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Abstract

A modern analytical version of the discrete-ordinates method is used along with Hermite cubic splines
and Newton’s method to solve a class of coupled nonlinear radiation–conduction heat-transfer problems
in a solid cylinder. Computational details of the solution are discussed, and the algorithm is implemented
to establish high-quality results for various data sets which include some di8cult cases. ? 2002 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The study of combined-mode (radiative and conductive) heat transfer [1,2] is of interest
mainly because of engineering applications where, for example, this coupling must be included
in the analysis in order to model well the thermal behavior of some materials. We note that
Andre and Degiovanni [3,4], Banoczi and Kelley [5] and Klar and Siedow [6] point out that
the thermal properties of semi-transparent materials such as glass, polymers, and paper, as well
as certain insulating materials, should be discussed in the context of dual-model heat-transfer
models. In regard to works [7,8] devoted to this class of radiative-transfer problems, we note that
each of the two basic texts [1,2] has a review and a discussion of some methods for developing
working solutions to these problems. Of course, because of the considerable mathematical and
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computational complications encountered in these coupled nonlinear heat-transfer problems, it
is a challenging task to have an e8cient and accurate algorithm for computing all quantities of
interest. These aspects of e8ciency and accuracy are especially signiJcant when, for example,
methods based on iterative schemes (where the direct problem must be solved many times) are
to be used to investigate inverse problems in combined-mode heat transfer [9]. In addition to the
di8culty of establishing and implementing computational methods for the considered nonlinear
problems, the concepts of existence and uniqueness of the solutions to such problems are often
ignored issues (also not discussed here) that, in our opinion, warrant additional study along the
lines of the work of Kelley [10].

In a paper published in 1991, Siewert and Thomas [11] used a stable version of the spherical-
harmonics method [12] to solve some basic problems in combined-mode, radiation and conduc-
tion heat transfer [1] for plane–parallel media. Although some good results were reported in
Ref. [11], it was also mentioned there that the simple iteration scheme used in that work could
fail (very dramatically) for some cases. In 1995, these results were improved by developing
[13] an iterative method, based on Newton’s method, that proved to be more successful than
previous work in solving di8cult cases.

In this work we consider a nonlinear dual-mode heat-transfer problem [14] in a solid cylinder,
and in order to solve this class of problems, and to include cases with a strong interaction
between the two modes of heat transfer, we make use of a modern analytical version [15] of
the discrete-ordinates method [16], Hermite cubic splines [17] and Newton’s method to establish
the desired solution. We therefore consider the equation of transfer written as[
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for r ∈ (0; R); �∈ [0; 1] and �∈ (0; 	). Here the source term is

S(r)= (1−$)�4(r); (2)

and we consider the boundary condition, subject to which we must solve Eq. (1), written as
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I(R; �′; �′)(1− �′2)1=2 cos�′ d�′ d�′ (3)

for �∈ [0; 1] and �∈ [	=2; 	]. In addition, the normalized [14] temperature distribution �(r)
must satisfy the conduction equation and boundary conditions which we write as
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In continuation, we note that since the radiative heat Nux

qr(r)=
1
	

∫ 1

0

∫ 	

0
I(r; �; �)(1− �2)1=2 cos� d� d� (6)

appears in Eq. (4), it is clear that the two problems (radiation and conduction) are coupled.
In regard to our basic variables, we note that r ∈ [0; R] is the radial spatial variable (in

dimensionless units) and that R is the radius of the cylinder. In addition �=cos � and � are
the two angular variables that deJne the direction of photon propagation. To deJne the physical
parameters used here we note that $ is the albedo for single scattering, 
 is the emissivity of
the surface, � is the coe8cient for diOuse reNection by the surface,

Nc =
k�

4�n2T 3
r

(7)

is the conduction-to-radiation parameter [1] and

H =(k�2Tr)−1h: (8)

In addition, � is the Stefan–Boltzmann constant, n is the index of refraction, � is the extinction
coe8cient, Tr is a reference temperature, h is a constant that measures the prescribed heat
generation in the medium, k is the thermal conductivity and �0 is the prescribed (normalized)
temperature at the surface.

2. A reformulation

Noting that the right-hand side of Eq. (3) is deJned in terms of the unknown quantity
I(R; �; �), we Jnd it convenient to split, as was done in Ref. [14], our basic problem into two
simpler problems that have boundary conditions deJned by known quantities, and so we write

I(r; �; �)=  (r; �; �) + �f(r; �; �); (9)

where, Jrst of all, f(r; �; �) is a solution of the albedo problem deJned by[
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for r ∈ (0; R), �∈ [0; 1] and �∈ (0; 	), and the boundary condition

f(R; �; �)=1; �∈ [0; 1] and �∈ [	=2; 	]: (11)

We then seek  (r; �; �) such that[
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for r ∈ (0; R), �∈ [0; 1] and �∈ (0; 	), and

 (R; �; �)=0; �∈ [0; 1] and �∈ [	=2; 	]: (13)

With these deJnitions it follows from foregoing equations that the constant � is deJned by

�=(1− �A∗)−1[
�4
0 + 4� 1(R)]; (14)

where, in general,

 1(r)=
1
	

∫ 1

0

∫ 	

0
 (r; �; �)(1− �2)1=2 cos� d� d�: (15)

In addition, the albedo

A∗=
4
	

∫ 1

0

∫ 	=2

0
f(R; �; �)(1− �2)1=2 cos� d� d� (16)

can be expressed as [14]

A∗=1+ 4f1(R); (17)

where, in general,

f1(r)=
1
	

∫ 1

0

∫ 	

0
f(r; �; �)(1− �2)1=2 cos� d� d�: (18)

It follows that once we have solved the f and  problems we can compute the radiative heat
Nux from

qr(r)=  1(r) + �f1(r) (19)

which can then be used in Eq. (4), the solution of which we write as

�(r)=�0 +
1
4
(R2 − r2)H − 1

Nc

∫ R

r
qr(x) dx: (20)

It is clear that the albedo problem deJned by Eqs. (10) and (11) is independent of the temper-
ature distribution �(r) and so can be solved in a direct manner. On the other hand, we see that
the  problem deJned by Eqs. (12) and (13) requires the temperature distribution as shown by
Eq. (2). We see also that the temperature distribution, as given by Eq. (20), depends on both
the albedo problem and the  problem. It is for this reason that we must, in general, solve the
temperature problem and the  problem, simultaneously.

3. Pseudo problems

Having reformulated our basic problems to be solved, we now make use of some useful
transformations, due to Mitsis [18] and generalized in Ref. [19], that allow us to express the
solutions we seek in terms of two “pseudo problems.” First of all, from Eq. (10) we can
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conclude that

f1(r)=− 1
r
(1−$)

∫ r

0
xf0(x) dx; (21)

where

f0(r)=
1
	

∫ 1

0

∫ 	

0
f(r; �; �) d� d�; (22)

and so we consider f0(r) to be the basic result we require from the albedo problem. It has
been shown [19] that f0(r) can be expressed as

f0(r)=
∫ 1

0
F(r; �) d�; (23)

where F(r; �) is deJned by[
�2
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]
F(r; �) +$

∫ 1

0
F(r; �′) d�′=0 (24)

for r ∈ (0; R) and �∈ [0; 1], with

F(R; �) + R(�)
@
@r

F(r; �)
∣∣∣∣
r=R

=1; �∈ [0; 1]: (25)

Here

r(�)=�
K0(R=�)
K1(R=�)

; (26)

where K0(z) and K1(z) are modiJed Bessel functions. Turning now to the  problem, we use
Eq. (2) and Jnd from Eq. (12) that

 1(r)=
1
r
(1−$)

∫ r

0
x[�4(x)−  0(x)] dx; (27)

where

 0(r)=
1
	

∫ 1

0

∫ 	

0
 (r; �; �) d� d�: (28)

We note also that  0(r) can be expressed as [19]

 0(r)=
∫ 1

0
"(r; �) d�; (29)
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for r ∈ (0; R) and �∈ [0; 1], with

"(R; �) + r(�)
@
@r

"(r; �)
∣∣∣∣
r=R

=0; �∈ [0; 1]: (31)

Once we have solved the albedo problem, to establish the albedo A∗ and f1(r), and the
coupled  and temperature problems, to yield  1(r) and �(r), then we can compute the (nor-
malized) conductive, radiative and total heat Nuxes which we express as

Qc(r)=
r
2
H − 1

Nc
[ 1(r) + �f1(r)]; (32)

Qr(r)=
1
Nc

[ 1(r) + �f1(r)] (33)

and

Q(r)=
r
2
H: (34)

So we proceed to use the discrete-ordinates method, Hermite cubic splines and Newton’s method
to develop the solutions we require.

4. The albedo problem

In order to start our discrete-ordinates solution of the albedo problem, expressed in terms
of the pseudo problem deJned by Eqs. (24) and (25), we approximate the integral term in
Eq. (24) by a quadrature formula and write our discrete-ordinates equations as[

�2
i

(
d2

dr2
+

1
r

d
dr

)
− 1

]
F(r; �i) +$

N∑
k=1

wkF(r; �k)=0 (35)

for i=1; 2; : : : ; N . In writing Eq. (35) as we have, we clearly are considering that the N quadra-
ture points {�k} and the N weights {wk} are deJned for use on the integration interval [0; 1].
Seeking a Bessel function solution (bounded as r → 0) of Eq. (35), we substitute

F(r; �i)=�(&; �i)I0(r=&) (36)

into Eq. (35) to Jnd

(&2 − �2
i )�(&; �i)=$&2

N∑
k=1

wk�(&; �k) (37)

for i=1; 2; : : : ; N . Now if we let �(&; �k), k=1; 2; : : : ; N , deJne the elements of an N vector
�(&) we can rewrite Eq. (37) as

(I − 'M2)�(&)=$W�(&); (38)
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where '=1=&2, I is the N × N identity matrix, the elements of the N × N matrix W are
given by

(W)i; j =wj (39)

and

M =diag{�1; �2; : : : ; �N}: (40)

We note that, not surprisingly, the eigenvalue problem deJned by Eq. (38) is essentially
the one encountered in Refs. [15,20] in the discrete-ordinates solutions of similar problems in
plane geometry, and so we take advantage of those works and rewrite Eq. (38) in the special
form [21]

(D −$zzT)X = 'X ; (41)

where the superscript T denotes the transpose operation,

D=diag{�−2
1 ; �−2

2 ; : : : ; �−2
N } (42)

and

z=[w1=2
1 �−1

1 w1=2
2 �−1

2 · · · w1=2
N �−1

N ]T: (43)

Continuing, we note that the eigenvalue problem deJned by Eq. (41) is of a form that is
encountered when the so-called “divide-and-conquer” method [22] is used to Jnd the eigenvalues
of tridiagonal matrices. In addition, we see from Eq. (43) that, because of the way in which
our basic eigenvalue problem is formulated, we must exclude zero from the set of quadrature
points. Of course to exclude zero from the quadrature set is not considered a serious restriction
since typical Gauss quadrature schemes do not include the end points of the integration interval.

Considering that we have found the eigenvalues and eigenvectors, 'j and Xj, from Eq. (41),
we use

&j = '−1=2
j (44)

and

�(&j)=S−1Xj; (45)

where

S=diag{w1=2
1 �1; w

1=2
2 �2; : : : ; w

1=2
N �N}; (46)

and write our discrete-ordinates solution as

F(r; �i)=
N∑

j=1

Aj�(&j; �i)Î 0(r=&j)e−(R−r)=&j : (47)

Here the Aj are constants to be determined from the boundary condition

F(R; �i) +)(�i)
@
@r

F(r; �i)
∣∣∣∣
r=R

=1 (48)
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for i=1; 2; : : : ; N , with

)(�)=�
K̂0(R=�)
K̂1(R=�)

: (49)

For computational reasons we use

Î n(x)= In(x)e−x and K̂n(x)=Kn(x)ex; (50a,b)

and to be very clear, we note that �(&j; �i) is the ith element of �(&j). It is clear that the
vectors �(&j), and thus the elements �(&j; �i), are available from Eq. (45) and the eigenvectors
deJned by Eq. (41). On the other hand, we can use only the eigenvalues deJned by Eq. (41),
along with Eq. (44), and then use the analytical expression

�(&j; �i)=
$&2j

&2j − �2
i
K(&j); (51a)

where

K(&j)=
N∑
i=1

wi�(&j; �i) (51b)

is, in fact, arbitrary. It follows that Eq. (47) can be used in a discrete-ordinates version of
Eq. (23) to Jnd

f0(r)=
N∑

j=1

AjK(&j)Î 0(r=&j)e−(R−r)=&j ; (52)

and this result can be used in Eq. (21) to obtain

f1(r)=− (1−$)
N∑

j=1

&jAjK(&j)Î 1(r=&j)e−(R−r)=&j : (53)

So, all that we require from the albedo problem is established.

5. A particular solution and the spline-driven problems

Looking now at Eq. (30), we note that there is a source term in that equation, and so to
develop a discrete-ordinates solution to the problem deJned by Eqs. (30) and (31) we must
develop a particular solution that can be used with the elementary solutions just employed
to solve the albedo problem. So, to be general, we consider a discrete-ordinates version of
Eq. (30) written as[

�2
i

(
d2

dr2
+

1
r

d
dr

)
− 1

]
"(r; �i) +$

N∑
k=0

wk"(r; �k) + S(r)=0 (54)

for i=1; 2; : : : ; N . At this point we consider that the source term S(r) is known, and
so we make use of the method of variation of parameters and express our particular
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solution as

"ps(r; �i)=
N∑

j=1

Cj�(&j; �i)[V (r; &j)Î 0(r=&j) +U (r; &j)K̂0(r=&j)]; (55)

where the constants Cj and the functions U (r; &j) and V (r; &j) are to be found. We now substitute
Eq. (55) into Eq. (54) to Jnd

�2
i

N∑
j=1

Cj�(&j; �i)=1; i=1; 2; : : : ; N; (56)

with

U (r; &j)=
∫ r

0
xS(x)Î 0(x=&j) e−(r−x)=&j dx (57a)

and

V (r; &j)=
∫ R

r
xS(x)K̂0(x=&j) e−(x−r)=&j dx: (57b)

Clearly, Eq. (56) deJnes a system of linear algebraic equations for the required constants Cj.
We can now use some properties of the elementary solutions �(&j; �i) to solve this system
(with, of course, the implicitly made assumption that a solution of the system exists). First of
all we make use of Eq. (51b) and write Eq. (37) as

(1− �2
i =&

2
j )�(&j; �i)=$K(&j): (58)

Following a well-known procedure, we multiply Eq. (58) by wi�(&k ; �i) and sum over i to
obtain

N∑
i=1

wi�(&j; �i)�(&k ; �i)− 1
&2j

N∑
i=1

wi�2
i �(&j; �i)�(&k ; �i)=$K(&j)K(&k): (59)

Interchange j and k in Eq. (59) to Jnd
N∑
i=1

wi�(&j; �i)�(&k ; �i)− 1
&2k

N∑
i=1

wi�2
i �(&j; �i)�(&k ; �i)=$K(&j)K(&k): (60)

Subtract Eq. (59) from Eq. (60) to deduce that
N∑
i=1

wi�2
i �(&j; �i)�(&k ; �i)=N (&j)-j;k ; (61)

where

N (&j)=
N∑
i=1

wi�2
i [�(&j; �i)]2: (62)

We can now multiply Eq. (56) by wi�(&k ; �i) and sum over i to Jnd

Ck =K(&k)=N (&k); (63)

and so the required particular solution is established.
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As we intend to use Hermite cubic splines [17], as deJned in the following section of this
paper, to represent the source term in Eq. (30), we now let S(r) be one of the spline functions
Fk(x), for k=0; 1; : : : ; K , and write our solution to[

�2
i

(
d2

dr2
+

1
r

d
dr

)
− 1

]
"k(r; �i) +$

N∑
.=1

w."k(r; �.) +Fk(r=R)=0 (64)

as

"k(r; �i)=
N∑

j=1

Ak;j�(&j; �i)Î 0(r=&j) e−(R−r)=&j +"k;ps(r; �i); (65)

where the particular solution is

"k;ps(r; �i)=
N∑

j=1

Cj�(&j; �i)[Vk(r; &j)Î 0(r=&j) +Uk(r; &j)K̂0(r=&j)] (66)

with

Uk(r; &j)=
∫ r

0
xFk(x=R)Î 0(x=&j) e−(r−x)=&j dx (67a)

and

Vk(r; &j)=
∫ R

r
xFk(x=R)K̂0(x=&j) e−(x−r)=&j dx: (67b)

To Jnd the constants Ak;j, we substitute Eq. (65) into a discrete-ordinates version of Eq. (31)
to Jnd

N∑
j=1

Ak;j�(&j; �i)[Î 0(R=&j) + (1=&j)R(�i)Î 1(R=&j)]=Rk(�i) (68)

for i=1; 2; : : : ; N . Here,

Rk(�i)=−"k;ps(R; �i)−R(�i)
@
@r

"k;ps(r; �i)
∣∣∣∣
r=R

(69)

or

Rk(�i)=−
N∑

j=1

Cj�(&j; �i)Uk(R; &j)[K̂0(R=&j)− (1=&j)R(�i)K̂1(R=&j)]: (70)

Of course once the required constants are found we can evaluate a discrete-ordinates version of

 k;0(r)=
∫ 1

0
"k(r; �) d� (71)
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to Jnd, after imposing the (arbitrary) normalization

K(&j)=1; (72)

 k;0(r)=
N∑

j=1

{Ak;jÎ 0(r=&j)e−(R−r)=&j + Cj[Vk(r; &j)Î 0(r=&j) +Uk(r; &j)K̂0(r=&j)]}: (73)

We also deJne

 k;1(r)=
1
r

∫ r

0
x[Fk(x=R)− (1−$) k;0(x)] dx (74)

and Jnd, after using Eq. (73) and noting in particular Eqs. (56), (58) and (72), that

 k;1(r)=− (1−$)
N∑

j=1

&j[Ak;jÎ 1(r=&j) e−(R−r)=&j + CjSk(r; &j)]; (75)

where

Sk(r; &j)=Vk(r; &j)Î 1(r=&j)−Uk(r; &j)K̂1(r=&j): (76)

6. The spline functions

The Hermite cubic spline functions we use in this work are taken from Schultz [17] and were
also used in the context of dual-mode heat transfer in Ref. [11]. To be speciJc and to deJne
the notation we use, we list these splines here. First of all, we consider there to be M +1 knots
0. deJned on the interval [0,1] by

0. =(.=M)m; .=0; 1; : : : ; M: (77)

In this work, we use either the linear distribution (m=1) or the quadratic distribution (m=2).
So to approximate a function, say Y (r) deJned on the interval [0; R], in terms of the spline
functions we write

Y (r)=
K∑

.=0

a.F.(r=R); (78)

where the a. are constants and where K =2M +1: We note that there are two spline functions
F.(x) associated with each knot and that the spline functions are deJned diOerently for even
or odd values of .. So we write

F2�(x)=4�(x) and F2�+1(x)="�(x) (79a,b)

for �=0; 1; : : : ; M . Making use of the deJnitions

p.(x)=
x − 0.−1

0. − 0.−1
(80a)

and

g.(x)=
0.+1 − x
0.+1 − 0.

(80b)
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and considering that the spline functions are zero unless otherwise deJned, we can write the 4
functions as

40(x)= g20(x)[3− 2g0(x)]; x∈ [00; 01]; (81a)

4.(x)=

{
p2

.(x)[3− 2p.(x)]; x∈ [0.−1; 0.];

g2.(x)[3− 2g.(x)]; x∈ [0.; 0.+1];
(81b)

for .=1; 2; : : : ; M − 1, and

4M (x)=p2
M (x)[3− 2pM (x)]; x∈ [0M−1; 0M ]: (81c)

In a similar way we can write " functions as

"0(x)= xg20(x); x∈ [00; 01]; (82a)

".(x)=

{
(x − 0.)p2

.(x); x∈ [0.−1; 0.];

(x − 0.)g2.(x); x∈ [0.; 0.+1];
(82b)

for .=1; 2; : : : ; M − 1, and

"M (x)= (x − 0M )p2
M (x); x∈ [0M−1; 0M ]: (82c)

To conclude this discussion, we note [17] that it is a property of the Hermite cubic splines that
the coe8cients in Eq. (78) can be computed from

a2. =Y (r)|r=0.R (83a)

and

a2.+1 =R
d
dr

Y (r)
∣∣∣∣
r=0.R

(83b)

for .=0; 1; : : : ; M .

7. The coupled problems

Summarizing our development to this point, we note that the temperature distribution is
given by

�(r)=�0 +
1
4
(R2 − r2)H − 1

Nc

∫ R

r
qr(x) dx; (84)

where

qr(r)=  1(r) + �f1(r) (85)

and where f1(r) is given by Eq. (53),

�=(1− �A∗)−1[
�4
0 + 4� 1(R)] (86)
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and

A∗=1+ 4f1(R): (87)

Recalling that

 1(r)=
1
r
(1−$)

∫ r

0
x[�4(x)−  0(x)] dx; (88)

where

 0(r)=
∫ 1

0
"(r; �) d�; (89)

we must simultaneously consider Eq. (84) and[
�2

(
@2

@r2
+

1
r

@
@r

)
− 1

]
"(r; �) +$

∫ 1

0
"(r; �′) d�′ + (1−$)�4(r)=0 (90)

for r ∈ (0; R) and �∈ [0; 1], with

"(R; �) + R(�)
@
@r

"(r; �)
∣∣∣∣
r=R

=0; �∈ [0; 1]: (91)

So now we introduce a spline representation of the source term and write

(1−$)�4(r)=
K∑

k=0

akFk(r=R); (92)

where the constants ak are to be determined. Since we have expressed the source term in
Eq. (90) in terms of splines, we can now write

 1(r)=
K∑

k=0

ak k;1(r); (93)

where  k;1(r) is given by Eq. (75). So to complete our solution we simply have to determine
the required constants {ak}. To Jnd deJning equations for these constants, we use Eqs. (92)
and (93) in Eq. (84) to obtain

K∑
k=0

akFk(r=R)= (1−$)

[
7(r) +

K∑
k=0

ak7k(r)

]4

; (94)

where

7(r)=�0 +
1
4
(R2 − r2)H +

1
Nc

L(r) (1− �A∗)−1
�4
0 (95)

and

7k(r)=
1
Nc

[4�(1− �A∗)−1L(r) k;1(R) + Lk(r)]: (96)

Here

L(r)= (1−$)
N∑

j=1

&2jAj[Î 0(R=&j)− Î 0(r=&j)e−(R−r)=&j ] (97)



596 L.B. Barichello et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 73 (2002) 583–602

and

Lk(r)= (1−$)
N∑

j=1

&2j{Ak;j[Î 0(R=&j)− Î 0(r=&j)e−(R−r)=&j ] + CjTk(r; &j)} (98)

with

Tk(r; &j)=Uk(R; &j)K̂0(R=&j)−Uk(r; &j)K̂0(r=&j)− Vk(r; &j)Î 0(r=&j): (99)

In order to generate from Eq. (94) a Jnite set of discrete equations from which we can determine
the coe8cients {ak} required in the approximation given by Eq. (92), we follow procedures
typically used when working with splines: we evaluate Eq. (94) and the derivative (with respect
to r) of that equation at r. = 0.R. In this way, we obtain (since K =2M + 1) the system of
K + 1 nonlinear algebraic equations

K∑
k=0

akFk(0.)= (1−$)

[
7(r.) +

K∑
k=0

ak7k(r.)

]4

(100a)

and

K∑
k=0

akF
′
k(0.)=4R(1−$)

[
7(r.) +

K∑
k=0

ak7k(r.)

]3 [
7′(r.) +

K∑
k=0

ak7′
k(r.)

]
(100b)

for .=0; 1; 2; : : : ; M . We note from the basic deJnitions given by Eqs. (81) and (82) that

F2k(0.)= -.;k (101a)

and

F2k+1(0.)=0 (101b)

and that

F′
2k(0.)=0 (102a)

and

F′
2k+1(0.)= -.;k (102b)

for k; .=0; 1; 2; : : : ; M . So we can rewrite Eqs. (100) as

a2. =(1−$)

[
7(r.) +

K∑
k=0

ak7k(r.)

]4

(103a)

and

a2.+1 =4R(1−$)

[
7(r.) +

K∑
k=0

ak7k(r.)

]3 [
7′(r.) +

K∑
k=0

ak7′
k(r.)

]
(103b)
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for .=0; 1; 2; : : : ; M . Of course we can diOerentiate Eqs. (95) and (96) to Jnd the derivatives
we require in Eq. (103b). So we can write

7′(r)=− 1
2
rH +

1
Nc

L′(r)(1− �A∗)−1
�4
0 (104)

and

7′
k(r)=

1
Nc

[4�(1− �A∗)−1L′(r) k;1(R) + L′
k(r)]; (105)

where

L′(r)=− (1−$)
N∑

j=1

&jAjÎ 1(r=&j)e−(R−r)=&j (106)

and

L′
k(r)= (1−$)

N∑
j=1

&j{−Ak;jÎ 1(r=&j)e−(R−r)=&j + Cj&jT ′
k(r; &j)} (107)

with

&jT ′
k(r; &j)=Uk(r; &j)K̂1(r=&j)− Vk(r; &j)Î 1(r=&j): (108)

Now to complete our solution we must solve the nonlinear system of algebraic equations,
deJned by Eqs. (103), to Jnd the required constants {ak}. To have an approach that can be
eOective in some simple cases we can use a direct iterative procedure to solve Eqs. (103). We
thus start our iteration process with the initial values

a2. =(1−$)�4
0 (109a)

and

a2.+1 =0 (109b)

for .=0; 1; 2; : : : ; M , and these results can now be used on the right-hand sides of Eqs. (103)
to get the next iterates. This process clearly can be continued. However, we have found cases
where this simple iteration procedure does not converge, and so as a second iterative procedure
we can use Newton’s method. We let a be the vector with K + 1 components {ak}. We also
introduce a vector B(a) that allows us to write Eqs. (103) as

B(a)= 0: (110)

It follows that we can write our (Newton) iterative solution of Eq. (110) as

aj+1 = aj − J−1(aj)B(aj); j=0; 1; 2; : : : : (111)

where the Jacobian matrix is

J(a)=
[

@
@a0

B(a)
@

@a1
B(a) · · · @

@aK
B(a)

]
: (112)



598 L.B. Barichello et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 73 (2002) 583–602

8. Computational aspects and numerical results

As the important aspects of the numerical implementation of our discrete-ordinates solution
have already been discussed [15,20], we can be brief here. To start, we deJne our quadrature
scheme {wk; �k} by linearly mapping the Gauss–Legendre scheme onto the interval [0; 1]. We
then use the driver program RG from the EISPACK collection [23] to Jnd the eigenvalues and
eigenvectors deJned by Eq. (41). So, after noting Eqs. (44) and (45), we have the required
separation constants and the associated elementary solutions. To Jnd the constants {Aj} and
{Ak;j} we use the subroutine DGECO and DGESL from the LINPACK collection [24] to solve
the linear systems deJned by Eqs. (48) and (68). Following these procedures, we have all that
we require to evaluate the quantities 7(r.), 7k(r.), 7′(r.) and 7′

k(r.), and so all we have to do
is to solve Eqs. (103) to obtain the constants {ak} which we do, as mentioned in the previous
section of the paper, by iterating on Eqs. (103) with either a simple recursive method or with
Newton’s method.

Of course in implementing our solution we must evaluate the U and V functions as given
by Eqs. (67). We change some variables and rewrite these functions in the forms

Uk(r; &j)=R2Ek(r=R; R=&j) (113a)

and

Vk(r; &j)=R2Gk(r=R; R=&j); (113b)

where

Ek(x; y)=
∫ x

0
<Fk(<)Î 0(<y)e−(x−<)y d<; x∈ [0; 1]; y¿ 0; (114a)

and

Gk(x; y)=
∫ 1

x
<Fk(<)K̂0(<y)e−(<−x)y d<; x∈ [0; 1]; y¿ 0: (114b)

Considering that [.k ; �k] is the support of the spline function Fk(x), i.e

Fk(x)=0; x 	∈ [.k ; �k]; (115)

we can write

Ek(x; y)=0; x6 .k ; (116a)

and

Ek(x; y)=
∫ min{x;�k}

.k

<Fk(<)Î 0(<y)e−(x−<)y d<; x¿.k: (116b)

In a similar way, we can write

Gk(x; y)=0; x¿�k; (117a)

and

Gk(x; y)=
∫ �k

max{x;.k}
<Fk(<)K̂0(<y)e−(<−x)y d<; x¡�k: (117b)
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Table 1
Physical data for the diOerent problems

Problem 
 � �0 $ R Nc H

1 0.8 0.2 1.0 0.9 1.0 0.05 1.5
2 0.9 0.1 1.0 0.9 0.5 0.05 100
3 0.9 0.1 1.0 0.9 0.05 0.0005 4000
4 0.9 0.1 1.0 0.9 0.5 0.005 40
5 0.9 0.1 1.0 0.9 5.0 0.5 0.4
6 1.0 0.0 1.0 0.9 1.0 0.1 1.0
7 0.8 0.2 1.0 0.2 1.0 0.5 40
8 0.8 0.2 1.0 0.6 1.0 0.2 200

Now since the spline functions have diOerent deJnitions on each of two subintervals of [.k ; �k],
we use a Gauss–Legendre scheme over each one of these subintervals to evaluate the required
integrals. In this way, we can obtain good accuracy for the integrals with a very low-order
quadrature scheme.

Finally, we can mention that when implementing Newton’s method of iteration we do not
use the method as expressed by Eq. (111), but to be more e8cient we use

aj+1 = aj − xj (118)

where xj is the solution of the linear system

J(aj)xj =B(aj): (119)

Once we have found the spline constants {ak} we can combine Eqs. (92) and (94) and then
compute the temperature distribution from

�(r)=7(r) +
K∑

k=0

ak7k(r); (120)

where 7(r) and 7k(r) are available from Eqs. (95) and (96). Continuing, we can express the
radiative heat Nux as

Qr(r)=
1
Nc

[
�f1(r) +

K∑
k=0

ak k;1(r)

]
; (121)

where  k;1(r) is given by Eqs. (75) and (76). Finally, since the total heat Nux is

Q(r)=
r
2
H; (122)

the conductive heat Nux can be computed from

Qc(r)=Q(r)−Qr(r): (123)

In order to test our implementation of the reported algorithm we now consider the eight data
cases listed in Table 1. As the Jrst step in evaluating our solution, we solved Problems 1–6 as
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Table 2
The temperature distribution and the radiative heat Nux

r=R Problem 3 Problem 7 Problem 8

�(r) Qr(r) �(r) Qr(r) �(r) Qr(r)

0.0 2.04106 0.0 2.77506 0.0 3.69100 0.0
0.1 2.03634 8.09359 2.77239 1.94626 3.68901 9.96022
0.2 2.02159 15.9445 2.76416 3.88773 3.68300 19.9193
0.3 1.99494 23.2887 2.74953 5.81659 3.67278 29.8757
0.4 1.95313 29.8238 2.72651 7.71596 3.65798 39.8269
0.5 1.89126 35.2049 2.69045 9.54543 3.63774 49.7649
0.6 1.80264 39.0654 2.63011 11.2059 3.60949 59.6554
0.7 1.67883 41.0811 2.51850 12.4645 3.56173 69.3127
0.8 1.51008 41.0863 2.29423 12.8520 3.43350 77.7081
0.9 1.28655 39.2184 1.83907 11.7663 2.91471 80.1743
1.0 1.0 35.9995 1.0 9.31416 1.0 69.6986

listed in Table 1. These six problems were Jrst solved by Siewert and Thomas in Ref. [14].
Since we found exactly the numerical results given for Problems 1, 2, 4–6 in Ref. [14], we do
not report them here. However, we did Jnd a few digits diOerent for Problem 3, and for this
reason we list our current results for this problem in Table 2.

Since, basic to our solution, there are several computational parameters that can be ad-
justed to solve a problem deJned by a given data set e8ciently, we now note some details
about what we have actually used in solving the eight problems deJned in Table 1. In regard
to the iteration schemes and the convergence conditions imposed, we have used 
=10−7 to
check that the value for each of the coe8cients {ak} agreed between two successive itera-
tions, and we allowed 100 iterations for the simple iteration scheme and 50 for the Newton
scheme. We found little diOerence in the computational time required by these two methods
when both methods converged, but we note that for some cases we investigated the simple
iteration scheme available from Eqs. (103) failed the deJned convergence conditions. Prob-
lems 7 and 8 deJned in Table 1 are examples of considered data sets, where the deJned
simple iteration scheme failed to converge, and so we have used the Newton iteration pro-
cedure to solve these problems. Continuing, we note that we used, for all of the considered
problems, 4 Gauss points to evaluate the U and V functions deJned by Eqs. (113). For Prob-
lems 1–6 we have used 40 discrete ordinates and 100 spline functions to Jnd results for
the temperature distribution and the radiative heat Nux with what we believe to be 7 Jgures
of accuracy. To have an idea about the computational requirements of our FORTRAN im-
plementations of the algorithm, we note that to establish our solution of each of these Jrst
six problems required less than 7 s on a 400 MHz Pentium-based PC. We continued with
40 discrete-ordinates, but we used 200 spline functions (and 25 s) for Problem 7 and 300
spline functions (and 65 s) for Problem 8. Our results (thought to be correct to all digits
given) for Problems 7 and 8 are given in Table 2. Finally, since the total heat Nux and the
conductive heat Nux are immediately available, once the radiative heat Nux is known, from
Eqs. (122) and (123), we list in Table 2 only the temperature distribution and the radiative
heat Nux.
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9. Final comments

We can say that the use of this analytical version of the discrete-ordinates method has proved
very eOective in solving a class of di8cult nonlinear coupled conduction–radiation problems
in a concise and accurate way. We can also note that the use of Newton’s form of iteration
has been shown to be a signiJcant improvement when compared to the simple direct iterative
approach that has traditionally been used, as in Ref. [14], in studying the considered problems.
It is also clear that the particular solution established here in the context of inhomogeneous
“pseudo problems” basic to radiative transfer problems in cylindrical geometry will prove to be
useful in future studies.

While we consider that we have been able to solve well a good collection of coupled
heat-transfer problems, we have to keep in mind the fact that we do not have, for the considered
class of problems, a deJnition of the parameter space for which a solution even exists. In our
opinion, this important issue is one that deserves attention, and though to establish conditions
for which we can be sure of the existence and uniqueness of a solution could (we believe)
prove to be di8cult, the paper of Kelley [10] can surely be considered a good starting point
for additional work.

Acknowledgements

One of the authors (CES) wishes to express his thanks to CNPq of Brazil for supporting
a recent visit to Porto Alegre, during which a part of this work was done, and to Instituto
de MatemUatica of the Universidade Federal do Rio Grande do Sul for the kind hospitality. In
addition, it is noted that the work of LBB was also supported in part by CNPq of Brazil.

References

[1] VOzWXsWk MN. Radiative transfer and interactions with conduction and convection. New York: Wiley, 1973.
[2] Modest MF. Radiative heat transfer. New York: McGraw-Hill, 1993.
[3] Andre S, Degiovanni A. A theoretical study of the transient coupled conduction and radiation heat transfer in

glass: phonic diOusivity measurements by the Nash technique. Int J Heat Mass Transfer 1995;38:3401–12.
[4] Andre S, Degiovanni A. A new way of solving transient radiative–conductive heat transfer problems. J Heat

Transfer 1998;120:943–55.
[5] Banoczi JM, Kelley CT. A fast multilevel algorithm for the solution of nonlinear systems of conductive–

radiative heat transfer equations. SIAM J Sci Comp 1998;19:266–79.
[6] Klar A, Siedow N. Boundary layers and domain decomposition for radiative heat transfer and diOusion

equations: applications to glass manufacturing process. Eur J Appl Math 1998;9:351–72.
[7] Viskanta R, Anderson EE. Heat transfer in semi-transparent solids. Adv Heat Transfer 1975;11:317–441.
[8] Vilhena MT, Barichello LB. A closed-form solution to the one dimensional linear and nonlinear radiative

transfer problem. Hybrid Methods Eng 1999;1:1–17.
[9] VOzWXsWk MN, Orlande HRB. Inverse heat transfer: fundamentals and applications. New York: Taylor & Francis,

2000.
[10] Kelley CT. Existence and uniqueness of solutions of nonlinear systems of conductive–radiative heat transfer

equations. Transp Theory Stat Phys 1996;25:249–60.
[11] Siewert CE, Thomas Jr. JR. A computational method for solving a class of coupled conductive–radiative heat

transfer problems. JQSRT 1991;45:273–81.



602 L.B. Barichello et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 73 (2002) 583–602

[12] Benassi M, Cotta RM, Siewert CE. The PN method for radiative transfer problems with reNective boundary
conditions. JQSRT 1983;30:547–53.

[13] Siewert CE. An improved iterative method for solving a class of coupled conductive–radiative heat-transfer
problems. JQSRT 1995;54:599–605.

[14] Siewert CE, Thomas Jr. JR. On coupled conductive–radiative heat transfer problems in a cylinder. JQSRT
1992;48:227–36.

[15] Barichello LB, Siewert CE. A discrete-ordinates solution for a non-grey model with complete frequency
redistribution. JQSRT 1999;62:665–75.

[16] Chandrasekhar S. Radiative transfer. London: Oxford University Press, 1950.
[17] Schultz MN. Spline analysis. Englewood CliOs, NJ: Prentice-Hall, 1973.
[18] Mitsis GJ. Transport solutions to the monoenergetic critical problems. ANL-6787. Chicago: Argonne National

Laboratory, 1963.
[19] Siewert CE, Thomas Jr. JR. Neutron transport calculations in cylindrical geometry. Nucl Sci Eng 1984;87:

107–12.
[20] Barichello LB, Camargo M, Rodrigues P, Siewert CE. UniJed solutions to classical Now problems based on

the BGK model. Z Angew Math Phys 2001;52:517–34.
[21] Siewert CE, Wright SJ. E8cient eigenvalue calculations in radiative transfer. JQSRT 1999;62:685–8.
[22] Datta BN. Numerical linear algebra and applications. PaciJc Grove: Brooks=Cole Publishing Co, 1995.
[23] Smith BT, Boyle JM, Dongarra JJ, Garbow BS, Ikebe Y, Klema VC, Moler CB. Matrix eigensystem routines—

EISPACK guide. Berlin: Springer, 1976.
[24] Dongarra JJ, Bunch JR, Moler CB, Stewart GW. LINPACK user’s guide. Philadelphia: SIAM, 1979.


