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The often-studied problem known as Kramers’ problem, in the general area of rarefied-gas

dynamics, is investigated in terms of a linearized, variable collision frequency model of

the Boltzmann equation. A convenient change of variables is used to reduce the general

case considered to a canonical form that is well suited for analysis by analytical and/or

numerical methods. While the general formulation developed is valid for an unspecified

collision frequency, a recently developed version of the discrete-ordinates method is used

to compute the viscous-slip coefficient and the velocity defect in the Knudsen layer for

three specific cases: the classical BGK model, the Williams model (the collision frequency is

proportional to the magnitude of the velocity) and the rigid-sphere model.

1 Introduction

It is generally considered by workers in the area of rarefied-gas dynamics/kinetic theory

that Kramers’ problem is the most basic way that we can see the effect of a wall or

boundary on the flow of gas particles. For this problem a collection of gas particles

(in a semi-infinite medium) flows past a fixed boundary (wall) in such a way that the

z-component (parallel to the plane boundary) of the velocity is linear in the variable

x that measures the distance from the wall. We consider that Kramers’ problem is the

simplest of a general class of problems in kinetic theory, but it is the problem most often

investigated since we are able to see the effect of the wall on the flow (thus defining the

Knudsen layer) without some of the additional complications that other more realistic

problems, such as flow in a plane channel or cylindrical tube, would introduce.

Here, following the basic books of Cercignani [1,2] and Williams [3], we consider that

the diffusion of gas particles as they flow past a flat plate can be described mathematically

by the Boltzmann equation. For the general case the gas particles interact with each

other according to some inter-atomic force laws, and these same particles interact with

the wall according to specified reflection laws. So it is clear that, unless some special

conditions are specified, the scattering term in the Boltzmann equation will depend on

the particle distribution function in a nonlinear way. We note that Monte Carlo methods

and computationally intensive iterative methods, for example, are ways of attempting

to extract some physical information from the nonlinear Boltzmann equation. Another

approach that can be used when the density of particles is small (rarefied-gas dynamics)

is to replace the nonlinear Boltzmann equation by a so-called model equation. While the

most widely used model equation is the BGK model introduced by Bhatnagar, Gross
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& Krook [4], there has been also considerable interest [5–10] in the variable collision

frequency model of the Boltzmann equation since this model has been shown [8] better

able to support some experimental observations.

In this work we make use of the transformations used by Busbridge [11] and Bednarz

& Mika [12] to reformulate our basic problem in a form that we are well able to solve

numerically in terms of a recently reported version [13] of the discrete-ordinates method

[14]. We thus consider this work to be firstly a review of the use of the transformations

used by Busbridge [11] and Bednarz & Mika [12] for a general version of Kramers’

problem and secondly to be another implementation of our version [13] of the discrete-

ordinates method. In this way we are able to obtain, in a concise and accurate way,

numerical results for the viscous-slip coefficient and the velocity defect for three special

cases relevant to the variable collision frequency model of the Boltzmann equation, viz. the

classical BGK model, the Williams model (the collision frequency is proportional to the

magnitude of the velocity) and the rigid-sphere model. Also since our discrete-ordinates

method works well with general boundary conditions, we are able to evaluate the effects

of specular reflection by the wall.

We choose to start our work with the developed formulation of the Kramers problem

as given by Williams [3]. We therefore consider the defining balance equation to be

S(c, µ) + cµ
∂

∂x
g(x, c, µ) + V (c)g(x, c, µ) =

∫ ∞
0

∫ 1

−1

K(c′, µ′ : c, µ)g(x, c′, µ′) dµ′ dc′, (1)

where

S(c, µ) = 2K0c
2µ(1− µ2)1/2 (2)

and

K(c′, µ′ : c, µ) =
1

4
γ1cc

′3V (c)V (c′)(1− µ2)1/2(1− µ′2)1/2e−c′
2

. (3)

Here

γ1 =
3

V2
with V2 =

∫ ∞
0

c4V (c)e−c2

dc. (4a, b)

In addition, c is used, with dimensionless units, to denote the magnitude of the particle

velocity vector c, x (also in dimensionless units) is the spatial variable that measures

the distance from the wall, V (c) is the collision frequency and µ is the cosine of the

angle between the velocity vector and the (positive) x axis. For the Kramers problem

it is assumed that the z-component (parallel to the plate) of the net velocity qz(x) is

constant with respect to the spatial variable z. But at the same time qz(x) ∼ K0x as

x→∞, so, as discussed by Williams [3,15], there exists in Eq. (1) the inhomogeneous term

given by Eq. (2). In regard to the dependent variable g(x, c, µ) in Eq. (1), we note that

Williams [3,15], in the process of linearizing the nonlinear Boltzmann equation, expressed

the particle distribution function f(r, c) in the form

f(r, c) = f0(r, c)[1 + h(r, c)], (5)

where f0(r, c) would be the distribution of gas particles were it not for the presence of the

wall. Upon considering that our problem depends on only one spatial variable x, writing
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the velocity vector in polar coordinates c, cos−1 µ and φ and defining

g(x, c, µ) =
1

π

∫ 2π

0

h(x, c, µ, φ) cosφ dφ, (6)

Williams finds Eq. (1) and the boundary condition

g(0, c, µ) = (1− α)g(0, c,−µ) (7)

for µ ∈ (0, 1] and all c. For the considered formulation, the wall reflects particles with a

mixture, measured by the accommodation coefficient α, of diffuse and specular compo-

nents; however, because of the azimuthal average used in Eq. (6), we see in Eq. (7) only

the specular component.

Having defined the basic elements of the Kramers problem considered here, we intend

to establish a solution (bounded as x tends to infinity) of Eq. (1) that satisfies the

boundary condition given as Eq. (7). While we will define the complete solution g(x, c, µ),

our numerical work is aimed at computing the velocity profile

qz(x) = K0x+ π−1/2

∫ ∞
0

∫ 1

−1

c3e−c2

(1− µ2)1/2g(x, c, µ) dµ dc (8)

that is the principal quantity of interest [3,15]. We note that in formulating this version

of the Kramers problem we have made much use of the notation and development given

in Refs. [3] and [15]; however, the papers of Cercignani [6] and Loyalka & Ferziger [7]

are the ones we consider to be the defining works on this subject of the variable collision

frequency model of the linearized Boltzmann equation. It therefore seems reasonable to

refer to the general model equation used in this work as the CLF equation and to consider

the BGK model, the Williams model and the rigid-sphere model as special cases that

correspond to certain choices of the collision frequency V (c). While the basic elements

of the solution developed are valid for a general collision frequency, the numerical work

reported here is based on three special cases (the BGK model, the Williams model and the

rigid-sphere model). And so to be very clear about the terminology we use, we note that we

consider the classical BGK model to be defined by a constant collision frequency. For the

Williams model the collision frequency is proportional to the magnitude of the velocity,

and for the rigid-sphere model the collision frequency is (as will be seen) expressed in

terms of the error function and other elementary functions.

2 A reformulation

To begin a transformation of the considered problem to form more convenient for

analytical or numerical work, we first note that

gp(c, µ) = −S(c, µ)

V (c)
(9)

is a particular solution of Eq. (1), and so we write

g(x, c, µ) = gh(x, c, µ) + gp(c, µ), (10)
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where gh(x, c, µ) must satisfy

cµ
∂

∂x
gh(x, c, µ) + V (c)gh(x, c, µ) =

∫ ∞
0

∫ 1

−1

K(c′, µ′ : c, µ)gh(x, c
′, µ′) dµ′ dc′ (11)

and the boundary condition

gh(0, c, µ)− (1− α)gh(0, c,−µ) =
2

V (c)
(2− α)K0µ(1− µ2)1/2c2 (12)

for µ ∈ (0, 1] and all c. Continuing, we let

gh(x, c, µ) = c(1− µ2)1/2Y (x, c, µ) (13)

to obtain

cµ
∂

∂x
Y (x, c, µ) + V (c)Y (x, c, µ) =

1

4
γ1V (c)

∫ ∞
0

∫ 1

−1

c′4e−c′
2

V (c′)(1− µ′2)Y (x, c′, µ′) dµ′ dc′

(14)

and the boundary condition

Y (0, c, µ)− (1− α)Y (0, c,−µ) =
2

V (c)
(2− α)K0cµ (15)

for µ ∈ (0, 1] and all c. We now let

V (c) = ση(c), τ = σx and $ =
σ

4
γ1 (16a, b, c)

and rewrite Eq. (14) as

cµ
∂

∂τ
Y (τ/σ, c, µ) + η(c)Y (τ/σ, c, µ) = $η(c)

∫ ∞
0

∫ 1

−1

c′4e−c′
2

η(c′)(1− µ′2)Y (τ/σ, c′, µ′) dµ′ dc′.

(17)

At this point we consider the constant σ to be a scale factor that can be useful for

normalizing the collision frequency V (c). Of course, τ now is our renormalized spatial

variable, and

$ =
3

4η4
, with η4 =

∫ ∞
0

c4η(c)e−c2

dc, (18a, b)

clearly depends only on the shape factor η(c). Finally, we follow the work of Busbridge

[11] and Bednarz & Mika [12] and make use of the transformations

ξ = cµ/η(c) and Y [τ/σ, c, ξη(c)/c] =
2K0

σ
G(τ, ξ) (19a, b)

to rewrite Eq. (17), after an interchange of orders of integration, as

ξ
∂

∂τ
G(τ, ξ) + G(τ, ξ) = $

∫ γ

−γ

∫
Mξ′

c′e−c′
2

η2(c′)[c′2 − ξ′2η2(c′)]G(τ, ξ′) dc′ dξ′, (20)

where

γ = sup{c/η(c)} (21)

and

c ∈Mξ if
η(c)|ξ|
c
6 1. (22)
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We now define

Ψ (ξ) = $

∫
Mξ

cη2(c)[c2 − ξ2η2(c)]e−c2

dc (23)

and write Eq. (20) as

ξ
∂

∂τ
G(τ, ξ) + G(τ, ξ) =

∫ γ

−γ
Ψ (ξ′)G(τ, ξ′) dξ′. (24)

It follows, since g(τ/σ, c, µ) must be bounded as τ tends to infinity, that we must seek a

similarly bounded solution of Eq. (24) that also satisfies the boundary condition

G(0, ξ)− (1− α)G(0,−ξ) = (2− α)ξ, ξ ∈ (0, γ]. (25)

Now, looking back to Eq. (8), we find we can express the desired velocity profile in

terms of the solution to our ‘G problem.’ Thus

qz(x) = K0q(x), (26)

where

q(x) = x+
1

σ

∫ γ

−γ
ψ(ξ)G(σx, ξ) dξ (27)

and

ψ(ξ) = 2π−1/2

∫
Mξ

cη(c)[c2 − ξ2η2(c)]e−c2

dc. (28)

It is clear that the scale factor σ will have a fundamental effect on our reported numerical

results, and, since there already exist many inconsistencies in the literature concerning the

definition of an appropriate scale factor, we elect here to use one of Loyalka’s choices [8],

and so we define

σ =
16

15
π−1/2

∫ ∞
0

η−1(c)c6e−c2

dc (29)

for all models we consider. To complete this section we let

lim
τ→∞G(τ, ξ) = G(∞, ξ) (30)

and

qasy(x) = x+
1

σ

∫ γ

−γ
ψ(ξ)G(∞, ξ) dξ, (31)

and so the viscous slip coefficient defined by

qasy(−ζ) = 0 (32)

is given as

ζ =
1

σ

∫ γ

−γ
ψ(ξ)G(∞, ξ) dξ. (33)

In this work we compute the velocity profile q(x), but we will present this quantity more

effectively by tabulating for various cases the viscous-slip coefficient ζ and the velocity
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defect

qd(x) = qasy(x)− q(x). (34)

3 Three special cases

We intend to implement our solution numerically for three special cases, and so now we

note the relevant forms of certain basic quantities we require. Our first special case is the

classical BGK model for which we write η(c) = 1 and find, from Eqs. (21), (23), (28) and

(29), γ = ∞ and σ = 1 along with

Ψ (ξ) = ψ(ξ) = π−1/2e−ξ2

. (35)

Continuing, we take our second special case to be the Williams model for which η(c) = c

and for which we find, again from Eqs. (21), (23), (28) and (29), γ = 1,

σ =
16

15
π−1/2 (36)

and

Ψ (ξ) = ψ(ξ) =
3

4
(1− ξ2). (37)

Our third special case, the rigid-sphere model, is defined by

η(c) =

(
2c+

1

c

)
π1/2

2
erf(c) + e−c2

, (38)

where erf(c) is the error function. Here we can easily show that γ = π−1/2 and from

Eqs. (18) that

$ =
3

7

(
2

π

)1/2

. (39)

However, in regard to Eqs. (23), (28) and (29) we have not found explicit results and so

must use numerical methods to define Ψ (ξ) and ψ(ξ) and σ for this case. We have used

the MAPLE V software to evaluate the integral in Eq. (29) numerically, and so in this

way we found, for this case,

σ = 0.278804052827... . (40)

At this point we must consider Eq. (22) in order to define the required functions Ψ (ξ)

and ψ(ξ). We let

f(c) =
c

η(c)
, (41)

and note that we can show, for the case considered, that f′(c) > 0, for c > 0 and so the

inverse function

m(ξ) = f−1(|ξ|), ξ ∈ [−γ, γ], (42)

exists, and thus we can write

Ψ (ξ) = $

∫ ∞
m(ξ)

cη2(c)[c2 − ξ2η2(c)]e−c2

dc (43)
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and

ψ(ξ) =
2

π1/2

∫ ∞
m(ξ)

cη(c)[c2 − ξ2η2(c)]e−c2

dc (44)

which can be evaluated numerically once m(ξ) is available; in this work we use Newton’s

method to establish the required numerical values of m(ξ).

4 A discrete-ordinates solution

While the use of the terminology ‘discrete ordinates’ is not common in the area of rarefied-

gas dynamics, it has been in use for many years in the field of radiative transfer. In fact, it

seems the most credit for the introduction and development of this method in the general

area of particle transport theory should go to Chandrasekhar [14] who in his fundamental

work on radiative transfer did much to define the method as an effective computational

tool. The method as used by Chandrasekhar had, however, one difficult computational

aspect that kept the method from being used effectively past a certain order. This practical

limitation is due to the fact that the required ‘separation constants’ are defined in terms

of the zeros of a certain polynomial. Since Chandrasekhar’s work [14] there have been,

naturally, numerous improvements in the method, and it has been shown, see for example

Ref. [16], that under certain restrictions on the quadrature scheme, the discrete-ordinates

method is equivalent to the spherical-harmonics method (often used in radiative transfer

and neutron transport theory) and that the separation constants can be computed as the

eigenvalues of a tridiagonal matrix – a much easier task than finding zeros of polynomials.

Here in this work we use what we consider to be a modern version [13] of the discrete-

ordinates method that (i) does not depend on any special properties of the quadrature

scheme and (ii) has the separation constants defined as the eigenvalues of a matrix with

special properties (diagonal matrix plus a rank-one update) so that the basic eigenvalue

computation is of a type generally considered even easier than the one for a tridiagonal

matrix. We note that the variation of the discrete ordinates method used here has already

been successfully used [17–21] in the area of radiative transfer to solve, for example,

most of Chandrasekhar’s basic problems (for very high-order anisotropic scattering and

including all polarization effects), a non coherent scattering model (that also includes

polarization effects), the classical searchlight problem and coupled radiation/conduction

heat-transfer problems of engineering interest. In the field of kinetic theory the modeling

process closest to the discrete-ordinates method we use is the discrete-velocity method [or

Broadwell model] as discussed, for example, by Refs. [22–24]. As will be seen, however,

the version of the discrete-ordinates method we develop here has some analytical aspects

that make it, in our opinion, much more computationally efficient than what is normally

achieved with discrete-velocity approximations.

The variation of the discrete-ordinates method [14] we use in this work was developed

in Ref. [13], and so we can make use of that material now to solve our G problem that

was formulated in Section 2. We thus approximate the integral term in Eq. (24) by a
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quadrature formula and write our discrete-ordinates equations as

±ξi d

dτ
G(τ,±ξi) + G(τ,±ξi) =

N∑
k=1

wkΨ (ξk)[G(τ, ξk) + G(τ,−ξk)] (45)

for i = 1, 2, . . . , N. In writing Eq. (45) we have taken into account the fact that the

‘characteristic function’ Ψ (ξ) is an even function. In addition, we clearly are considering

that the N quadrature points {ξk} and the N weights {wk} are defined for use on the

integration interval [0, γ]. We note that it is to this feature of using a ‘half-range’ quadrature

scheme that we partially attribute the especially good accuracy we have obtained from

the solution reported here. Seeking exponential solutions, we substitute

G(τ,±ξi) = φ(ν,±ξi)e−τ/ν (46)

into Eq. (45) to find

1

ν
MΦ+ = (I −W )Φ+ −WΦ− (47a)

and

−1

ν
MΦ− = (I −W )Φ− −WΦ+ (47b)

where I is the N ×N identity matrix,

Φ± =
[
φ(ν,±ξ1), φ(ν,±ξ2), . . . , φ(ν,±ξN)

]T
, (48)

the superscript T denotes the transpose operation, the elements of the matrix W are

(W )i,j = wjΨ (ξj), (49)

and

M = diag{ξ1, ξ2, . . . , ξN}. (50)

If we now let

U = Φ+ +Φ− (51)

then we can eliminate between the sum and the difference of Eqs. (47) to find

(D − 2M−1WM−1)MU =
1

ν2
MU (52)

where

D = diag{ξ−2
1 , ξ−2

2 , . . . , ξ−2
N }. (53)

Multiplying Eq. (52) by a diagonal matrix T , we find

(D − 2V )X =
1

ν2
X (54)

where

V = M−1TWT−1M−1 (55)

and

X = TMU . (56)
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As discussed in Ref. [13], we can define the elements t1, t2, . . . , tN of T so as to make

V symmetric; and therefore, since V is a symmetric, rank-one matrix, we can write our

eigenvalue problem in the form

(D − 2zzT)X = λX (57)

where λ = 1/ν2 and

z =
[
{w1Ψ (ξ1)}1/2/ξ1, {w2Ψ (ξ2)}1/2/ξ2, . . . , {wNΨ (ξN)}1/2/ξN

]T

. (58)

We note that the eigenvalue problem defined by Eq. (57) is of a form that is encountered

when the so-called ‘divide and conquer’ method [25] is used to find the eigenvalues of

tridiagonal matrices. In addition, we see from Eq. (53) that, because of the way our basic

eigenvalue problem is formulated, we must exclude zero from the set of quadrature points.

Of course to exclude zero from the quadrature set is not considered a serious restriction

since typical Gauss quadrature schemes do not include the end points of the integration

interval.

Considering that we have found the required eigenvalues from Eq. (57), we impose the

normalization condition

N∑
k=1

wkΨ (ξk)[φ(ν, ξk) + φ(ν,−ξk)] = 1 (59)

so that we can write our discrete-ordinates solution as

G(τ,±ξi) =

N∑
j=1

(
Aj

νj

νj ∓ ξi e
−τ/νj + Bj

νj

νj ± ξi e
τ/νj
)

(60)

where the arbitrary constants {Aj} and {Bj} are to be determined from the conditions

placed on the solution, and where the separation constants {νj} are the reciprocals of the

positive square roots of the eigenvalues defined by Eq. (57). It is clear from Eq. (60) that

we cannot allow any separation constant to be equal to one of the quadrature points.

At this point we find it convenient to modify slightly the discrete-ordinates solution

reported in Ref. [13]. We note that problems based on Eq. (24) are conservative since∫ γ

−γ
Ψ (ξ) dξ = 1, (61)

and so we expect that one of the eigenvalues defined by Eq. (57) should tend to zero as N

tends to infinity. We choose to take this fact into account by explicitly neglecting νN , the

largest of the computed separation constants {νj} and, subsequently, by writing Eq. (60)

as

G(τ,±ξi) = A+ B(τ∓ ξi) +

N−1∑
j=1

(
Aj

νj

νj ∓ ξi e
−τ/νj + Bj

νj

νj ± ξi e
τ/νj
)
. (62)

Of course, the constants A, B, {Aj} and {Bj} that are present in Eq. (62) must now be

fixed so that G(τ,±ξi) satisfies the condition at infinity and the boundary condition listed

as Eq. (25). To keep G(τ,±ξi) bounded we set all the B coefficients to zero, and so we
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obtain

G(τ,±ξi) = A+

N−1∑
j=1

Aj
νj

νj ∓ ξi e
−τ/νj . (63)

Upon substituting Eq. (63) into Eq. (25) evaluated at the N quadrature points {ξk} we

obtain the N × N system of linear algebraic equations we solve to define the constants

in Eq. (63). In this way the solution G(τ,±ξi) is established. Finally we use Eq. (63) in

Eqs. (27) and (33) to obtain

q(x) = x+
1

σ

(
A+

N−1∑
j=1

AjNje
−σx/νj

)
(64)

and

ζ =
A

σ
, (65)

where

Nj = 2ν2
j

N∑
k=1

ψ(ξk)
wk

ν2
j − ξ2

k

. (66)

We note that in obtaining Eq. (64) we have integrated the first term in Eq. (63) analytically,

but the defined quadrature scheme was used to integrate the remaining terms.

5 Numerical results

The first thing we must do is to define the quadrature scheme to be used in our discrete-

ordinates solution, and, since we have considered three different cases, to which we refer

as case 1, case 2 and case 3 while meaning respectively, the BGK model, the Williams

model and the rigid-sphere model, we have used three different maps. For case 1, we used

the transformation

u(ξ) = exp{−ξ} (67)

to map ξ ∈ [0,∞) into u ∈ [0, 1], and we then used a Gauss-Legendre scheme mapped

(linearly) onto the interval [0, 1]. For case 2 and case 3 we simply mapped the Gauss-

Legendre scheme onto, respectively, the intervals [0, 1] and [0,π−1/2].

Having defined our quadrature schemes and in developing a FORTRAN implementa-

tion of our solution, we found the required separation constants {νj} by using the special

numerical package DZPACK [26] that was developed to take advantage of the special

structure of Eq. (57) to solve our eigenvalue problem. The required separation constants

were then available as the reciprocals of the positive square roots of these eigenvalues.

We then used the subroutines DGECO and DGESL from the LINPACK package [27]

to solve the linear system obtained when Eq. (63) was substituted into Eq. (25) evaluated

at the quadrature points, and so the solution was established.

Finally, but importantly, we note that since the function Ψ (ξ) given by Eq. (23) can,

for case 1 and case 3, be zero from a computational point-of-view, we can have some,

say a total of N0, of the quadrature points {ξi} equal to some of the separation constants
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Table 1. The viscous-slip coefficient ζ

model α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9 α = 1

case 1 17.10313 5.255112 2.861190 1.818667 1.227198 1.016191

case 2 17.00079 5.165447 2.783682 1.752827 1.172569 9.670050(–1)

case 3 17.01536 5.178235 2.794754 1.762247 1.180396 9.740570(–1)

Table 2. The velocity defect qd = x+ ζ − q(x)

α = 0.1 α = 0.9

x case 1 case 2 case 3 case 1 case 2 case 3

0.0 6.420697(–1) 4.570891(–1) 5.015427(–1) 3.432612(–1) 2.481908(–1) 2.716527(–1)

0.1 4.678216(–1) 3.166831(–1) 3.511255(–1) 2.531399(–1) 1.736520(–1) 1.921280(–1)

0.2 3.849266(–1) 2.513896(–1) 2.807790(–1) 2.092257(–1) 1.383361(–1) 1.542030(–1)

0.3 3.274692(–1) 2.071135(–1) 2.328409(–1) 1.785271(–1) 1.142336(–1) 1.281834(–1)

0.4 2.838608(–1) 1.742227(–1) 1.970619(–1) 1.551002(–1) 9.625610(–2) 1.086802(–1)

0.5 2.491653(–1) 1.486025(–1) 1.690639(–1) 1.363869(–1) 8.221152(–2) 9.337100(–2)

0.6 2.207284(–1) 1.280398(–1) 1.464913(–1) 1.210013(–1) 7.091383(–2) 8.099879(–2)

0.7 1.969331(–1) 1.111883(–1) 1.279102(–1) 1.080943(–1) 6.163824(–2) 7.079455(–2)

0.8 1.767122(–1) 9.716229(–2) 1.123762(–1) 9.710268(–2) 5.390614(–2) 6.224991(–2)

0.9 1.593216(–1) 8.534641(–2) 9.923244(–2) 8.763227(–2) 4.738402(–2) 5.501011(–2)

1.0 1.442204(–1) 7.529561(–2) 8.800326(–2) 7.939544(–2) 4.182999(–2) 4.881753(–2)

1.4 9.984283(–2) 4.714830(–2) 5.623679(–2) 5.511766(–2) 2.624398(–2) 3.126069(–2)

1.8 7.158058(–2) 3.064916(–2) 3.728946(–2) 3.959614(–2) 1.708383(–2) 2.075917(–2)

2.0 6.118756(–2) 2.496093(–2) 3.066825(–2) 3.387546(–2) 1.392103(–2) 1.708343(–2)

2.5 4.221371(–2) 1.527173(–2) 1.922621(–2) 2.341170(–2) 8.526978(–3) 1.072298(–2)

3.0 2.981274(–2) 9.571427(–3) 1.234550(–2) 1.655706(–2) 5.348931(–3) 6.892023(–3)

5.0 8.597390(–3) 1.711436(–3) 2.432912(–3) 4.792270(–3) 9.585329(–4) 1.361492(–3)

{νj}. Of course this is not allowed in our solution, and so, since the quadrature points

where Ψ (ξi) is effectively zero make no contribution to the right-hand side of Eq. (45),

we have simply omitted these quadrature points (and the offending separation constants)

from our calculation. In omitting these N0 quadrature points we have effectively changed

N to N −N0 in some aspects of our final calculation.

To complete our work we list in Tables 1 and 2 some results obtained from our

FORTRAN implementation of the developed solution of the Kramers problem for the

three explicitly considered cases. We note that our results are given with what we believe

to be seven figures of accuracy. While we have no proof of the accuracy achieved in this

work, we have done some things to support the confidence we have. First of all our results

for case 1 agree perfectly with some calculations done previously in a work [28] devoted

exclusively to the classical BGK model. Secondly we used the MAPLE V software to

evaluate Williams’ exact result [3] (for case 2 with α = 1 and in our notation)

ζ =
15

16
π−1/2

∫ ∞
0

[
4
3
t3 + 5t− (5 + 3t2) arctan t
2
3
t3 + t− (1 + t2) arctan t

]
dt

t2
(68)
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to obtain ζ = 0.9670050 which agrees perfectly with our result. In regard to case 3, we

found good agreement (once consistent choices of the scale factors were used) with the

calculations of Loyalka [8] and Loyalka & Hickey [9] for the slip coefficient and for the

velocity defect for the case without specular reflection. We note also that Loyalka [29]

has reported finding good agreement, for all three models considered in this work, with

our results for the slip coefficient and the velocity defect relevant to the cases of specular

reflection listed in our tables. After some rescaling, we have also confirmed the values

of the slip coefficient for cases 1 and 2, with α = 1, reported by Cercignani, Foresti &

Sernagiotto [30]. Finally we have increased the value of N is our calculation until we

found stability in the results.

We note that we have typically used N = 100 to generate the results listed in our

tables and that the computational time required for our FORTRAN implementation of

the solution (with N = 100), for all three cases considered at the same time, is less than

a second on a 400 MHz Pentium-based PC. Finally, to have some idea about N0, the

number of quadrature points not included in some parts of our calculation, we note

that using ε = 10−14 to decide if an eigenvalue and a quadrature point were the same

‘computationally’ and N = 100, we found N0 = 3, N0 = 0 and N0 = 8 respectively for the

three cases.

6 Final comments

It is clear that the formalism reported here can readily be used to solve other classical

problems, in semi-infinite media and for plane-parallel channel flow, in rarefied-gas dy-

namics when a variant of the CLF model equation is required to give (perhaps) more

realistic results than the standard BGK model can provide. In this regard it is worthwhile

to note from our tables that the Williams model and the BGK model appear to provide

upper and lower bounds for the rigid-sphere model. This observation (should it be proved

to be true) could be useful since the calculations for case 1 and case 2 are simpler to

implement numerically than for case 3. Finally we note that Loyalka & Hickey [9] have

reported numerical results based on an extended (to two terms) version of the one-term

CLF equation, and so this more general model equation would appear to be a good

candidate for additional work with the discrete-ordinates method discussed herein.
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