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Abstract

A recently developed analytical version of the discrete-ordinates method is used to establish a concise and
particularly accurate solution to the problem of Couette #ow of a binary gas mixture in a plane channel. The
model kinetic equations used to describe the #ow are based on the BGK theory of the linearized Boltzmann
equation, and, in addition to the complete distribution functions for the two species of gas particles,
numerical results are reported for the total sheer stress. The algorithm is considered especially easy to use,
and the developed (FORTRAN) code runs typically in less than a second on a 400 MHz Pentium-based
PC. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In a recent work [1], Onishi gives an extensive introduction to a general kinetic-theory
description of #ow problems relevant to a rare"ed gas mixture made up of two species of gas
particles. In addition to pointing out that a basic and often used model for binary gas mixtures was
developed by Hamel [2], Onishi in that work [1] also solves the temperature}density problem for
a binary mixture of gas particles. While we will not attempt to review the numerous works already
published on the use of kinetic theory to describe binary gas mixtures, we must make note of the
important contributions made by Onishi [1,3}5], Valougeorgis [6], Loyalka [7] and Cercignani
and Lampis [8] to the general body of work that concerns us here.
In regard to the solution developed for the problem considered here, we note that our analytical

version of Chandrasekhar's discrete-ordinates method [9] was "rst reported by Barichello and
Siewert [10] in a work devoted to radiative transfer. Since that "rst work [10], the method has
been used [11}15] to solve a collection of classical problems in the area of rare"ed gas dynamics.
And so here, we extend our earlier work for a single-species gas to the case of a binary gas mixture.
Of course, the considered problem of Couette #ow for a binary gas mixture in a plane channel has

0022-4073/01/$ - see front matter � 2001 Elsevier Science Ltd. All rights reserved.
PII: S 0 0 2 2 - 4 0 7 3 ( 0 0 ) 0 0 1 4 3 - 6



been solved previously, see for example Ref. [6], with what we might call `practical
accuracya. However, we consider that the discrete-ordinates solution developed here yields
especially accurate results. The developed discrete-ordinates method is also easy to use and,
importantly, can very likely be extended for use with kinetic models more general than the one
used here.
To de"ne, in mathematical terms, the basic problem we intend to solve, we follow Hamel [2],

Onishi [1,3}5] and Valougeorgis [6] and so consider the following system of coupled conservation
equations and boundary conditions, the results of a linearization of the initial model equations,
that de"ne the Couette-#ow problem:

�
�
�x

Y(x, �)#BY(x, �)"T�
�

��

e����Y(x, ��) d�� (1)

for x3(0, d) and �3(!R,R), with

Y(0, �)"!�
1

1� (2a)

and

Y(d,!�)"�
1

1� (2b)

for �3(0,R). In Eq. (1) the elements >
�
(x, �) and >

�
(x, �) of the vector-valued function Y(x, �) are

components of the particle distribution functions for the two gas species denoted by indices 1 and 2.
In addition, x is the spatial variable, d is the normalized channel width, � is the x component (in
di!erent normalized units for each of the two species) of the particle velocities,

B"diag��
�
,�

�
� (3)

and

T"������
�
�
!�

�
�
�

�
�

�
�
!�

�
� (4)

where from Valougeorgis [6]

�
�
"�

m
�

2k¹
�
�
���
(n

�
k
��

#n
�
k
��
), (5a)

�
�
"�

m
�

2k¹
�
�
���
(n

�
k
��

#n
�
k
��
), (5b)

�
�
"�

m
�

2k¹
�
�
���

n
�
k
��

m
�

m
�
#m

�

(6a)

322 C.E. Siewert / Journal of Quantitative Spectroscopy & Radiative Transfer 70 (2001) 321}332



and
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Continuing to follow Hamel [2], Onishi [1,3}5] and Valougeorgis [6], we note that m
�
and m

�
are

the molecular masses of the two species of gas particles, k is the Boltzmann constant and ¹
�
is the

equilibrium value of the temperature. Finally, the constants k
��
, k

��
and k

��
"k

��
are [6]

collision parameters, and the number densities of the two gas species are n
�
and n

�
.

And so in this work, we consider that all the basic physical parameters are given and that our job
is to solve (in a concise and accurate way) Eq. (1) subject to the boundary conditions given by
Eqs. (2). However, before proceeding with our solution, we rewrite the de"ned problem in terms
of dimensionless units. We divide Eq. (1) by �

�
, de"ne a new spatial variable �"�

�
x and let
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In this way we rewrite Eqs. (1) and (2) as
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2. The discrete-ordinates method

In this section we develop, in general terms, the formalism of our discrete-ordinates method that
we use in the following section to solve the speci"c problem of Couette #ow in a plane channel. To
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start, we "rst rewrite Eq. (8) as
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weights and nodes that de"nes a numerical quadrature scheme for evaluating integrals de"ned on
the interval [0,R). And so we use this quadrature scheme to approximate the integral term in
Eq. (13) to obtain
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is known, we can solve Eq. (14) to obtain
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Clearly, we can use Eqs. (9) to rewrite Eqs. (16) as
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complete solution for the particle distribution functions.
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for i"1,2,2,N. Seeking exponential solutions, we substitute

Z(�,$�
�
)"�(
,$�

�
)e���� (20)

into Eq. (19) to obtain
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where I is the 2�2 identity matrix. If we now introduce
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where the superscript T is used to denote the transpose operation, then we can follow our previous
work [10}15] and rewrite the two versions of Eq. (21) as
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At this point, we can eliminate �(
) between Eqs. (29) and (30) to arrive at an eigenvalue problem
which we write as
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� and
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Considering Eq. (37), we let �
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and so Eq. (35) is now completely de"ned. Since our separation constants occur in plus}minus pairs
we, from here onward, let 


�
denote the positive value of �����
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where the constants �A
�
,B

�
� are to be determined from the boundary conditions of a considered

problem. However, before constraining the solution given by Eq. (40) to meet discrete-ordinates
versions of the boundary conditions, we make a modi"cation to our solution that is required since
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our problem is conservative.While the term conservative has numerous implications, we use it here
to mean that one of the separation constants, say 


�
, from the collection �


�
� becomes unbounded

as N increases without bound. We choose to take this fact into account by ignoring the largest of
the computed separation constants and by replacing the subsequently ignored solutions by easily
deduced exact solutions. And so we write our modi"ed form of Eq. (40) as

Z(�,$�
�
)"Z

�
(�,$�

�
)#

��
�
���

[A
�
�(


�
,$�

�
)e�����#B

�
�(


�
,G�

�
)e�	����
���]. (41)

Here

Z
�
(�, �)"A

�
(�I!����)K#B

�
[(�

�
!�)I#����]K (42)

where we use

K"�
	#����(c

��
!c

��
)

1#����(c
��

!c
��
)� (43)

and where c
��
is used to denote an element of the matrix C.

3. Boundary conditions and macroscopic quantities

To start, we note from Eqs. (8) and (9) that the solution to the problem of Couette #ow (as
formulated here) has the (anti) symmetry property
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At this point, we can substitute Eq. (45) into our discrete-ordinates version of Eq. (9a), viz.,
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for i"1, 2,2,N, to obtain a system of 2N linear algebraic equations we can solve to obtain the
required constants �A

�
�.

We note that out "nal complete solution for Z(�, �) is continuous in all variables and is given by
Eqs. (18) once S(x) is available. And so we now substitute Eq. (45) into Eq. (15) to "nd
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where we have used Eq. (36) to integrate the discrete-ordinates terms and where we have used exact
integration to "nd

S
�
(x)"A

�
(2x!�

�
)CK. (49)

Of course the integrals in Eqs. (18) can be evaluated immediately once Eq. (48) has been used there.
Since Z(�, �) can now be considered known, any quantity de"ned in terms of that basic result is

also readily available. For example, the normal total stress
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as de"ned by Valougeorgis [6] is a constant of physical interest that we can easily compute. If we
go back and multiply Eq. (21) by w
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equation, we "nd, after noting Eq. (36),
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We note that Eq. (53) is a quadrature approximation to the exact value

�"�!����C. (54)

Now if we use our quadrature scheme to rewrite the integral in Eq. (50), make use of Eq. (45) and
note that

�
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then we "nd
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where K is given by Eq. (43).
To conclude this section, we list our results for some other quantities of physical interest. First of

all, we note that the normalized macroscopic velocities de"ned [6] by
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are available, in this work, from
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where S(�) is available from Eqs. (48) and (49). In a similar way, we "nd here that the stress vector
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Having de"ned our solution, we now turn to some of the computational details and our numerical
results.

4. Computational details and numerical results

Much of this section follows directly from Refs. [10,11]. We note that our solution is not de"ned
until we specify a quadrature scheme, and so here we follow what was done in a recent work
concerning Poiseuille #ow [11]. First of all we have used either the transformation

u(�)"
1

1#�
(62a)

or the transformation

u(�)"e�� (62b)

to map the interval �3[0,R) onto u3[0,1], and we then used a Gauss}Legendre scheme mapped
onto the interval [0,1]. Of course other quadrature schemes could be used. In fact, we note that
a recent work by Garcia [16] has reported special quadrature schemes for use in the general area of
particle transport theory. Such an approach clearly could be used here. In fact the choice of
a quadrature scheme based on the integration interval [0,R) with a weight function

=(�)"e���

seems a natural choice for this work. However, we have found the use of a mapping de"ned by
either of Eqs. (62) followed by the use of the Gauss}Legendre integration formulas to be so e!ective
that we have not tried other integration techniques. In regard to the choice of quadrature points,
we consider it important to note, because of the way our basic eigenvalue problem is formulated,
that we must exclude zero from the set of quadrature points. Of course to exclude zero from the
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Table 1
Normalized total sheer stress for the case k

��
"k

��
"k

��
with �

�
"1

m
�
/m

�
"0.5 m

�
/m

�
"2.0

d n
�
/n

�
"0.1 n

�
/n

�
"10.0 n

�
/n

�
"0.1 n

�
/n

�
"10.0

1.0 (!1) 9.01866 (!1) 9.22624 (!1) 9.42970 (!1) 9.27092 (!1)
5.0 (!1) 6.77688 (!1) 7.30472 (!1) 7.87836 (!1) 7.42247 (!1)
1.0 5.28222 (!1) 5.91160 (!1) 6.64405 (!1) 6.05554 (!1)
2.0 3.71401 (!1) 4.34140 (!1) 5.13286 (!1) 4.48941 (!1)
3.0 2.87588 (!1) 3.44869 (!1) 4.20830 (!1) 3.58660 (!1)
4.0 2.34896 (!1) 2.86516 (!1) 3.57411 (!1) 2.99130 (!1)
5.0 1.98594 (!1) 2.45203 (!1) 3.10912 (!1) 2.56723 (!1)
7.0 1.51749 (!1) 1.90428 (!1) 2.46991 (!1) 2.00147 (!1)
1.0 (1) 1.12106 (!1) 1.42684 (!1) 1.88930 (!1) 1.50488 (!1)
2.0 (1) 5.99282 (!2) 7.77418 (!2) 1.06003 (!1) 8.23915 (!2)

quadrature set is not considered a serious restriction since typical Gauss quadrature schemes do
not include the end-points of the integration interval.
Having de"ned our quadrature scheme, we found the required separation constants �


�
� by

using the driver program RG from the EISPACK collection [17] to "nd the eigenvalues de"ned by
Eq. (31), and so, after using the subroutines DGECO and DGESL from the LINPACK package
[18] to solve the linear system, de"ned by Eq. (47), to "nd the constants �A

�
� we consider our

solution complete.
Finally, but importantly, we note that since the matrix-valued function �(�) as de"ned by

Eq. (11) can be zero, from a computational point-of-view, we can have some, say a total of N
�
, of

the quadrature points ��
�
� equal to some of the separation constants �


�
� or equal to some of the

elements of �	

�
�. Of course, this is not allowed in our solution, and so, since the quadrature points

where �(�) is e!ectively zero make no contribution to the right-hand side of Eq. (35), we have seen
that we can simply omit these quadrature points from parts of our calculation. Of course, in
omitting these N

�
quadrature points, we must be sure to eliminate exactly 2N

�
appropriate

separation constants, and so we have e!ectively changed N to N!N
�
in some aspects of our "nal

solution.
To complete this work, we use Table 1 to list our results, which we believe to be correct to all

digits given, of the normalized sheer as computed from Eq. (56). While we have found general
agreement with the numerical results reported in Ref. [6], we do not accept as correct all of the
digits in the tabulation given there. Of course, we have no proof of the accuracy of our results, but
we have done various things to establish the con"dence we have. For example, we have increased
the value of N used in our computations until we found stability in the "nal results and we have
also used both nonlinear maps given by Eqs. (62) to obtain the same results as given in our table.
We note that we have typically used N"80 to generate the results listed in Table 1. To have an

idea of the computational time required to solve a typical problem, we note that our FORTRAN
implementation (no special e!ort was made to make the code especially e$cient) of our discrete-
ordinates solutions (with N"80) runs in less than a second on a 400 MHz Pentium-based PC.

330 C.E. Siewert / Journal of Quantitative Spectroscopy & Radiative Transfer 70 (2001) 321}332



Finally, to have some idea about N
�
, the number of quadrature points not included in some parts

of our calculation, we note that using �"10�� to decide if an eigenvalue and a quadrature point
were the same `computationallya, we foundN

�
"3 whenN"80 and the map de"ned by Eq. (62b)

were used.

5. Concluding remarks

In developing (what we can call) an analytical version of the discrete-ordinates method to solve
the considered problem of Couette #ow for a binary gas mixture, we have found that the method
can be used e$ciently to obtain high-quality results with very little computational e!ort. In
addition, we believe it is clear that the method can readily be extended for use with other, more
challenging models in the general area of rare"ed gas dynamics. In fact, recent work [19] with the
so-called variable collision frequency model has shown this observation to be valid. Finally, we
note that while some experience with numerical linear algebra is helpful, the method is especially
easy to implement.
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