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An analytical version of the discrete-ordinates method is used here in the field of rarefied-gas
dynamics to solve a version of the temperature-jump problem that is based on a linearized, variable
collision frequency model of the Boltzmann equation. In addition to a complete development of the
discrete-ordinates method for the application considered, the computational algorithm is
implemented to yield accurate numerical results for three specific cases: the classical BGK model,
the Williams model~the collision frequency is proportional to the magnitude of the velocity!, and
the rigid-sphere model. ©2002 American Institute of Physics.@DOI: 10.1063/1.1416192#
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I. INTRODUCTION

The state of a gas can be described mathematically
distribution function that satisfies the nonlinear Boltzma
equation.1–3 While, for example, Monte Carlo methods an
computationally intensive iterative methods are ways of
tempting to extract some physical information from the no
linear Boltzmann equation, another approach that can
used when the density of particles is small~rarefied-gas dy-
namics! is to approximate the nonlinear Boltzmann equat
by a so-called model equation.4 In recent years, we have see
an increased interest in the general area of rarefied-gas
namics essentially because of applications to small-s
problems ~for example, as related to micro-machines a
high-speed disk drives! where the Boltzmann equation or
model equation is required in order to describe well gas-fl
and heat-flow mechanisms. In this work, we take advant
of some recent mathematical and numerical improvemen
the discrete-ordinates method in order to establish a serie
high-quality results for the temperature-jump problem
based on a generalization of the standard BGK model.

Although the so-called BGK model5 introduced by Bhat-
nagar, Gross, and Krook has been the focus of the vast
jority of mathematical studies in the general area of rarefi
gas dynamics, there exist numerous models that have
used to try to improve on the simplest form of the BG
model. One such approach6–11 is based on the variable co
lision frequency model~sometimes referred to as the gene
alized BGK model! since it has been shown9 better able to
support some experimental observations. In a recent wo12

a!Permanent address: Universidade Regional Integrada do Alto Urugu
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the variable collision frequency model was used to solve
classical Kramers’ problem,3 and so in this work we extend
our use13 of the discrete-ordinates method14 to solve the
temperature-jump problem15 for a general version of a lin-
earized, variable collision frequency model of the Boltzma
equation. Here we base our notation on Williams’ boo3

however, the papers of Cercignani7 and Loyalka and
Ferziger8 are the ones we consider to be the defining wo
on this subject of the variable collision frequency model.
therefore seems reasonable to refer to the general m
equation used in this work as the CLF equation and to c
sider the BGK model~constant collision frequency!, the
Williams model ~the collision frequency is proportional t
the particle speed!, and the rigid-sphere model as spec
cases that correspond to certain choices of the collision
quency.

To introduce the mathematical statement of the probl
to be solved, we follow Williams3 and consider the defining
balance equation to be

cm
]

]x
h~x,c!1V~c!h~x,c!

5E
0

`E
21

1 E
0

2p

c82e2c82
K~c:c8!h~x,c8!dx8 dm8 dc8.

~1!

Here

h~x,c!⇒h~x,c,m,x! ~2!

and
i e
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K~c:c8!5
1

4p
V~c!V~c8!@g01g1c•c81g2~c22v!

3~c822v!#, ~3!

where

g05
1

V0
, ~4a!

g15
3

V2
, ~4b!

g25
V0

V0V42V2
2 , ~4c!

and

v5
V2

V0
~4d!

with

Vn5E
0

`

V~c!cn12e2c2
dc. ~5!

In addition,c is used, with dimensionless units, to denote
magnitude of the particle velocity vectorc, x>0 is the spa-
tial variable that measures~in dimensionless units! the dis-
tance from the wall,V(c) is the collision frequency, andm
andx are the two angular variables that define the direct
~relative to the positivex axis! of the velocity. In addition to
Eq. ~1! we consider the boundary condition at the wall wr
ten as

h~0,c,m,x!2~12a!h~0,c,2m,x1p!2~Ih!~0!50
~6a!

for mP~0,1#, cP@0,̀ ), andxP@0,p# and

h~0,c,m,x!2~12a!h~0,c,2m,x2p!2~Ih!~0!50
~6b!

for mP~0,1#, cP@0,̀ ), andxP@p,2p#. Here

~Ih!~0!5
2a

p E
0

`E
0

1E
0

2p

c83e2c82
h~0,c8,2m8,x8!

3m8 dx8 dm8 dc8 ~7!

and aP~0,1# is the accommodation coefficient. Our bas
unknown h(x,c) is the perturbation from an initia
Maxwellian distribution that, due to the presence of the w
is a component of the particle distribution function. In rega
to Eqs.~6!, we note that some fraction 12a of the particles
is reflected specularly and that the remaining fractiona is
reflected diffusely. In other words, the wall acts somew
like a mirror and at the same time appears to absorb som
the particles and then re-emit them isotropically. Beca
there is no loss or supply of particles due to the presenc
the wall, the boundary condition can be thought of as c
servative. In addition to the boundary condition given
Eqs. ~6!, we note that, as will be discussed later, we m
also impose a condition onh(x,c) asx tends to infinity.
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II. QUANTITIES OF INTEREST

While our problem is defined in terms of the basic u
known h(x,c), we require only two elementary integrals o
h(x,c). To be clear, we note that here we seek the temp
ture and density perturbations8 defined by

N~x!5
1

p3/2E
0

`E
21

1 E
0

2p

c2e2c2
h~x,c,m,x!dx dm dc

~8!

and

T~x!5
2

3p3/2E
0

`E
21

1 E
0

2p

c2e2c2
~c223/2!

3h~x,c,m,x!dx dm dc, ~9!

or

N~x!5
2

p1/2E
0

`E
21

1

c2e2c2
f~x,c,m!dm dc ~10!

and

T~x!5
4

3p1/2E
0

`E
21

1

c2e2c2
~c223/2!f~x,c,m!dm dc,

~11!

where

f~x,c,m!5
1

2p E
0

2p

h~x,c,m,x!dx ~12!

is an azimuthal average. We can integrate Eqs.~1! and ~6!
over x to find

cm
]

]x
f~x,c,m!1V~c!f~x,c,m!

5E
0

`E
21

1

c82e2c82
K~c,m:c8,m8!f~x,c8,m8!dm8 dc8,

~13!

for x.0, mP@21,1# andcP@0,̀ ), and

f~0,c,m!2~12a!f~0,c,2m!

24aE
0

`E
0

1

c83e2c82
f~0,c8,2m8!m8 dm8 dc850, ~14!

for mP~0,1# andcP@0,̀ ). Here

K~c,m:c8,m8!5 1
2V~c!V~c8!@g01g1cmc8m8

1g2~c22v!~c822v!#. ~15!

As Eqs.~1! and~6! are homogeneous, we must specify
driving term for the temperature-jump problem. We do th
implicitly by requiring thath(x,c,m,j) diverge asx tends to
infinity. More specifically, we impose the condition that th
temperature perturbation satisfies the Welander condition16

lim
x→`

d

dx
T~x!5K, ~16!

whereK is considered specified. Now let

V~c!5sh~c!, ~17!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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wheres is a scale factor to be defined later and whereh(c)
is a ‘‘shape factor’’ used to define the variable collision fr
quency. We also introduce

t5sx ~18a!

and

Y~t,c,m!5f~t/s,c,m! ~18b!

and rewrite our problem as

cm
]

]t
Y~t,c,m!1h~c!Y~t,c,m!

5E
0

`E
21

1

c82e2c82
F~c,m:c8,m8!Y~t,c8,m8!dm8 dc8,

~19!

for t.0, mP@21,1# andcP@0,̀ ), and

Y~0,c,m!2~12a!Y~0,c,2m!

24aE
0

`E
0

1

c83e2c82
Y~0,c8,2m8!m8 dm8 dc850, ~20!

for mP~0,1# andcP@0,̀ ). Here

F~c,m:c8,m8!5 1
2h~c!h~c8!@b01b1cmc8m8

1b2~c22v!~c822v!#, ~21!

where

b05
1

h2
, ~22a!

b15
3

h4
, ~22b!

b25
h2

h2h62h4
2 ~22c!

and

v5
h4

h2
~22d!

with

hn5E
0

`

h~c!cne2c2
dc. ~23!

Now we let

T* ~t!5T~t/s! and N* ~t!5N~t/s!, ~24!

and so we can write

N* ~t!5
2

p1/2E
0

`E
21

1

c2e2c2
Y~t,c,m!dm dc ~25!

and

T* ~t!5
4

3p1/2E
0

`E
21

1

c2e2c2
~c223/2!Y~t,c,m!dm dc.

~26!
Downloaded 28 Dec 2001 to 152.1.79.110. Redistribution subject to A
Finally to complete the definition of our problem, we rewri
Eq. ~16! as

lim
t→`

d

dt
T* ~t!5

K

s
. ~27!

At this point we note that

Za~t,c,m!5~c225/2!@t2cm/h~c!# ~28!

is a solution of Eq.~19! that is linear int, and so we choose
to decompose the required solution into a part that has
desired behavior ast tends to infinity and a part that i
bounded. We therefore write

Y~t,c,m!5
K

s
@Z~t,c,m!1Za~t,c,m!# ~29!

and find from Eqs.~25! and ~26!, after using Eqs.~28! and
~29!, results for the density and temperature perturbati
expressed in terms of the bounded componentZ(t,c,m),
viz.

N* ~t!5~K/s!F2t1
2

p1/2

3 E
0

`E
21

1

c2e2c2
Z~t,c,m!dm dcG ~30!

and

T* ~t!5~K/s!F t1
4

3p1/2E
0

`E
21

1

c2e2c2
~c223/2!

3Z~t,c,m!dm dcG . ~31!

It follows now that we seek a solutionZ(t,c,m) that is
bounded ast tends to infinity and that satisfies

cm
]

]t
Z~t,c,m!1h~c!Z~t,c,m!

5E
0

`E
21

1

c82e2c82
F~c,m:c8,m8!Z~t,c8,m8!dm8 dc8,

~32!

for t.0, mP@21,1# andcP@0,̀ ), and

Z~0,c,m!2~12a!Z~0,c,2m!

24aE
0

`E
0

1

c83e2c82
Z~0,c8,2m8!m8 dm8 dc8

5R~c,m!, ~33!

for mP~0,1# andcP@0,̀ ). Here

R~c,m!5~22a!~c225/2!
cm

h~c!
1

4a

3
G, ~34!

where

G5E
0

` c4

h~c!
e2c2

~c225/2!dc. ~35!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Our basic statement of the problem to be solved is now c
plete, and so we proceed with our solution; however, bef
making use of our version of the discrete-ordinates meth
we introduce some elementary transformations that will
cilitate the development of the final results.

III. BASIC TRANSFORMATIONS

Rather than deal explicitly with Eqs.~32! and ~33!, we
choose to follow Busbridge17 and to introduce the convenien
change of variables

j5
cm

h~c!
~36a!

and

g5sup$c/h~c!%. ~36b!

And so now if we go back to Eq.~32! and introduce the
decomposition

Z@t,c,jh~c!/c#5G1~t,j!1jh~c!G2~t,j!

1~c22v!G3~t,j! ~37!

we find, after an interchange of orders of integration,

j
]

]t
Gi~t,j!1Gi~t,j!5E

2g

g

@c i ,1~j8!G1~t,j8!

1c i ,2~j8!G2~t,j8!

1c i ,3~j8!G3~t,j8!#dj8 ~38!

for i 51,2,3. Here

c1,1~j!5
b0

2 E
M j

ce2c2
h2~c!dc, ~39a!

c1,2~j!5
b0j

2 E
M j

ce2c2
h3~c!dc, ~39b!

c1,3~j!5
b0

2 E
M j

ce2c2
h2~c!~c22v!dc, ~39c!

c2,1~j!5
b1j

2 E
M j

ce2c2
h3~c!dc, ~39d!

c2,2~j!5
b1j2

2 E
M j

ce2c2
h4~c!dc, ~39e!

c2,3~j!5
b1j

2 E
M j

ce2c2
h3~c!~c22v!dc, ~39f!

c3,1~j!5
b2

2 E
M j

ce2c2
h2~c!~c22v!dc, ~39g!

c3,2~j!5
b2j

2 E
M j

ce2c2
h3~c!~c22v!dc ~39h!

and

c3,3~j!5
b2

2 E
M j

ce2c2
h2~c!~c22v!2dc, ~39i!
Downloaded 28 Dec 2001 to 152.1.79.110. Redistribution subject to A
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where

cPM j if
h~c!uju

c
<1. ~40!

In regard to boundary conditions, we substitute Eq.~37! into
Eq. ~33! to obtain

G1~0,j!2~12a!G1~0,2j!2D

5
4a

3
G1~22a!~v25/2!j, ~41a!

G2~0,j!1~12a!G2~0,2j!50, ~41b!

and

G3~0,j!2~12a!G3~0,2j!5~22a!j ~41c!

for jP~0,g#. Here the diffuse term in Eq.~41a! is given by

D5
8a

b0
E

0

g

@c1,1~j!G1~0,2j!2c1,2~j!G2~0,2j!

1c1,3~j!G3~0,2j!#jdj. ~42!

We now introduce the vector-valued functionG~t,j!, with
componentsGi(t,j), i 51,2,3, and write Eq.~38! as

j
]

]t
G~t,j!1G~t,j!5E

2g

g

C~j8!G~t,j8!dj8, ~43!

where the 333 matrix C~j! has componentsc i , j (j). To
have our boundary conditions in vector form, we rewr
Eqs.~41! as

G~0,j!2~12a!SG~0,2j!

22aE
0

g

Y~j8!G~0,2j8!j8 dj85R~j! ~44!

for jP~0,g#. Here

S5diag$1,21,1%, ~45!

Y~j!5
4

b0
F c1,1~j! 2c1,2~j! c1,3~j!

0 0 0

0 0 0
G ~46!

and

R~j!5F ~22a!~v25/2!j1~4/3!aG
0

~22a!j
G . ~47!

And so we seek a bounded~as t→`! solution of Eq.~43!
that satisfies Eq.~44!. Of course, once we have solved theG
problem, we can use Eq.~37! to rewrite Eqs.~30! and~31! as

N* ~t!5~K/s!H 2t1
1

p1/2E
2g

g

@n1~j!G1~t,j!

1n2~j!G2~t,j!1n3~j!G3~t,j!#djJ ~48!

and
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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T* ~t!5~K/s!H t1
2

3p1/2E
2g

g

@ t1~j!G1~t,j!

1t2~j!G2~t,j!1t3~j!G3~t,j!#djJ , ~49!

where

n1~j!52E
M j

ce2c2
h~c!dc, ~50a!

n2~j!52jE
M j

ce2c2
h2~c!dc, ~50b!

and

n3~j!52E
M j

ce2c2
h~c!~c22v!dc, ~50c!

and also where

t1~j!52E
M j

ce2c2
h~c!~c223/2!dc, ~51a!

t2~j!52jE
M j

ce2c2
h2~c!~c223/2!dc, ~51b!

and

t3~j!52E
M j

ce2c2
h~c!~c22v!~c223/2!dc. ~51c!

It is clear that the scale factors will have a fundamenta
effect on our reported numerical results, and since there
ready exist various possibilities in the literature concern
the definition of an appropriate mean-free path, we elect h
to use one of Loyalka’s choices9 for scaling our results. We
therefore define

s5e t5
16

15
p21/2E

0

`

h21~c!c4e2c2
~c225/2!2dc ~52!

for all models we consider. As noted by Loyalka,9 the use of
s5e t corresponds to measuring our spatial variablex in
terms of a mean-free pathl t that is defined in terms of the
thermal conductivity.

IV. THE DISCRETE-ORDINATES SOLUTION

We note first of all that the characteristic matrixC~j!, as
defined by Eqs.~39!, is not symmetric. We note also tha
C~j!ÞC~2j!, and so we write our discrete-ordinates ve
sion of Eq.~43! as

6j i

d

dt
G~t,6j i !1G~t,6j i !

5 (
k51

N

wk@C~jk!G~t,jk!1C~2jk!G~t,2jk!# ~53!

for i 51,2,...,N. In writing Eqs.~53! as we have, we clearly
are considering that theN quadrature points$jk% and theN
weights$wk% are defined for use on the integration interv
@0,g#. We note that it is to this feature of using a ‘‘hal
Downloaded 28 Dec 2001 to 152.1.79.110. Redistribution subject to A
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l

range’’ quadrature scheme that we partially attribute the
pecially good accuracy we have obtained from the solut
reported here. Continuing, we substitute

G~t,6j i !5F~n,6j i !e
2t/n ~54!

into Eqs.~53! to find

~n7j i !F~n,6j i !5n(
k51

N

wk@C~jk!F~n,jk!

1C~2jk!F~n,2jk!# ~55!

for i 51,2,...,N. Now let

F1~n!5@FT~n,j1! FT~n,j2! ¯ FT~n,jN!#T, ~56a!

F2~n!5@FT~n,2j1! FT~n,2j2! ¯ FT~n,2jN!#T,
~56b!

and

M5diag$j1I ,j2I ,...,jNI %, ~57!

where I is the 333 identity matrix. In addition we letW1

andW2 denote 3N33N matrices each 333N row of which
is, respectively,

R15@w1C~j1! w2C~j2! ¯ wNC~jN!# ~58!

and

R25@w1C~2j1! w2C~2j2! ¯ wNC~2jN!#
~59!

so that we can write Eqs.~55! as

nF1~n!2MF1~n!5n@W1F1~n!1W2F2~n!#
~60a!

and

nF2~n!1MF2~n!5n@W1F1~n!1W2F2~n!#.
~60b!

At this point we find, after noting some basic properties
C~j!, that we can write

W25DW1D, ~61!

where the 3N33N diagonal matrixD can be written as

D5diag$S,S,...,S% ~62!

with S as given by Eq.~45!. We now multiply Eq.~60b! by D
and rewrite Eqs.~60! as

nF1~n!2MF1~n!5n@W1F1~n!1DW1DF2~n!#
~63a!

and

nDF2~n!1MDF2~n!5n@DW1F1~n!1W1DF2~n!#.
~63b!

Now let

U5F1~n!1DF2~n! ~64a!

and

V5F1~n!2DF2~n! ~64b!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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and add Eqs.~63! to obtain

n@ I2~ I1D!W1#U5MV , ~65!

where nowI is the 3N33N identity matrix. We also com-
pute the difference between Eqs.~63! to find

n@ I2~ I2D!W1#V5MU . ~66!

We now can eliminateV~n! between Eqs.~65! and ~66! to
find the eigenvalue problem

AU5lU, ~67!

wherel51/n2 and

A5M21@ I2~ I2D!W1#M21@ I2~ I1D!W1#. ~68!

And so our first computational job is to find the 3N eigen-
values ofA. However we first wish to address the issue
infinite values of the separation constantn ~or equivalently,
the eigenvalues ofA that approach zero asN tends to infin-
ity!. We first introduce

L~z!5I1zE
2g

g

C~j!
dj

j2z
~69a!

and note that we considerL(z) to be the exact version of th
discrete-ordinates quantity

V~z!5I1z(
k51

N

wkFC~jk!
1

jk2z
2C~2jk!

1

jk1zG .
~69b!

Since we know that the separation constantsn j defined by
the zeros of detV(z) are the same as those we compute fr
the eigenvalues of the matrixA, we base our discussio
about the eigenvalues ofA ~that accumulate at zero asN
tends to infinity! on the zeros of detL(z) asz tends to infin-
ity. We find that

detL~z!;
M

z4 , MÞ0, ~70!

asz→`, and so we conclude that, asN tends to infinity,A
should havel50 as a~two-fold! repeated eigenvalue. An
so instead of using Eq.~54! for the two smallest eigenvalue
of A we use instead the following four exact solutions
Eq. ~43!:

G15F 0
0
1
G ~71a!

and

G25F 0
1
0
G ~71b!

along with

G35F 1
0
0
G ~71c!

and
Downloaded 28 Dec 2001 to 152.1.79.110. Redistribution subject to A
f

f

G4~t,j!5~t2j!Fv25/2
0
1

G . ~71d!

If we now let

G6~t!5@GT~t,6j1! GT~t,6j2! ¯ GT~t,6jN!#T,
~72!

then our discrete-ordinates solution can be written~after we
exclude all solutions that are not bounded ast tends to in-
finity! as

G6~t!5A1F11A2F21B1F31(
j 53

3N

AjF6~n j !e
2t/n j ,

~73!

whereB1 andAj , for j 51,2,...,3N, are arbitrary constants
In addition

Fj5@Gj
T Gj

T
¯ Gj

T#T, j 51,2,3, ~74!

and theF6(n j ) are available from Eqs.~64!, ~65!, and~66!.
We find

F1~n j !5 1
2$I1n jM

21@ I2~ I1D!W1#%Uj ~75!

and

F2~n j !5 1
2D$I2n jM

21@ I2~ I1D!W1#%Uj , ~76!

where Uj is the eigenvector ofA that corresponds to the
eigenvaluel j . Looking back now to Eq.~44!, we find, for
this formulation, that the boundary condition can be writt
as

G1~0!2~12a!RsG2~0!22aRdG2~0!5R, ~77!

where the known right-hand side is given by

R5@RT~j1! RT~j2! ¯ RT~jN!#T. ~78!

Note thatR~j! is given by Eq.~47!. In addition, we find we
can write the specular matrix as

Rs5diag$S,S,...,S%, ~79!

whereS is given by Eq.~45!. Finally, to account for diffuse
reflection,Rd is a 3N33N matrix each 333N row of which
is given by

Rr5@w1j1Y~j1! v2j2Y~j2! ¯ vNjNY~jN!#,
~80!

whereY~j! is given by Eq.~46!. It is clear that Eq.~77! is a
general result, but when the exact termsF1 , F2 , andF3 are
used in Eq.~44! the integrals resulting from the diffuse re
flection can be done exactly. Finally, we note that sinceF3

satisfies the homogeneous version of Eq.~77! the constant
B1 cannot be determined from that equation. However,
can impose on our solution the additional~arbitrary! normal-
ization condition

lim
t→`

@N* ~t!1T* ~t!#5G* . ~81!

At this point, we follow other works15,18,19 and useG* 50
which, when we consider Eqs.~48!, ~49!, and~73!, yields

B15~v25/2!A1 . ~82!
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Considering now the quantities we wish to evaluate,
substitute Eq.~73! into Eqs.~48! and~49! to find, after using
Eq. ~82!,

N* ~t!5~K/s!H 2t2A11
1

p1/2 (
j 53

3N

Aj@N1F1~n j !

1N2F2~n j !#e
2t/n jJ ~83!

and

T* ~t!5~K/s!H t1A11
2

3p1/2 (
j 53

3N

Aj@T1F1~n j !

1T2F2~n j !#e
2t/n jJ , ~84!

where

N65@w1N~6j1! w2N~6j2! ¯ wNN~6jN!#
~85a!

and

T65@w1T~6j1! w2T~6j2! ¯ wNT~6jN!#
~85b!

with

N~j!5@n1~j! n2~j! n3~j!# ~86a!

and

T~j!5@ t1~j! t2~j! t3~j!#. ~86b!

Note that the components of the vectors introduced
Eqs.~86! are defined by Eqs.~50! and~51!. We note also that
in obtaining Eqs.~83! and ~84! from Eqs.~48! and ~49!, we
have analytically integrated the first three terms of Eq.~73!,
but we have used our defined quadrature scheme to inte
the remaining terms. Now putting Eqs.~83! and~84! back in
terms of thex variable, we find

N~x!52x2A1 /s1
1

sp1/2 (
j 53

3N

Aj@N1F1~n j !

1N2F2~n j !#e
2sx/n j ~87!

and

T~x!5x1A1 /s1
2

3sp1/2 (
j 53

3N

Aj@T1F1~n j !

1T2F2~n j !#e
2sx/n j , ~88!
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where we have imposed the normalizationK51. If now we
let

Tasy~x!5x1A1 /s ~89!

and define the temperature-jump coefficientz by

Tasy~0!5z
d

dx
Tasy~x!ux50 , ~90!

then clearly

z5A1 /s. ~91!

To be very clear, we note that the constantG* introduced in
Eq. ~81! does not affect the temperature-jump coefficient
the temperature perturbationT(x). In fact, another choice o
G* would change only the density perturbationsN(x) by the
addition of a constant factor.

V. SPECIAL CASES

Having developed our general solution to th
temperature-jump problem for the CLF model of the line
ized Boltzmann equation, we are ready to list the spec
forms of certain basic quantities for the three special ca
we consider in this work.

A. Constant collision frequency

For this case, the classical BGK model, we write

h~c!51, ~92!

and so we find

g5`, ~93a!

G50, ~93b!

v53/2, ~93c!

b054/p1/2, ~93d!

and

s51. ~93e!

In addition, we find from Eqs.~39!
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C~j!5
p1/2 F 2j 2j 2j~j 21/2!

~2/3!~j221/2! ~2/3!j~j221/2! ~2/3!~j42j215/4!
G . ~94!
d
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-
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s
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se 1,
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We can also use Eqs.~50! and~51! to write Eqs.~86!, for this
case, as

N~j!5e2j2
@1 j j221/2# ~95a!

and

T~j!5e2j2
@j221/2 j~j221/2! j42j215/4#.

~95b!

B. The Williams model

For this case we write

h~c!5c, ~96!

and so we find

g51, ~97a!

G521/4, ~97b!

v52, ~97c!

b052, ~97d!

and

s5~6/5!p21/2. ~97e!

In addition, we find from Eqs.~39!

C~j!5
1

2 F 1 ~3/4!p1/2j 0

~9/8!p1/2j 3j2 ~9/16!p1/2j

0 ~3/16!p1/2j 1
G .

~98!

Again we can use Eqs.~50! and ~51! to write Eqs.~86!, for
this case, as

N~j!5@~1/2!p1/2 j 2~1/4!p1/2# ~99a!

and

T~j!5@0 j/2 ~3/4!p1/2#. ~99b!

C. The rigid-sphere model

For the rigid-sphere model, we follow Loyalka an
Hickey11 and write

h~c!5S 2c1
1

cD p1/2

2
erf~c!1e2c2

, ~100!

where erf(c) is the error function. Here we find the exa
results

g51/p1/2 ~101a!

and

v57/4, ~101b!
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and we have used the software packageMAPLE V to find the
numerical values

b050.7978845608029, ~101c!

G520.06063367084623, ~101d!

and

s50.2753345876233. ~101e!

In regard to Eqs.~39!, ~50!, and~51!, we have used numeri
cal methods to evaluate the various functions required
establishC~j!, N~j!, and T~j!. As discussed in a previou
work12 concerning Kramers’ problem, we let

f ~c!5
c

h~c!
~102!

and note that we can show, for the considered case,
f 8(c).0, for c>0 and so the inverse function

m~j!5 f 21~ uju!, jP@2g,g#, ~103!

exists, and thus we can write the required functions~written
symbolically as!

P~j!5E
M j

p~c!dc ~104!

as

P~j!5E
m~j!

`

p~c!dc, ~105!

which can be evaluated numerically oncem(j) is available;
as before12 we use Newton’s method to establish the requir
numerical values ofm(j).

VI. NUMERICAL RESULTS

The first thing we must do is to define the quadratu
scheme to be used in our discrete-ordinates solution,
since we have considered three different cases, to which
refer as case 1, case 2, and case 3 while meaning, res
tively, the BGK model, the Williams model, and the rigid
sphere model, we have used three different maps. For ca
we used the~nonlinear! transformation

u~j!5exp$2j% ~106!

to mapjP@0,̀ ! into uP@0,1#, and we then used the Gauss
Legendre scheme mapped~linearly! onto the interval@0,1#.
For cases 2 and 3 we simply mapped the Gauss–Lege
scheme onto, respectively, the intervals@0,1# and @0,p21/2#.
Having defined our quadrature scheme, we used the dr
program RG from theEISPACK collection20 to find the eigen-
values and eigenvectors defined by Eq.~67!. And so, after
using the subroutinesDGECO and DGESL from the LINPACK

package21 to solve the linear system derived from Eq.~77! to
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TABLE I. The temperature-jump coefficientz.

Model a50.1 a50.3 a50.5 a50.6 a50.7 a50.9 a51.0

Case 1 21.45012 6.630514 3.629125 2.867615 2.317534 1.570264 1.30
Case 2 21.19359 6.406417 3.435960 2.689383 2.153897 1.434848 1.18
Case 3 21.24657 6.452894 3.476180 2.726563 2.188095 1.463247 1.20
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find the constantsAj , for j 51,2,...,3N, we consider our so-
lution complete. Finally, but importantly, we have found, th
some elements of the matrix-valued functionC~j! as defined
by Eqs.~39! can be essentially zero~from a computational
point-of-view!. In such cases, we found that by defining
element to be precisely zero when that element is less t
say,e510250, we greatly increased the ability of the linea
algebra package to yield the required number of indepen
eigenvectors when there is a~nearly! repeated eigenvalue.

To complete our work we list in Tables I and II som
results obtained from ourFORTRAN implementation of the
developed solution of the temperature-jump problem for
three explicitly considered cases. We note that our results
given with what we believe to be seven, in Table I, and s
in Table II, figures of accuracy. While we have no proof
the accuracy achieved in this work, we have done so
things to support the confidence we have. First of all o
results for case 1 agree perfectly with some~quasi! indepen-
dent calculations15 done previously. In addition we foun
agreement, to three figures, with the value ofz for case 2,
with a51.0, that was reported by Cassell and Williams.22 We
also found apparent convergence in our numerical result
we increasedN, the number of quadrature points used, and
reduce the possibility ofFORTRAN errors, we have imple-
mented two independent versions of the algorithm. Fina
we note that for case 2, the Williams model, the three-vec
G problem can, as discussed by Williams and Cassell,22 be
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solved as three consecutive scalar problems. This appro
has been used by Bartz23 to confirm all of the results given in
Tables I and II that refer to case 2.

We have typically usedN550 to generate results for th
temperature-jump coefficientz and the temperature and de
sity perturbations good to, say, five or six significant figur
and so we note that ourFORTRAN implementation~no special
effort was made to make the code especially efficient! of our
discrete-ordinates solution~with N550! runs in a few sec-
onds on a 400 MHz Pentium-based PC.

To have some idea of the merits of the CLF model, as
have used it here, we note that Loyalka9 and Sone, Ohwada
and Aoki10 give, respectively, for the casea51, the results
z51.2486 andz51.2482 for the case of the linearize
Boltzmann equation relevant to hard-sphere collisions. If
consider these results to be the best available for the prob
as defined in this work, then our use of the CLF model
the rigid-sphere case~z51.206526! provides a modest im-
provement~in regard to the temperature-jump coefficient f
the casea51! over the classical BGK model~z51.302716!.

VII. FINAL COMMENTS

In concluding this work, we note that we have been a
to extend the use of our analytical version of the discre
ordinates method to solve the temperature-jump problem
a general version of the variable collision frequency mod
TABLE II. The temperature and density perturbations for the casea50.5.

x

Case 1 Case 2 Case 3

T(x) N(x) T(x) N(x) T(x) N(x)

0.0 2.91597 23.07437 3.10167 23.27399 3.00508 23.16704
0.1 3.18042 23.31664 3.30560 23.42542 3.23434 23.35822
0.2 3.36278 23.48323 3.45447 23.54940 3.39748 23.50093
0.3 3.52167 23.62947 3.58758 23.66556 3.54146 23.63010
0.4 3.66754 23.76478 3.71209 23.77746 3.67483 23.75193
0.5 3.80489 23.89310 3.83110 23.88665 3.80132 23.86906
0.6 3.93615 24.01653 3.94628 23.99397 3.92295 23.98291
0.7 4.06283 24.13633 4.05866 24.09990 4.04097 24.09435
0.8 4.18593 24.25334 4.16891 24.20480 4.15620 24.20394
0.9 4.30614 24.36814 4.27749 24.30888 4.26921 24.31208
1.0 4.42400 24.48113 4.38475 24.41233 4.38044 24.41906
2.0 5.52928 25.55674 5.42014 25.42888 5.44006 25.45530
3.0 6.57466 26.58912 6.43030 26.43349 6.46062 26.46735
4.0 7.59758 27.60560 7.43378 27.43503 7.46901 27.47216
5.0 8.61013 28.61476 8.43508 28.43559 8.47273 28.47426
6.0 9.61737 29.62011 9.43559 29.43581 9.47447 29.47523
7.0 10.6217 210.6234 10.4358 210.4359 10.4753 210.4757
8.0 11.6243 211.6254 11.4359 211.4359 11.4757 211.4759
9.0 12.6260 212.6267 12.4359 212.4359 12.4759 212.4761

10.0 13.6271 213.6275 13.4359 213.4360 13.4761 213.4761
20.0 23.6291 223.6291 23.4360 223.4360 23.4762 223.4762
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In addition to a formulation valid for a general form of th
collision frequency, the algorithm was implemented to yie
high-quality numerical results for three well-regarded form
Since the reported solution is easy to evaluate and yi
excellent numerical results, and since the developed c
runs typically in a few seconds on a 400 MHz Pentium-ba
PC, we consider the solution ready for additional appli
tions. It is clear that the formalism reported here can rea
be used to solve other classical problems, in semi-infin
media and for plane-parallel channel flow, in rarefied-g
dynamics, when one of the three explicitly developed va
ants of the CLF model equation is required to give~perhaps!
more realistic results than the standard BGK model can p
vide. And finally, since the development reported here is a
general, we believe that our solution can immediately
used with forms of the collision frequency additional to t
three special cases considered.
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