t, 2 uk!# ~47a!

and

2ui

d

dt
Z~t, 2 ui ! 1 Z~t, 2 ui !

5 (
k51

N

wkC~uk!@Z~t,uk! 1 Z~t, 2 uk!# ~47b!

for i 5 1,2, . . . ,N. In writing Eqs.~47!, we have taken
into account the fact that the characteristic function de-
fined by Eq.~23! is an even function. In addition, we
clearly are considering that theN quadrature points$uk%
and theN weights$wk% are defined for use on the inte-
gration interval@0,`!. We note that it is to this feature of
using a “half-range” quadrature scheme that we partially
attribute the especially good accuracy we have obtained
from the solution reported here.

Seeking exponential solutions, we substitute

Z~t,6ui ! 5 f~n,6ui !e2t0n ~48!

into Eqs.~47! to find

1

n
MF1 5 ~I 2 W!F1 2 WF2 ~49a!

and

2
1

n
MF2 5 ~I 2 W!F2 2 WF1 ,

~49b!

whereI is theN 3 N identity matrix,

F6 5 @f~n,6u1!,f~n,6u2!, . . . ,f~n,6uN !#T , ~50!

the superscriptT denotes the transpose operation, the ele-
ments of the matrixW are

~W!i, j 5 wj C~uj ! ~51!

and

M 5 diag$u1,u2, . . . ,uN % . ~52!

If we now let

U 5 F1 1 F2 , ~53!

then we can eliminate between the sum and the differ-
ence of Eqs.~49! to find

~D 2 2M 21WM21!MU 5
1

n2 MU , ~54!

where

D 5 diag$u1
22,u2

22, . . . ,uN
22% . ~55!

Multiplying Eq. ~54! by a diagonal matrixT, we find

~D 2 2V !X 5
1

n2 X , ~56!
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where

V 5 M 21TWT21M 21 ~57!

and

X 5 TMU . ~58!

As discussed, for example, in Ref. 13, we can define the
elementsT1,T2, . . . ,TN of T so as to makeV symmetric,
and therefore, sinceV is a symmetric, rank one matrix,
we can write our eigenvalue problem in the form

~D 2 2zzT!X 5 lX , ~59!

wherel 5 10n2 and

z 5 F%w1C~u1!

u1
,
%w2C~u2!

u2
, . . . ,
%wN C~uN !

uN
GT

.

~60!

We note that the eigenvalue problem defined by Eq.~59!
is of a form that is encountered when the so-called “divide-
and-conquer” method14 is used to find the eigenvalues
of tridiagonal matrices. In addition, we see from Eq.~55!
that, because of the way our basic eigenvalue problem is
formulated, we must exclude zero from the set of quad-
rature points. Of course, to exclude zero from the quad-
rature set is not considered a serious restriction since
typical Gauss quadrature schemes do not include the end
points of the integration interval.

Considering that we have found the required eigen-
values from Eq.~59!, we impose the normalization
condition

(
k51

N

wkC~uk!@f~n,uk! 1 f~n, 2 uk!# 5 1 , ~61!

so that we can write our discrete ordinates solution of
Eqs.~47! as

Zh~t,6ui !

5 (
j51

N FAj

nj

nj 7 ui

e2t0nj 1 Bj

nj

nj 6 ui

e2~t02t!0nj G ,

~62!

where the arbitrary constants$Aj % and$Bj % are to be de-
termined from the boundary conditions, the separation
constants$nj % are the reciprocals of the positive square
roots of the eigenvalues defined by Eq.~59!, and we have
added the subscripth to remind us that Eq.~62! defines
our discrete ordinates solution of the homogeneous ver-
sion of Eq.~32!.

It is clear from Eq.~62! that we cannot allow any
separation constant to be equal to one of the quadrature
points. We note that the constants$Aj % and$Bj % that are
present in Eq.~62! will, as discussed in Sec. VI, be de-
termined by fixing the behavior ofZ~t,ui ! at infinity ~for
half-space problems! and0or by constrainingZ~t,ui ! to

meet discrete ordinates versions of the relevant bound-
ary conditions.

Of course, Eqs.~32! and~41! are driven by inhomo-
geneous source terms, and so we now construct a partic-
ular solution to the inhomogeneous discrete ordinates
equations

6ui

d

dt
Z~t,6ui ! 1 Z~t,6ui !

5 (
k51

N

wkC~uk!@Z~t,uk! 1 Z~t, 2 uk!# 1 Q~t! ,

~63!

where, in general,Q~t! is given by Eq.~43!. Now, seek-
ing exponential solutions of Eq.~63!, we obtain the par-
ticular solution

Zp~t,6ui ! 5 G0T~u0! F e2t0u0

u0 7 ui

1
e2~t02t!0u0

u0 6 ui
G , ~64!

where

G0 5
cD

p102V~u0!
~65!

and

V~u0! 5 11 2u0
2 (

k51

N wkC~uk!

uk
2 2 u0

2 . ~66!

We note that while the particular solution given by
Eq. ~64! has the merit of being simple, it must be used
with caution since we cannot, without some algebraic
reductions, allowu0 [ $uk% and we cannot allowu0 to
be a zero ofV~z! or, what is equivalent,u0 [ $nj % . A
particular solution that does not require these restric-
tions is available in a recent paper15 that reports a gen-
eral procedure for constructing particular solutions for
discrete ordinates approximations to quite general trans-
port models.

Finally, we believe it is clear that a particular solu-
tion for the half-space case, that is, for a source term given
by Eq. ~34!, is immediately available from Eq.~64! in
the limit of infinite t0.

VI. SOLUTIONS TO THE PROBLEMS

Having developed our discrete ordinates formalism,
we are now ready to solve the specific problems defined
in Sec. IV.

VI.A. Half-Space Problems

For the half-space problems, we consider Eqs.~32!
and~33a! and write

Z~t,6ui ! 5 (
j51

N

Aj

nj

nj 7 ui

e2t0nj 1 Zp~t,6ui ! , ~67!
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where

Zp~t,6ui ! 5 G0

e2t0u0

u0 7 ui

~68!

and where the constants$Aj % are to be determined. Now,
substituting Eq.~67! into a discrete ordinates version of
Eq. ~33b!, namely,

Z~0,ui ! 2 rsZ~0,2 ui ! 2 rd G~ui !

3 (
k51

N

wkuk Z~0,2 uk!e2uk
2

5 R~ui ! ~69!

for i 5 1,2, . . . ,N, we find a system ofN linear algebraic
equations we can solve to obtain the required$Aj % . And,
so we can now write the desired solution as

O* 5 (
j51

N

Aj nj H~nj ! 1 Op
* , ~70!

where

Op
* 5 G0H~u0! ~71!

and where, in general,

H~6j! 5 (
k51

N wkuk

j 6 uk

e2uk
2

. ~72!

VI.B. Finite-Slab Problems

Turning to the finite-slab problem, we note that the
symmetry of the problem implies that

Z~t,u! 5 Z~t0 2 t, 2 u! , ~73!

and so we write

Z~t,6ui ! 5 (
j51

N

Aj nj F e2t0nj

nj 7 ui

1
e2~t02t!0nj

nj 6 ui
G

1 Zp~t,6ui ! , ~74!

where now

Zp~t,6ui ! 5 G0T~u0! F e2t0u0

u0 7 ui

1
e2~t02t!0u0

u0 6 ui
G .

~75!

In a manner analogous to that used for the half-space case,
we determine theN required constants$Aj % by substitut-
ing the solution given by Eq.~74! into the boundary con-
dition @we choose to use Eq.~42a!# written as

Z~0,ui ! 2 rsZ~0,2 ui ! 2 rd G~ui !

3 (
k51

N

wkuk Z~0,2 uk!e2uk
2

5 R~ui ! ~76!

for i 5 1,2, . . . ,N. Once we have solved the system of
linear algebraic equations so defined, we have the de-
sired solution for the partial flux available from

O* 5 Op
*1 T~u0!De2t00u0

1 (
j51

N

Aj nj @H~nj ! 1 H~2nj !e2t00nj # , ~77!

where

Op
* 5 G0T~u0!@H~u0! 1 H~2u0!e2t00u0 # . ~78!

In order to compute the neutral distributionc*~t,u!, we
first go back and substitute Eq.~74! into

u
]

]t
Z~t,u! 1 Z~t,u! 5 Q~t!

1 (
k51

N

wkC~uk!@Z~t,uk! 1 Z~t, 2 uk!# ~79!

to obtain, after using the definition of the particular so-
lution and the normalization condition given by Eq.~61!,

u
]

]t
Z~t,u! 1 Z~t,u! 5 Sh~t! 1 Sp~t! , ~80!

where

Sh~t! 5 (
j51

N

Aj @e2t0nj 1 e2~t02t!0nj # ~81a!

and

Sp~t! 5
1

u0
G0T~u0!@e2t0u0 1 e2~t02t!0u0 # . ~81b!

Considering that the right side of Eq.~80! is known and
keeping in mind the symmetry of the problem, we can
solve that equation forZ~t,u!, u [ @0,`!, and use Eq.~46!
to find our final result, namely,

c*~t,u! 5 e2u2
@Y~t,u! 1 Jh~t,u! 1 Jp~t,u!# ~82!

for t [ @0,t0# andu [ @0,`!. Here,

Y~t,u! 5 T~u!$~12 D!2be2~b21!u2

1 rs@Jh~t0,u! 1 Jp~t0,u!# 1 rd G~u!O* %e2t0u ,

~83!

where

Jh~t,u! 5 (
j51

N

Aj nj @C~t : nj ,u! 1 e2~t02t!0njS~t : nj ,u!#

~84a!
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and

Jp~t,u! 5 G0T~u0!@C~t : u0,u! 1 e2~t02t!0u0S~t : u0,u!# .

~84b!

Finally, we note that theSandC functions we have used
are defined by

S~z: x, y! 5
12 e2z0xe2z0y

x 1 y
~85a!

and

C~z: x, y! 5
e2z0x 2 e2z0y

x 2 y
. ~85b!

VII. COMPUTATIONAL DETAILS AND RESULTS

Repeating some of the discussion given in previous
works,9–11we note that what we must now do is to define
the quadrature scheme to be used in our discrete ordi-
nates solution. In this work, we used one of the~nonlin-
ear! transformations

j~u! 5 exp$2u% ~86a!

or

j~u! 5
1

11 u
~86b!

to mapu [ @0,`! into j [ @0,1# , and we then used the
Gauss-Legendre scheme mapped~linearly! onto the in-
terval @0,1# . Of course, other quadrature schemes could
be used. In fact, we note that recent works by Garcia16

and Gander and Karp17 have reported special quadra-
ture schemes for use in the general area of particle trans-
port theory. Such an approach clearly could be used here.
In fact, the choice of a quadrature scheme based on the
integration interval@0,`! with a weight function as de-
fined by Eq.~23! seems a natural choice for this work.
However, we have found the use of a mapping defined
by either of Eqs.~86! followed by the use of the Gauss-
Legendre integration formulas to be so effective that we
have not developed any special-purpose quadrature
schemes.

Continuing, we note that having defined our quadra-
ture scheme and in developing a FORTRAN implemen-
tation of our solution, we found the required separation
constants$nj % by using the special DZPACK numerical
package13that was developed to take advantage of the spe-
cial structure of Eq.~59! to solve the eigenvalue problem.
The required separation constants were then available as
the reciprocals of the square roots of these eigenvalues.We
then used the subroutines DGECO and DGESL from the
LINPACK package18 to solve the relevant linear systems,
and so, the solutions to the various problems were consid-
ered established.

Finally, but importantly, we note that since the func-
tion C~u! defined by Eq.~23! can be zero, from a com-
putational point of view, we can have some, say, a total
of N0, of the separation constants$nj % effectively equal
to some of the quadrature points$ui % . Of course, this is
not allowed in our discrete ordinates solution, and so, since
the quadrature points whereC~uk! is effectively zero make
no contribution to the right side of Eqs.~47!, we have
seen that we can simply omit these quadrature points from
our calculation. Of course, in omitting theseN0 quadra-
ture points, we have effectively changedN to N 2 N0 in
some aspects of our final solution. While this procedure
can, we believe, be justified in terms of the numerics of
the problem, a more elegant procedure, as was reported
in Ref. 10, could have been used here.

In regard to numerical results, we must first note that
the results listed~labeled asc 5 0.99! in the last lines of
the Tables 1 through 4 of Ref. 12 are not correct. Having
reimplemented theFN solution of Ref. 12 for half-spaces
and slabs, we have discovered that these results were in-
tended forc 5 0.999, notc 5 0.99, and that they are ac-
curate only to two or three figures for the half-space cases
and only to three or four figures for the slab cases.

In order to illustrate some of the merits of our devel-
oped discrete ordinates solutions to the considered prob-
lems, we list some typical results in Tables I and II for
the half-space case and Tables III and IV for the case of
finite slabs. We note that these numerical results are given
with what we believe to be seven figures of accuracy. Of
course, we have no proof of the accuracy of our results,
but we have done various things to establish the confi-
dence we have. First of all, we have increased the value
of N used in our computations until we found stability in
the final results, and we have also used numerical linear-
algebra packages other than those mentioned and both
nonlinear maps given by Eqs.~86! to obtain the same
results as given in our tables. Moreover, when compared
to converged results of the newly implemented version
of the FN method described in Ref. 12, our discrete or-
dinates results showed perfect agreement~seven figures
of accuracy! for the half-space cases. In comparing our
discrete ordinates results to newFN results for the slab
cases, we were able to confirm only five or six figures of
accuracy since we were able to generateFN results ac-
curate only to five or six significant figures. We also have
evaluated our result, as given by Eq.~82!, for the neutral
distribution, but since our results here are identical to those
listed in Tables 5, 6, and 7 of Ref. 12, we do not list these
results again.

We note that we have typically usedN 5 50 to gen-
erate the results listed in our tables, and to have an idea
of the computational time required to solve a typical prob-
lem, we note that our FORTRAN implementation~no spe-
cial effort was made to make the code especially efficient!
of our discrete ordinates solution~with N 5 50! runs in
0.1 s on a 400-MHz Pentium-based personal computer.
Finally, to have some idea aboutN0, the number of
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TABLE I

The Partial FluxO* for D 5 1, u0 5 20, a 5 2 andrd 5 1 2 rs

c rs 5 0.0 rs 5 0.2 rs 5 0.5 rs 5 0.8 rs 5 1.0

0.1 1.504331~23! 1.503308~23! 1.501774~23! 1.500239~23! 1.499215~23!
0.6 2.055885~22! 2.043419~22! 2.024713~22! 2.005997~22! 1.993512~22!
0.9 1.231193~21! 1.212665~21! 1.185094~21! 1.157781~21! 1.139710~21!
0.95 2.548871~21! 2.500466~21! 2.428879~21! 2.358471~21! 2.312164~21!
0.99 1.178418 1.147835 1.103210 1.060008 1.031958
0.999 7.795792 7.553483 7.204017 6.870232 6.655851

TABLE II

The Partial FluxO* for D 5 0, b 5 10, a 5 2 andrd 5 1 2 rs

c rs 5 0.0 rs 5 0.2 rs 5 0.5 rs 5 0.8 rs 5 1.0

0.1 3.221114~22! 3.220888~22! 3.220550~22! 3.220213~22! 3.219989~22!
0.6 3.302423~21! 3.296144~21! 3.286763~21! 3.277427~21! 3.271229~21!
0.9 1.145045 1.134826 1.119652 1.104659 1.094761
0.95 1.789005 1.765409 1.730559 1.696341 1.673867
0.99 4.442183 4.344144 4.201159 4.062816 3.973035
0.999 1.470580~1! 1.427164~1! 1.364555~1! 1.304764~1! 1.266366~1!

TABLE III

The Partial FluxO* for D 5 1, u0 5 20, a 5 2, rs 5 0.2 andrd 5 0.5

c t0 5 1 t0 5 2 t0 5 5 t0 5 10 t0 5 20

0.1 1.342815 1.160178 9.385386~21! 7.013577~21! 4.040951~21!
0.6 1.668254 1.386900 1.084472 8.105791~21! 4.742326~21!
0.9 2.444931 2.066536 1.550503 1.145649 6.960800~21!
0.95 2.785316 2.466757 1.916750 1.426124 8.866036~21!
0.99 3.198505 3.087444 2.792396 2.357240 1.671273
0.999 3.319114 3.306183 3.265208 3.181403 2.955801

TABLE IV

The Partial FluxO* for D 5 0, b 5 10, a 5 2, rs 5 0.2 andrd 5 0.5

c t0 5 1 t0 5 2 t0 5 5 t0 5 10 t0 5 20

0.1 1.053391~21! 4.381968~22! 3.246525~22! 3.199429~22! 3.197838~22!
0.6 6.447509~21! 4.199655~21! 3.168462~21! 3.061216~21! 3.056348~21!
0.9 1.903283 1.455076 1.018778 8.937392~21! 8.762374~21!
0.95 2.451692 2.050882 1.509680 1.262960 1.199360
0.99 3.116524 2.970013 2.642387 2.305978 2.035291
0.999 3.310470 3.293232 3.246483 3.174823 3.051371
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quadrature points not included in some parts of our cal-
culation, we note that usinge 5 10213 to decide if an
eigenvalue and a quadrature point were the same “com-
putationally,” we foundN0 5 2 whenN 5 50 and the
map defined by Eq.~86a! were used.

VIII. CONCLUDING REMARKS

In this work, we have successfully developed and im-
plemented an analytical version of the discrete ordinates
method for studying the transport of hydrogen atoms in
a hydrogen plasma. And so, in addition to providing very
high quality results for the considered problem, we have
come to the conclusion that the techniques reported here,
because of the very simple structure of the developed al-
gorithm, can and~we expect! will be extended to ana-
lyze more realistic models19 of the physical processes
considered here.

Postscript: We would like to say here that we con-
sider it an honor to be able to make a contribution to this
issue ofNuclear Science and Engineeringdedicated to
the memory of G. C. Pomraning. While we had many
wonderful exchanges with Jerry over the years, we are
especially grateful to him for introducing us to the area
of plasma physics we revisited in this current work. Of
course, it was Jerry who, from basic physics, formulated
for us the problems that we all went on to solve in our
joint paper referred to in this work as Ref. 12. As all who
knew him will testify, to collaborate and to develop re-
search work with Jerry were enriching experiences that
have made us all more able to see things clearly.
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