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Abstract-The normal-mode expansion technique has been used to solve the uncoupled radiative heat 
transfer problem for an absorbing, emitting, isotropically scattering, nonisothermal, gray medium con- 
fined between specularly reflecting, gray parallel boundaries held at uniform but different temperatures. 
Solutions are given for the intensity of radiation, the incident radiation and the net radiation heat flux 
for a prescribed inhomogeneous source term, represented by a polynomial expansion, in the medium. 
In addition the solution due to an arbitrary inhomogeneous source term is available from the Green’s 

function developed for the considered problem. 

NOMENCLATURE 

albedo, the ratio of the scattering to 
the extinction coefficient ; 
incident radiation ; 
radiation flux ; 
inhomogeneous source term ; 
temperatures of the boundary sur- 
faces ; 
Case’s X-function ; 
emissivities of the boundary sur- 
faces ; 
direction cosine ; 
optical variable ; 
optical thickness between the bound- 
aries. 

1. INTRODUCTION 

THE RADIATIVE heat-transfer problem in finite 
plane-parallel geometry for absorbing, emitting 
gray media has received a great deal of attention. 
In one of the earlier works, Usiskin and Sparrow 
[l] presented a numerical solution for such a 
medium bounded by heated black walls. Heaslet 
and Warming [2, 31 considered the case of a 

slab bounded by diffuse reflectors and obtained 
an analytical solution by utilizing the methods 
and tabulated functions developed by Chandra- 
sekhar [4] for astrophysical applications. To 
date, however, the treatment of radiative trans- 
fer in scattering, absorbing, emitting media 
between reflecting, heated parallel surfaces’has 
been restricted to numerical techniques. Love 
and Grosh [5] examined the case of an iso- 
thermal medium with diffusely reflecting bound- 
aries, and Hsia and Love [6] extended the 
problem to include the effects of nonisothermal 
temperature distributions. 

In the present paper, Case’s normal-mode 
expansion technique [7] is used to obtain 
solutions to the radiative transfer problem for 
an absorbing, emitting, isotropically scattering, 
nonisothermal gray medium bounded by specu- 
larly reflecting, diffusely emitting, gray parallel 
walls each held at uniform but different tempera- 
tures. This method, developed by Case [7] for 
treating one-dimensional neutron transport 
problems, has been applied only recently in the 
field of radiative transfer. Siewert and 
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McCormick [S] obtund a rigorous solution 
for an absorbing, emitting, anistropi~ally scatter- 
ing, semi-infinite medium with a linear source 
function and a free boundary. 

One of the earlier applications of the singular 
eigenfunction expansion technique to problems 
in finite geometry was made by McCormick and 
Mendelson [9] who treated the slab albedo 
problem. Ferziger and Simmons [lo] solved 
the radiative transfer problem for a non- 
absorbing, non-emitting, perfectly scattering 
medium (or alternatively for a gray medium in 
radiative and local the~~~amic equilib~um) 
bounded by black heated parallel walls. Typical 
of transport problems with two boundaries, the 
results of Ferziger and Simmons were not ex- 
pressed in closed forms; however, they have 
shown that their analytical approximate solu- 
tions were highly accurate. Recently Heaslet 
and Warming [ 111 considered non-conservative 
radiative transfer in semi-infinite and finite 
media. 

The method of normal modes provides an 
elegant and systematic approach to the solution 
of one-dimensional, plane-parallel radiative 
transfer problems. Essentially the method pres- 
cribes that the desired solution be written as a 
linear sum of the eigenfunctions of the homo- 
geneous equation and a particular solution 
appropriate to the source function of interest. 
The solution to the problem is thus reduced to 
that of determining the unknown expansion 
coefficients appearing in the sum of elementary 
solutions These coefficients are determined by 
constraining the solution to meet the given 
boundary conditions and by then utilizing the 
orthogonality properties of these Case eigen- 
functions. This procedure is completely analo- 
gous to the classical orthogonal expansion 
treatment of boundary value problems. 

2. FORMULATION OF THE PROBLEM 

Consider an absorbing, emitting, isotropically 
scattering, nonisothermal, gray medium bound- 
ed by parallel walls of infinite lateral extent and 
a finite distance apart. It is assumed that the 

gray opaque walls emit isotropically, reflect 
specularly and are kept at uniform but different 
temperatures. Further it is assumed that radia- 
tion is the predominant mode of energy transfer, 
that the system is in steady-state, and that the 
inhomogeneous source term in the medium, 
taken to be either a polynomial in the optical 
variable or that appropriate for the Green’s 
function, is prescribed. 

Prediction of the net radiation heat transfer 
to the walls in such a medium is an important 
enginee~ng problem. It should be noted that in 
the absence of participating matter between the 
walls, the net radiative heat transfer is a function 
of the temperature and emissivity of the walls, 
and its determination is a simple matter; 
however, with the presence of participating 
matter, the problem requires the solution of the 
equation of radiative transfer subject to appro- 
priate boundary conditions. 

The equation of radiative transfer for one- 
dimensional, plane-parallel, emitting, absorbing, 
isotropically scattering, gray media can be 
written in the form [4] 

where the z is the optical variable and p is the 
cosine of the angle between the directed intensity 
and the positive z axis. The constant c is the 
single-sitter albedo, which is the ratio of 
the scattering coefficient to the extinction co- 
efficient, and f,(r) is the integrated Planck’s 
function. 

The bounding surfaces are positioned at 
t = 0 and z = zo, are kept at uniform tempera- 
tures Z-i and T,, and have emissivities .sl and s2 
respectively. The boundary conditions for equa- 
tion (1) are then given in the forms 
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Pa 1). (2b) 
Here (? is the Stefan-Boltzmann constant 

Once the intensity of radiation is determined, 
the incident radiation E(Z) and the net radiation 
flux q(r) are easily obtained, i.e. 

E(z) = 27~ j I(z, ,u)dp (3a) 
-1 

and 

3. GENERAL ANALYSIS 

1 

m Pf P~+‘(“P)=S(T)+; 

In this section we use the method of normal 

s 

modes to construct the solution of the radiative 

16, $1 d/J, (4) 

transfer problem described previously. For 
convenience in the analysis, equations (1) and 
(2) are written more compactly as 

-1 

We proceed then to write the desired solution 
as a linear sum of the normal modes introduced 
by Case [7] and a particular solution ; the former 
solutions all satisfy the homogeneous version of 
equation (4), whereas the particular solution 
I,(z,~J) cannot be given until the function S(z) 
is specified. Thus 

where 

A(q) = 1 - q tanh-’ (q), Pa) 

and the discrete eigenvalues rfiro are the two 
zeros of the dispersion function 

1 
dp n(.+l+c~ p= 

s - 2 1 cztanh-’ p-z 0 z 1 * 
-1 

I(ro, - 11) = a2 + b&o, cl), P 6-J 1). (5b) 

Here we have defined 

S(z) $ (1 - c) ML @a) 

i = 1 or 2, (6b) 

and 

bi ~ (1 - EI), i = 1 or2. (kc) 

In equation (4), S(z) represents the inhomo- 
geneous source term the form of which, at this 
point, is left arbitrary. In the following section 
we specialize our results for several explicit 
sources of interest and give the corresponding 
particular solutions to equation (4). 

Here P is a mnemonic symbol used to denote 
the Cauchy principal-value function, and 6(x) 
denotes the Dirac delta function; the continuum 
eigenfunctions &q, p), rl E( - 1, l), are generalized 
functions. 

The functions A(qo), A{ -qo) and A(& 
q E( - 1, l), are arbitrary expansion coefficients 
which must be determined such that the solution 
given by equation (7) meets the boundary con- 
ditions of the problem. Before pursuing this, 
however, we note that the incident radiation and 
the flux may be obtained trivially from equations 
(3) and (7) : 

E(z) = 27r[A(~o)e-d” + A( - qo) e’lr10 

+ _j, A(Q) e-“* dq + J, l,(r, cl) dp], (loa) 
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and 

q(r) = 2x(1 - c) [A(q,) rlo e-“qo 

- A( - qo) q. edqO + i A(q)‘“dy 
-1 

+ (1 - c)- ’ il $,(t, A p dp]. 

Here we have used the fact 

(lob) 

_!, pa 45, p) dp = C&l - c)]‘, a = 0 or 1, 

5 = fro or 6(- 1,l). (11) 

If we now define two functions (considered 
known), 

and 

L(P) A a, + b, l&o, CL) - &bo, --CL), 14% 11, 

Wb) 

and introduce equation (7) into equations (5), 
the boundary conditions can be cast in the forms 

fi(~) + [bJ(?o) - 4-ro)l &-rlo, ~1 

+ $[W@d - 4-+%-wL)drl 

= [4rlo) - W-uo)14(~0, /4 

+ $ [A(rl) - b A- s)l4h cl) dvl, 144 11, 

(134 
and 

f&L) + I?@( - qo) ero’qo 

- A(?,) e-T0is0] 4(- rlo, P) + 1 [&I(- rl) eroiv 

- 44 e-‘O’q] $4 - ?, 14 drl 
= [A( - qo) erolgo - b2A(qo) e-rO’so] d(qo, p) 

+ ! [A (-II) eroiq - b,&) e-‘““‘l 4(rl, 1.4 dv, 
0 

/.4O, 1). W) 

In order to determine the four unknown 
expansion coefficients, A(qo), A( - qo), A(q) and 
A( - q), we must solve equations (13). The 

half-range completeness theorem, proved by 
Case [7] and reviewed briefly in the Appendix 
of this paper, states that $(qo, p) and &q, ,u), 
y&(0, l), form a complete basis set for the ex- 
pansion of arbitrary functions defined for 
p&(0,1). The right-hand sides of equations (13) 
are two such expansions. These two equations 
are coupled singular integral equations; they 
may, however, be reduced to coupled, non- 
singular, Fredholm-type, integral equations by 
following the methods of Muskhelishvili [12]. 
We prefer to use, as an alternative method, 
the half-range orthogonality theorem proved by 
KuEer, McCormick and Summertield [ 133. 
This theorem and the results for the scalar 
products of interest here are recorded in the 
Appendix for reference. 

In order to isolate the discrete coefficient 

[A(vlo) - b+rlo)l on the right-hand side of 
equation (13a), we multiply that equation by 
W(p) 4(qo, p) and integrate over p from zero to 
one. Similarly the discrete coefficient 
[A( - qo) ero’so - b,A(q,) e-‘olqo] is isolated by 
applying this same operation to equation (13b). 
We utilize the half-range orthogonality theorem 
and the various normalization integrals given 
in the Appendix to obtain 

-- 
( > 
‘I0 2x’(rlo) Mrlo) - b,A( - ro,l = F,(ro) 

2 X(-ro)PArlo) -A(-YI,,)] 
1 

+ sso 
s 

v-V--r]) P14v) - ~-VI)] d?UW 

0 

and 

’ X(qo) [b,A(v],) e-roi”o - A( - qo) eroiqo] 

= F,(v],) - 7 'X(-qo) [A(rjo)e-‘o’v” 0 
- b,A( - qO)ro’qo] 

c2 l - T v. s vX( - 4 IL&) emro’l 
n 

(14b) 
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Here we have defined 

F,(t) A a Wb-4 4-G d.Lo1) dpv a = 1 and 2. 

(15) 

Further, the weight function W(p) is given by 

WPL) = 
CP 

2u - c)ho + /4X(-P) 
P40, l), 

and X(z) is Case’s X-function [7], viz. 
(16) 

2( 1 - cp tanh- l p) 1 
dp 

X- 
> #u--z’ (17) 

In addition to being well tabulated for the 
variables of interest [14], the X-function is 
related to Chandrasekhar’s H-function [4] by 

H(z) = [,/(I - c)(~,, + z)X(-z)l-‘, (18) 

and thus W(p) may be written as 

W(p) = f (1 - c)-* fi H(p). (19) 

Similarly, we now project equations (13) on to 
the continuum eigenfunctions by multiplying 
those equations by W(p) c&f, p), tfE(O, l), and 
integrating over the half-range, &O, 1). Again 
we utilize the orthogonality theorem to obtain 
(after interchanging q and 11’) 

W(V) A’(V) n-(V) CA(?) - W c-591 = F,h) 
+ Crlo?X(-rlo)~(-rlo,‘l)Cb,A(?,) - 4-h)l 

1 

+ 7 ho + f?‘)X(-rt’)&-tl’,?) 
i 

MA 
b, ,-220190 _ 1 

(b, _ ,-2%/W) e-‘~/~ 

x P+W) - 4 - ~91 drl’v 
and 

~(0, I), (204 

W(q) A’(q) A-(q) [A( -q) erolq - b,A(q) e-ro’v] 

= F,(v) + ctlo?x(-?o) 44-b VI 

x [b,A( - qo) ero/qO - A(?,) e--ro/qo] 
1 

-? h + ?‘)X(-rl’)~(-?‘,tl)CA(?)e-‘“” c 

‘J 
0 

- b,A( - q) era’s] du’, MO, I). (20b) 

Here 

n+(rj)n-(q) = 22(q) + 7 ( > 2, (214 

or alternatively 

n+(tl)n-(rl) = l/&V), (21b) 

where g(c, q) is a function well tabulated by Case, 
de Hoffmann and Plazcek [15]. 

Equations (14) and (20) are the four basic 
equations from which the unknown expansion 
coefficients A(?,), A(-qo), A(q) and A( -q), 
r,~(0, l), must be determined. These equations 
can be written considerably more concisely in 
matrix notation : 

MAho) = WI,) + i WMtl'WoWbW (2W 

and 

M(V) A(V) = G(V) + WV,) A(?,) K,(V) 

+ i W) A($) X(V’ + V) dtl’, VE(O, l), 

(22b) 
where 

45) 
NO = 

I I A(-<) ’ 

4; = tjo or ~(0, 1). (23) 

In order to obtain equations (22), we have 
simply rearranged equations (14) and (20), 
invoked several of the previously given defini- 
tions. and introduced 

b, _ e-2Z~/rl~ 

(b2 e 
--z~oho _ 1) eroltlo 

, Pa) 
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and 

< = rfo or ~(0, 1). 

(2W 

(25) 

In addition G(5) is a vector whose two 
components are the following : 

tl= land2; 

(264 

x X( - ?) F,(V)? 

Finally 

c1= 1 and 2. (26b) 

VW-4 
Koh) = ~ ~O-wlOS (27) 

Kl(rl) = 41 - 4 6 dcv 4 X(-v) X(--rlO)l (28) 

WI’ + VI) = 
c(1 - c) q’ 

2 

X (110 + 9) ho + rl’) 
rl + rl’ g(c, V) X( - V) X( - ~0 (29) 

and 

e2”0’“o = - X(rlJ/X( - rjO), (30) 

where z0 is the Milne problem extrapolation 
distance, 

(31) 

this quantity also has been tabulated for various 
values of c. (See Case, de Hoffmann, and 
Placzek [15 p. 1361). 

Up to this point our analysis has been 
mathematically rigorous ; clearly, however, 
approximations must now be made, for it is 
highly unlikely that analytical solutions to 
equations (22) exist. It follows that the degree of 
precision with which we can complete the 
desired solution will be measured by how 
accurately we determine A(?,) and A(q) from 
equations (22). Although these equations are 
formidable analytically, they certainly pose no 
problem for existing computing facilities. Thus 
if highly accurate “bench mark” solutions are 
sought, an iterative numerical procedure could 
be used to solve these equations to any desired 
degree of accuracy. Bond and Siewert [16] have 
solved numerically a set of equations similar 
to equations (22) for a lattice problem in neutron 
transport theory. Their work illustrates the 
merits of iterative solutions. 

Fortunately analytical approximations can 
be obtained from equations (22) which should 
yield solutions of sufficient accuracy. Ferziger 
and Simmons [lo] obtained two different 
approximate solutions to a related problem; 
they showed that the lowest-order solution was 
better than classical diffusion theory, whereas 
the second-order solution was highly accurate. 

In the present analysis, the lowest-order 
solution is obtained by neglecting the continuum 
coefficients entirely ; the discrete solutions are 
thus readily available from equation (22a): 

A,(V) = 0; A&o) = M-‘G(v,). (32) 

The second-order continuum solution is found 
by neglecting the contribution from the kernel 
K(q’ + q) in equation (22b) and by using in that 
equation the lowest-order A(?,). Finally A,(q) 



RADIATIVE HEAT TRANSFER 617 

is substituted into equation (22a) to yield Particular solutions for an arbitrary poly- 

A&o). Thus nomial inhomogeneous source term have been 

A,(V) = M-‘(V) [G(V) + B(S) A,(?,) X,($1 determined by Lundquist and Horak [17]. 

and 

A,(?,) = M- ‘t-G(R,) + a B(V) A,(?‘) 

(33a) We now construct the vectors G(i) (Q,) and 
G(‘)(q) corresponding to i = 1. The results for 
other cases are given without proof. We note 

x K,(V) WI. (y&,) from equations (12) that 

Having completed the general analysis for this f’:‘(p) = a1 + 
problem, we proceed to determine explicitly 

&(b, + 1)P (364 

the particular solutions and the vectors G(Q,) and 
and G(q) for several inhomogeneous source 
terms. f’:’ b) = u2 + j+ [TO@2 - 1) - P@2 + N. 

4. PARTICULAR SOLUTIONS FOR VARIOUS 
SOURCE FUNCTIONS 

Basic to the analysis in the previous section is 
the need to determine a particular solution to 
equation (4) for sources of interest. In addition 
we should like to construct the vectors G(q,) 
and G(q) required in the solutions for the ex- 
pansion coefficients A(?,) and A(v). We examine 
two basic types of sources: the first being a 
polynomial in the optical variable z, and the 
second defining the Green’s function problem. 

Focusing our attention on the first type of 
source, we consider 

S”‘(T) = ri, i=O,1,2.... (34) 

We investigate only the first three values of i 

in the above ; however, the procedure used here 
is clearly valid for arbitrary i. In addition, 
particular solutions corresponding to linear 
sums of the above sources are obtained by 
superposition. If we assume a solution of the 
form I&r, p) = &r”#‘, the following are found 
immediately: 

WW 
In order to construct the G-vectors of interest, 
we need the following integrals : 

1 

s 

V~&~,PL)P=~P A ;@(a, 0, 

0 

5 = v. or E(O,l), a = 0,l and 2. (37a) 

Here 

i 

+o) u=o 
@(a, r) = y(l) + 5 - &J u=l, 

p + (5 - qo)(y”’ + r) ci = 2 1 

(37b) 

where 

Y’“’ 4 d Y(P) ~1” dp. (37c) 

In addition, y (‘) = 1, y(l) = Z(c) which is tabu- _ 
lated by Case, de Hoffmann and Placzek [15], 
and yc2) is easily obtained since the X-function 
is also well known numerically [14]. Noting 
equation (15), we write 

4 
fy’(5) = - 

2 
a, + &(bi + l)@(l, 5 

3 
(3ga) 

and 

and cr 
2c 

- 2/R + 2$ + ~ 1 
F’:‘(5) = - 

2 I 
u2 + &Cro(b, - 1) 

3(1 - c) . - @2 + 1) @(l, a1 . W-W 
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The G-vectors for the three considered cases 
may now be written by inspection : 

a1 + &l - 1) 

G”‘(t) = 44 

G’“‘(t) = ~(8 (394 

and 

G”‘(r) = n(5) 

where 

a, + &(bl + 1) @(L 5) 

a2 + & [To@2 - 1) 

- @2 + 1) @UP 511 

a, + g 20(2,5) + ~ 
[ 

2c 

3(1 - 

& -1 @2 [ 2@(2,5) 

1 c) 

a2 + - 11 + & + $I 1 - @2 + 1) 270 @(L 5) a 

, 

n(5) A 

I 

2 

cVoX(‘lo) 
5 = 40 

(1 - c) (90 + II) g(c7 rl) X( - $9 5=rl 1 

As illustrated above, the analysis given in 
Section 3 is sufficiently general to be able to 
incorporate any inhomogeneous source term 
represented by a polynomial in the optical 
variable. The solution technique developed here 
requires only that we be able to find a particular 
solution to equation (4) for a given source. 
This particular solution can always be obtained ; 
if, in fact, we find the particular solution associ- 
ated with the source 

S(?P) = &r - r1)Q - Pi), r1@, To), 

Pi&(- 1, l), (41) 

then we would have available the particular 
solution for any source distribution. 

A particular solution associated with equation 
(41) is clearly the well known infinite-medium 
Green’s function [ 141: 

I,(Tl, CL1 + *9 CL) 

WW 

w 

where 

and 

N(H) = + VA+(V) A-(V) (43a) 

In order now to complete the solution for the 
Green’s function for the considered problem 
[equations (4), (5) and (41)], equation (42) is 
simply entered into equation (12) to give the 
appropriate G-vectors. Since this procedure 
yields the Green’s function and thus, in essence, 
the complete solution for any source function, 
we must expect the corresponding G-vectors 
to be reasonably complex. For this reason they 
are not given here explicitly ; however, to 
calculate these vectors is straightforward and 
requires no information additional to that 
presented here. 

In conclusion we note that the present analysis 
may be extended quite easily to include the 
effects of linearly anisotropic scattering. This 
extension can be realized by utilizing the 
methods developed by McCormick and Ku&% 

[la 
0 

z 3 71, (42) 
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APPENDIX 

Completeness and Orthogonality Theorems 

Here we simply state the half-range complete- 
ness theorem presented initially by Case [7] 
and the half-range orthogonality theorem proved 
by KuEer, McCormick and Summerfield [13]. 
In addition, a summary of the necessary normali- 
zation integrals [13] used to develop the results 
in the main text is given. 

THEOREM I: The eigenfunctions 4(q0, p) and 
&, 11) ~40, 1) are complete on the half-range in 
the sense that an arbitrary function Y(p) defined 
for p&(0,1) can be expanded in the form 

VP) = -4vlo) 4@10,14 + j 4~) MLP)~~, 
0 

Pm 1). (A-1) 

THEOREM II : The eigenfinctions 4(qo, p) and 
&,I, p) q&(0, 1) are complete on the half-range in 
with respect to the weight function W(p), i.e. 

tf # 5’; t, t’ = q. or 40,l). (A-2) 

Normalization Integrals 

In all of the following formulae, q, q’&(O, 1). 

/ $4~ CL) 4(rl’, P) W(P) dp 

= Wrl)~+(ul)~-(rl)G - rl’) (A-3) 

144 - vo,d 4h 14 W(P) dp 

= crlllox(-ylo) &--rlo, VI (A-5) 

C?o 2 
= ‘F 1 X(+?o) ( ) (A-6) 121, 175-189 (1955). \&I 
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(A-7) 

R&run&La technique de dtveloppement en mode normal a CtC employee pour resourdre le probltme 

de transport de chaleur par rayonnement non couple pour un milieu gris absorbant, Cmetteur, diffusant 
isotropiquement et non isotherme confine entre des limites parall&s grises et refl6chissant de facon 
sp&ulaire port&es a des temperatures uniformes mais differentes. On donne des solutions pour l’intensite 
du rayonnement, le rayonnement incident et le flux de chaleur de rayonnement net pour un terme de source 
non homog&ne impose dans le milieu et represent6 par un developpement polynomial. En outre, la solution 
due a un terme arbitraire de source non homogene est disponible a partir de la fonction de Green exposte 

pour le probleme consider&. 

Zusammenfassung-Mit Hilfe der “Normal Mode Expansion Technique” wurde die entkoppelte Warme- 
iibertragung durch Strahlung in einem absorbierenden, emittierenden isotrop streuenden, nichtisothermen, 
grauen Medium berechnet. Die grauen, parallelen Begrenzungen des Mediums sollen spiegelnd reflektieren 
und konstante aber unterschiedliche Temperaturen haben. Losungen werden fiir die Strahlungsintensitat, 
fiir die auf die Begrenzungen einfallende Strahlung und !%r den Nettostrahlungsstrom, fiir den Fall ange- 
geben, dass ein inhomogener Quellen-Ausdruck in Form eines Polynoms, vorgeschrieben ist. 

Zusiitzlich ist eine Losung, die auf einen willktirlichen inhomogenen Quellen-Ausdruck zuriickgeht, 
mit Hilfe der Green-Funktion verftigbar, die fiir den betrachteten Fall entwickelt wird. 

AHHOT~~WB-IIPMBO;~MTCH peIIIemw HecBBaaiiBoii :Iafiaw nyqBC~0rO IIepeIIoca TCIIJI~ RJIR 
nornomaIomeii, m3nysalonIei R~~TP~IIHO pacceanatomerI, ueuaorepMnqecuott cepoti Cpenbr, 
BairnloqeBBoP MewAy :3epHanbIIo-oTpaHtarmIiMI4 cepblMB napannenbHbtMB rparrIinaM34 c 
IIOCTOBHHblMB, HO RaSJIB~HbIMM TeMIICRaTylXiMIl. ~RC~CTaBJICHbl lX!IIICHBB RJIH BHTBHCBBHOCTR 
Banyqeaan naflaIomer0 IIa.xyqewIx B peaynbTnpyIomer0 TenBoBoro noToKa IwnyseIIBB I3 
CROJ(e J(JIH BaflaHHOrO HeOJIHORORHOrO IICTOqHBKa, 13Re~CTaBJICHHOrO IIOJIAHOMMIIaJIbHbIM 
pasnoHceHBeM. KpoMe Toro IIonyqeHo pemeaae, onBparomeecI3 Ha (~)~HK~IIIO I’pwa, RJIH 

RaHHOlt na~asn. 


