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Abstract

An integro-di4erential form of the linearized S-model kinetic equations for describing *ow in a cylin-
drical tube is projected in such a way as to yield a pair of coupled transport equations that de6nes the
desired velocity and heat-*ow pro6les. This system is then solved symbolically to yield a pair of coupled
integral equations for the physical quantities required. At this point some transformations are carried out
to yield a restatement of the original problem in terms of a “pseudo-problem” de6ned by plane-geometry
variables. An analytical version of the discrete-ordinates method is then used to solve the pseudo-problem,
and so, after both MATLAB and FORTRAN versions of the developed algorithm are implemented, re-
sults thought to be highly accurate are obtained for the case of di4use re*ection from the walls of
a cylindrical tube. In addition to the velocity and heat-*ow pro6les, for the cases of Poiseuille *ow
and thermal-creep *ow, the velocity slips, the heat-*ow pro6les evaluated at the wall, the particle-*ow
rates and the heat-*ow rates for these two problems are reported for selected values of the tube radius.
? 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Rare6ed gas dynamics; Discrete ordinates

1. Introduction

Internal rare6ed gas *ows de6ne a 6eld of major interest in the general area of rare6ed-gas
dynamics, and so the contributions to this body of knowledge are many. While the books of
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Cercignani [1,2] and Williams [3] provide excellent material relevant to this 6eld, a comprehen-
sive review recently reported by Sharipov and Seleznev [4] is also a useful up-to-date source
that pays much attention to comparing di4erent computational methods as well as di4erent
mathematical formulations basic to rare6ed-gas dynamics. It is made clear in Ref. [4] that the
thermal transpiration phenomena, which exist in internal *ows produced by a temperature or
pressure gradient, continue to attract the attention of scientists. Moreover there is additional re-
cent interest in these e4ects due to applications in micro-electro-mechanical systems (MEMS).
This is a fast growing industry, and so there is need for further improvement of calculations
and modeling for the *ow of micro*uids. In many cases the *ow conditions are in the transition
regime and as a result the well known and commonly used Navier–Stokes equations cannot be
applied. In these cases the Boltzmann equation or suitable kinetic models should be utilized. And
so it follows that we should continue to develop precise and accurate numerical schemes for the
computation of thermo-*uid parameters for particle *ows, especially *ows through capillaries
of di4erent cross-sectional area.
It is clear, that in the general theory of particle transport theory, one must deal with the

non-linear Boltzmann equation, and in such cases iterative, computationally intensive methods
or Monte Carlo methods are ways that are sometimes used in an attempt to obtain results of
physical interest. On the other hand in special situations, for example when the density of par-
ticles is low, model equations can be used to provide meaningful physical results. Solutions
to these model kinetic equations can also be used to establish test results for evaluating solu-
tion techniques developed for more exact formulations. In regard to *ow in cylindrical tubes,
Sharipov and Seleznev [4] report numerical results based on various computational approaches,
and while most works available for the cylindrical case are based on the classical BGK model
[5], other more general models have also been used. It has been reported [4,6], for example,
that in the case of nonisothermal *ows the S model of Shakhov [7], as quoted by Ref. [4],
o4ers some improvement over the standard BGK model.
It is clear that the challenges of *ow problems de6ned by cylindrical geometry are signif-

icant, but some de6nite progress has been made, especially in regard to the BGK model. An
important work in this regard is that of Ferziger [8] who extended the use of the Mitsis [9]
transformations, developed in the context of neutron-transport theory, in order to recast the
problem of *ow in a cylindrical tube to a much simpler formulation in terms of plane-geometry
variables. Subsequent works by Lang and Loyalka [10], Valougeorgis and Thomas [11] and
Siewert [12] used what we might call semi-analytical methods to establish and report numer-
ical results for Poiseuille and thermal-creep *ow, de6ned by the BGK model, in a cylindrical
tube.
Here, following the work of Sharipov [6], we use the linearized S-model kinetic equations to

describe *ow in a cylindrical tube. We start with a familiar form of the balance equation, and,
following a similar work [13] that was based on the BGK model, we develop an alternative
formulation in terms of a system of coupled integral equations. Of course, the formulation of
the originally stated problem in terms of an integral equation o4ers some good possibilities for
numerical work, but more importantly here, we use this new formulation to extend the ideas of
Mitsis [9]. And so ultimately, we 6nd a so-called “pseudo-problem” de6ned by plane-geometry
variables that we are able to solve with good accuracy using an improved, analytical version
[14,15] of the discrete-ordinates method [16].
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2. De�ning equations

We start with the basic equation relevant to the S model, for applications in cylindrical
geometry with no variation in the axial direction, written as[

c⊥
(
cos�

@
@r

− sin�
r

@
@�

)
+ 1
]
h(r; c⊥; cz; �)=�−3=2I[h](r; c⊥; cz; �) + k(c⊥; cz); (1)

where the inhomogeneous driving term is

k(c⊥; cz)=− cz[k1 + k2(c2⊥ + c2z − 5=2)] (2a)

and the integral term is

I[h](r; c⊥; cz; �)=
∫ 2�

0

∫ ∞

−∞

∫ ∞

0
e−c

′2
h(r; c′⊥; c

′
z; �

′)K(c′: c)c′⊥ dc
′
⊥ dc

′
z d�

′: (2b)

We note that the problems of Poiseuille *ow and thermal-creep *ow discussed later in this
work are de6ned, respectively, by the choices k1 =1; k2 =0 and k1 =0; k2 =1 in the driving
term k(c⊥; cz). In addition, the kernel that de6nes the integral term is

K(c′ : c)=1 + 2[c′zcz + c′⊥c⊥ cos(�
′ − �)] + (2=3)(c′2 − 3=2)(c2 − 3=2) +M (c′ : c); (3)

where

M (c′: c)= (4=15)[c′zcz + c′⊥c⊥ cos(�
′ − �)](c′2 − 5=2)(c2 − 5=2) (4)

is the term [4,6] added to the BGK kernel to yield the kernel for the S model. Also, we note
that

c2 = c2⊥ + c2z (5a)

and

c′2 = c′2⊥ + c′2z : (5b)

In regard to boundary conditions, we write our versions, of what Williams [3] has, as

h(R; c⊥; cz; �)= �D+ (1− �)h(R; c⊥; cz; �+ �); �∈ [�=2; �]; (6a)

and

h(R; c⊥; cz; �)= �D+ (1− �)h(R; c⊥; cz; �− �); �∈ [�; 3�=2]; (6b)

where the constant D is given by

D=
2
�

(∫ �=2

0
+
∫ 2�

3�=2

)∫ ∞

−∞

∫ ∞

0
h(R; c⊥; cz; �)e−c

2
c2⊥ cos� dc⊥ dcz d�: (7)
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We consider that the distribution function h(r; c⊥; cz; �) de6ned by the basic kinetic equation,
written as Eq. (1), and the boundary condition, written as Eqs. (6), depends on the spatial vari-
able r ∈ (0; R), written in dimensionless units, and the particle velocity vector c expressed, also
in dimensionless units, in the cylindrical coordinates, c⊥ ∈ [0;∞), �∈ [0; 2�] and cz ∈ (−∞;∞).
To connect with the notation of Refs. [4] and [6], we note that we can write R= �, where
�= a�1=2=(2�) is the “rarefaction” parameter. Here a is the physical radius of the considered
tube and � is a mean-free path.
In this work we seek to compute physical quantities related to particle velocities and heat

*ow, and since some di4erent notations are used [4,6] and in order to be very clear about our
terminology we refer to

u(r)=�−3=2
∫ 2�

0

∫ ∞

−∞

∫ ∞

0
e−c

2
h(r; c⊥; cz; �)czc⊥ dc⊥ dcz d� (8)

as the velocity pro6le and to

q(r)=�−3=2
∫ 2�

0

∫ ∞

−∞

∫ ∞

0
e−c

2
(c2 − 5=2)h(r; c⊥; cz; �)czc⊥ dc⊥ dcz d� (9)

as the heat-*ow pro6le. We note that u(r) and q(r) are the basic quantities of interest, and so we
do not (fortunately) actually have to compute the complete distribution function h(r; c⊥; cz; �).
Instead, we can obtain the results we seek from various moments, or integrals, of the distribution
function. And so to start our development, we multiply Eq. (1) by

�1(cz)= cz exp(−c2z ); (10)

integrate over all cz and introduce the new variables �= c⊥ and �′= c′⊥ to 6nd[
�
(
cos�

@
@r

− sin�
r

@
@�

)
+ 1
]
h1(r; �; �)=I[h1; h2](r; �) + a1(�); (11)

where

I[h1; h2](r; �)=
1
�

∫ 2�

0

∫ ∞

0
e−�

′2
[f1;1(�′; �)h1(r; �′; �′) + f1;2(�)h2(r; �′; �′)]�′ d�′ d�′ (12)

with

f1;1(�′; �)=1 + (2=15)(�′2 − 1)(�2 − 1) (13)

and

f1;2(�)= (1=5)(2=3)1=2(�2 − 1): (14)

Here

h1(r; �; �)=
∫ ∞

−∞
e−c

2
z h(r; �; cz; �)cz dcz; (15)

h2(r; �; �)= (2=3)1=2
∫ ∞

−∞
e−c

2
z (c2z − 3=2)h(r; �; cz; �)cz dcz (16)
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and

a1(�)=− (1=2)�1=2[k1 + k2(�2 − 1)]: (17)

Continuing, we next multiply Eq. (1) by

�2(cz)= (2=3)1=2cz(c2z − 3=2) exp(−c2z ) (18)

and integrate over all cz to 6nd[
�
(
cos�

@
@r

− sin�
r

@
@�

)
+ 1
]
h2(r; �; �)=J[h1; h2](r) + a2; (19)

where

J[h1; h2](r)=
1
�

∫ 2�

0

∫ ∞

0
e−�

′2
[f2;1(�′)h1(r; �′; �′) + f2;2h2(r; �′; �′)]�′ d�′ d�′ (20)

with

f2;1(�′)= (1=5)(2=3)1=2(�′2 − 1) (21)

and

f2;2 =1=5: (22)

In addition

a2 =− (3�=8)1=2k2: (23)

At this point we can rewrite Eqs. (11) and (19) as[
�
(
cos�

@
@r

− 1
r
sin�

@
@�

)
+ 1
]
H(r; �; �)=I(r; �) + A(�); (24)

where

I(r; �)=
1
�
Q(�)

∫ 2�

0

∫ ∞

0
e−�

′2
QT(�′)H(r; �′; �′)�′ d�′ d�′ (25)

with

Q(�)=

[
(2=15)1=2(�2 − 1) 1

(1=5)1=2 0

]
: (26)

Here the elements of the two-vector H(r; �; �) are h1(r; �; �) and h2(r; �; �). In addition the two
elements of A(�) are a1(�) and a2 as de6ned by Eqs. (17) and (23).
Now in regard to boundary conditions, we project Eqs. (6) against �1(cz) and �2(cz) to

obtain

H(R; �; �)= (1− �)H(R; �; �+ �); �∈ [�=2; �]; (27a)
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and

H(R; �; �)= (1− �)H(R; �; �− �); �∈ [�; 3�=2]: (27b)

Since the solution we seek has the symmetry property

H(r; �; 2�− �)=H(r; �; �); �∈ [0; �]; (28)

for all r and �, we let �=cos�, for �∈ [0; �], and

I(r; �; �)=H(r; �; arccos�); �∈ [− 1; 1]; (29)

and so we can rewrite Eq. (24) as[
�
(
�
@
@r
+
1− �2

r
@
@�

)
+ 1
]
I(r; �; �)=J(r; �) + A(�); (30)

where

J(r; �)=
2
�
Q(�)

∫ 1

−1

∫ ∞

0
e−�

′2
QT(�′)I(r; �′; �′)�′ d�′

d�′

(1− �′2)1=2
: (31)

We can also rewrite Eqs. (27) as

I(R; �;−�)= (1− �)I(R; �; �); �∈ [0; 1]: (32)

To conclude this section, we multiply Eq. (30) by Q−1(�) and de6ne

G(r; �; �)=Q−1(�)I(r; �; �) (33)

to obtain[
�
(
�
@
@r
+
1− �2

r
@
@�

)
+ 1
]
G(r; �; �)=

∫ 1

−1

∫ ∞

0
�(�′; �′)G(r; �′; �′) d�′ d�′ + �; (34)

where the elements of � are

�1 =− (15�=8)1=2k2 (35a)

and

�2 =− (1=2)k1�1=2: (35b)

In addition

�(�; �)=
2

�(1− �2)1=2
QT(�)Q(�)� e−�

2
; (36)
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and 6nally we can rewrite Eq. (32) as

G(R; �;−�)= (1− �)G(R; �; �); �∈ [0; 1]: (37)

3. A reformulation as an integral equation

It is clear that Eq. (34) provides a signi6cant challenge to workers who wish to proceed
directly from that equation with numerical methods. It is for this reason that we avoid such an
approach and so wish to extend the ideas of Mitsis [9], as they were employed by Ferziger
[8] for the BGK model. While to pursue the intended path requires a great deal of work, we
can bene6t greatly from a paper by Barichello et al. [13] that reported, in detail for the BGK
model, the work we extend here to the case of the S model where we must deal with a system
of coupled equations. And, more importantly, we arrive ultimately at a computational problem
much simpler than the one de6ned by Eq. (34).
In order to have our development here closely follow Ref. [13], we restate our problem in

slightly di4erent terms. We consider[
�
(
�
@
@r
+
1− �2

r
@
@�

)
+ 1
]
G(r; �; �)=

∫ 1

−1

∫ ∞

0
�(�′; �′)G(r; �′; �′) d�′ d�′ + � (38)

for �∈ [− 1; 1], �∈ [0;∞) and r ∈ (0; R) and
G(R; �;−�)=F(�; �); �∈ [0; 1] and �∈ [0;∞); (39)

where we assume � and, for the moment, F(�; �) to be known. To obtain the required integral
equation, we start by thinking of the � variable as a parameter, and then we introduce

Ĝ(r)=G [r; �; �(r)]: (40)

We thus can write

d
dr
Ĝ(r)=

@
@r
G(r; �; �) +

(
d�
dr

)
@
@�
G(r; �; �): (41)

We now let

d�
dr
=
1− �2

r�
(42)

and rewrite Eq. (41) as

d
dr
Ĝ(r)=

1
�

[
�
@
@r
G(r; �; �) +

1− �2

r
@
@�
G(r; �; �)

]
(43)

or, after we note Eq. (38),

d
dr
Ĝ(r) +

1
��(r)

Ĝ(r)=H(r); (44)
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where now

H(r)=
1

��(r)

[∫ 1

−1

∫ ∞

0
�(�′; �′)G(r; �′; �′) d�′ d�′ + �

]
: (45)

We can solve Eq. (42) to obtain

�(r)=± �(r); (46)

where

�(r)=
1
r
(r2 − a2)1=2 (47)

and where a is (for the moment) an arbitrary constant. Finding the integrating factor, we write
Eq. (44) as

d
dr
(Ĝ(r) exp{±r�(r)=�})=H(r) exp{±r�(r)=�}; (48)

and so, after noting Eq. (40), we can rewrite Eq. (48) as

d
dr
(G [r; �;±�(r)] exp{±r�(r)=�})=± 1

��(r)
S(r) exp{±r�(r)=�}; (49)

where

S(r)=
∫ 1

−1

∫ ∞

0
�(�′; �′)G(r; �′; �′) d�′ d�′ + �: (50)

We now can integrate Eq. (49), use �(r)=� and

a= r(1− �2)1=2 (51)

and follow Ref. [13] to 6nd ultimately that we can write

G(r; �; �)=B(r; �; �) +
∫ s0(r;�;�)

0
S[(r2 + s2�2 − 2rs��)1=2]e−s ds (52a)

and

G(r; �;−�)=B(r; �;−�) +
∫ s0(r;�;−�)

0
S[(r2 + s2�2 + 2rs��)1=2]e−s ds (52b)

for �∈ [0; 1]. Here
s0(r; �; �)= [(R2 − r2 + r2�2)1=2 + r�]=� (53)

and

B(r; �; �)=F[�; �0(R; r; �)]exp{−[R�0(R; r; �) + r�]=�}; (54)

where, in general,

�0(x; r; �)=
1
x
(x2 − r2 + r2�2)1=2: (55)
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Seeking to derive an integral equation for

G(r)=
∫ 1

−1

∫ ∞

0
�(�; �)G(r; �; �) d� d�; (56)

we multiply Eqs. (52) by �(�; �) and integrate over all � and � to 6nd, after some extensive
calculations analogous to those reported in Ref. [13],

G(r)=B(r) +
2
�

∫ ∞

0
e−�

2
QT(�)Q(�)

∫ R

0
xS(x)

∫ 1

−1
exp{−p(x; r; �)=�}
p(x; r; �)(1− �2)1=2

d� dx d�; (57)

where

p(x; r; �)= (x2 + r2 − 2xr�)1=2 (58)

and where the contribution from the boundary term is

B(r)=
∫ 1

−1

∫ ∞

0
�(�; �)F[�; �0(R; r; �)]exp{−s0(r; �; �)} d� d�: (59)

Continuing, we make use of various Bessel function identities and changes of variables to 6nd,
again after much work closely related to what was reported in Ref. [13],

G(r)=B(r) +
∫ R

0
xK(x → r)[G(x) + �] dx; (60)

where the kernel of the integral equation is

K(x → r)=
2
�1=2

∫ ∞

0
e−�

2
F0(x=�; r=�)�(�)

d�
�2
: (61)

Here

�(�)=�0 + �2�2 + �4�4; (62)

where

�0 =

[
3=10 −(1=30)1=2

−(1=30)1=2 1

]
; (63a)

�2 =

[
−2=15 (2=15)1=2

(2=15)1=2 0

]
(63b)

and

�4 =
[
2=15 0
0 0

]
: (63c)
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In addition

F0(x; r)=
{
I0(x)K0(r); x¡ r;
K0(x)I0(r); x¿ r;

(64)

where I0(x) and K0(x) are used to denote modi6ed Bessel functions. If we now let

G(r)=Z(r)− � (65)

then the integral equation to be solved is

Z(r)=B(r) + �+
∫ R

0
xK(x → r)Z(x) dx (66)

where B(r) is given by Eq. (59) and

�=− �1=2

2

[
(15=2)1=2k2

k1

]
: (67)

4. A pseudo-problem

Looking back to Eqs. (8) and (9), we 6nd that the quantities of physical interest here, viz.
the velocity pro6le and the heat-*ow pro6le, can be written as

u(r)=�−1=2[0 1]G(r) (68)

and

q(r)= [15=(2�)]1=2[1 0]G(r); (69)

where G(r) is expressed in terms of Z(r) by Eq. (65) and where Z(r) is a solution of the
integral equation listed as Eq. (66). However, rather than attempting to solve Eq. (66), we
will make use of a transformation that is based on the work of Mitsis [9] and which allows a
convenient reformulation in terms of a “pseudo-problem” that can be solved with a variation
of the discrete-ordinates method. And so we introduce

 (r; �)=
1
�2

∫ R

0
xF0(x=�; r=�)Z(x) dx (70)

which can be di4erentiated to yield[
�2
(
@2

@r2
+
1
r
@
@r

)
− 1
]
 (r; �) + Z(r)= 0: (71)

Now rewrite Eq. (66) as

Z(r)=B(r) + �+
∫ ∞

0
�(�) (r; �) d�; (72)
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where

�(�)=
2
�1=2

e−�
2
�(�): (73)

And so we can rewrite Eq. (71) as[
�2
(
@2

@r2
+
1
r
@
@r

)
− 1
]
 (r; �) +

∫ ∞

0
�(�′) (r; �′) d�′ + B(r) + �= 0: (74)

Seeking a boundary condition subject to which we must solve Eq. (74), we can di4erentiate
Eq. (70) to 6nd

K1(�) (R; �) + �K0(�)
@
@r
 (r; �)

∣∣∣∣
r=R

= 0; �∈ [0;∞): (75)

In regard to the terms B(r) and � that appear in Eq. (74), we note that � is a true inhomo-
geneous term since it is known, as can be seen from Eq. (67). The other term, however, is not
a true inhomogeneous term unless, as can be seen from Eq. (59), the vector-valued function
F(�; �) introduced in Eq. (39) is known. But in fact, for the general problem considered here,
we see from Eq. (37) that F(�; �) should be used to describe particles re*ected specularily
from the wall of the tube that con6nes the *ow. For this reason, we consider, in the remainder
of this work, only the case of di4use re*ection (�=1). We therefore drop B(r) from Eq. (74)
and consider our pseudo-problem to be de6ned by[

�2
(
@2

@r2
+
1
r
@
@r

)
− 1
]
 (r; �) +

∫ ∞

0
�(�′) (r; �′) d�′ + �= 0; (76)

for r ∈ (0; R) and �∈ [0;∞), and

K1(�) (R; �) + �K0(�)
@
@r
 (r; �)

∣∣∣∣
r=R

= 0 (77)

for �∈ [0;∞). We 6nd that

 p(r; �)=
�1=2

4

[
(6=5)1=2k1 − 3(15=2)1=2k2

(r2 − R2 + 4�2)k1

]
(78)

is a particular solution of Eq. (76), and so we write

 (r; �)= h(r; �) +  p(r; �); (79)

where the homogeneous component  h(r; �) is de6ned by[
�2
(
@2

@r2
+
1
r
@
@r

)
− 1
]
 h(r; �) +

∫ ∞

0
�(�′) h(r; �′) d�′ = 0; (80)

for r ∈ (0; R) and �∈ [0;∞), and the boundary condition

 h(R; �) + �$(�)
@
@r
 h(r; �)

∣∣∣∣
r=R

=R(�) (81)
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for �∈ [0;∞). Here

R(�)= − p(R; �)− �$(�)
@
@r
 p(r; �)

∣∣∣∣
r=R

(82)

and

$(�)=
K0(R=�)
K1(R=�)

: (83)

Before developing our discrete-ordinates solution to the problem de6ned by Eqs. (80) and
(81), we note again that once we have a solution to the considered pseudo-problem, the basic
quantities we seek will be available from

G(r)=
∫ ∞

0
�(�) (r; �) d�; (84)

and so we proceed to develop an algorithm for establishing the discrete-ordinates solution we
require to complete this work.

5. The discrete-ordinates solution

It is usual when working in cylindrical coordinates to anticipate Bessel function solutions,
and so even though Eq. (80) de6nes a pseudo-problem, that equation is related to our problem
of *ow in a cylindrical tube. Therefore it is reasonable to seek solutions of Eq. (80) of the
form

 h(r; �)=%(�; �)I0(r=�): (85)

Clearly, because r=0 is included in our domain, solutions based on the related Bessel function
K0(r=�) are not appropriate here. And so we substitute Eq. (85) into Eq. (80) to 6nd

(�2 − �2)%(�; �)= �2
∫ ∞

0
�(�′)%(�; �′) d�′ (86)

which we should solve to 6nd the elementary vectors %(�; �). At this point we introduce a
quadrature scheme and rewrite Eq. (86) as

(�2 − �2)%(�; �)= �2
N∑
k=1

wk�(�k)%(�; �k) (87)

where the N weights and nodes {wk; �k} are de6ned for use on the integration interval [0;∞).
We now evaluate Eq. (87) at the quadrature points and write the resulting equations as

(1=�2i )

[
%(�; �i)−

N∑
k=1

wk�(�k)%(�; �k)

]
=(1=�2)%(�; �i) (88)
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for i=1; 2; : : : ; N . If we introduce the 2N × 1 vector
%(�)= [%T(�; �1) %T(�; �2) · · · %T(�; �N )]T (89)

we can write Eqs. (88) as

(D −W)%(�)= �%(�); (90)

where �=1=�2,

D=diag{(1=�1)2I ; (1=�2)2I ; : : : ; (1=�N )2I} (91)

and W is a 2N × 2N matrix each 2× 2N row of which is given by

Ri=(1=�i)2[w1�(�1) w2�(�2) · · · wN�(�N )] (92)

for i=1; 2; : : : ; N . We note also that I is Eq. (91) is used here to denote the 2 × 2 identity
matrix. And so we will solve the eigenvalue problem de6ned by Eq. (90) and (to start) write
our discrete-ordinates solution as

 h(r; �k)=
2N∑
j=1

Aj%(�j; �k)Î 0(r=�j)e−(R−r)=�j ; (93)

where the 2 × 1 vectors %(�j; �k) are the block components of %(�j). Here the (positive)
separation constants �j=1=�

1=2
j and the eigenvectors %(�j) are available from the eigenvalue

problem de6ned by Eq. (90), and the arbitrary constants Aj are to be determined from the
boundary condition. In this work we use, for computational reasons,

Î n(z)= In(z)e−z (94a)

and

K̂n(z)=Kn(z)ez: (94b)

While Eq. (93) is a valid result, one improvement can be made in regard to in6nite values of
the separation constant �, or equivalently, the eigenvalues of

A=D −W (95)

that approach zero as N tends to in6nity. We 6rst introduce

&(z)= I + z2
∫ ∞

0
�(�)

d�
�2 − z2

(96)

and note that we consider &(z) to be the exact version of the discrete-ordinates quantity

'(z)= I + z2
N∑
k=1

wk�(�k)
1

�2k − z2
: (97)
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We can show that the separation constants �j de6ned by the zeros of det'(z) are the same as
those we compute from the eigenvalues of the matrix A, and so we base our discussion about
the eigenvalues of A (that accumulate at zero as N tends to in6nity) on the zeros of det&(z)
as z tends to in6nity. We note that

&(∞)= I −
∫ ∞

0
�(�) d� (98)

can be evaluated to yield

&(∞)=
[
2=3 0
0 0

]
: (99)

We note also that if

&(z)= I + z2
∫ ∞

0
�(�)

d�
�2 − z2

(100)

then

det&(z) ∼ 1
3z2

(101)

as z tends to in6nity, and so we conclude that, as N tends to in6nity, A should have �=0 as
a repeated eigenvalue. Therefore instead of using the discrete-ordinates result corresponding to
the largest separation constant, say �1, we use the exact value �1 =∞ and the exact solution of
Eq. (80)

%+ =
[
0
1

]
(102)

in order to write Eq. (93) as

 h(r; �k)=A1%+ +
2N∑
j=2

Aj%(�j; �k)Î 0(r=�j)e−(R−r)=�j : (103)

Now we can substitute Eq. (103) into a discrete version of Eq. (81), viz.

 h(R; �i) + �i$(�i)
@
@r
 h(r; �i)

∣∣∣∣
r=R

=R(�i); (104)

for i=1; 2; : : : ; N , to de6ne a linear system that can be solved to 6nd the constants Aj,
j=1; 2; : : : ; N , required in Eq. (103). At this point we can use Eqs. (78), (79) and (103)
to write our discrete-ordinates version of Eq. (84) as

G(r)= p;0(r) + A1%+ +
2N∑
j=2

AjN (�j)Î 0(r=�j)e−(R−r)=�j ; (105)



C.E. Siewert, D. Valougeorgis / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 531–550 545

where

 p;0(r)=
�1=2

4

[
(6=5)1=2k1 − (15=2)1=2k2

(r2 − R2 + 2)k1

]
(106)

and

N (�j)=
N∑
k=1

wk�(�k)%(�j; �k): (107)

To complete our solution we wish to compute the velocity pro6le

u(r)=�−3=2
∫
e−c

2
h(r; c)cz dc (108)

and the heat-*ow pro6le

q(r)=�−3=2
∫
e−c

2
(c2 − 5=2)h(r; c)cz dc: (109)

We also wish to compute (what we call) the particle-*ow rate

U =
4
R3

∫ R

0
u(r)r dr (110)

and the heat-*ow rate

Q=
4
R3

∫ R

0
q(r)r dr: (111)

We 6nd, in terms of our discrete-ordinates solution,

u(r)=�−1=2[0 1]G(r) (112)

or

u(r)=
1
4
(r2 − R2 + 2)k1 + �−1=2


A1 + 2N∑

j=2

AjN2(�j)Î 0(r=�j)e−(R−r)=�j


 ; (113)

where N2(�j) is the lower component of N (�j). We can also 6nd

q(r)= [15=(2�)]1=2[1 0]G(r) (114)

or

q(r)=
1
4
[3k1 − (15=2)k2] + [15=(2�)]1=2

2N∑
j=2

AjN1(�j)Î 0(r=�j)e−(R−r)=�j ; (115)
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where N1(�j) is the upper component of N (�j). Now using Eq. (113) in Eq. (110) and
Eq. (115) in Eq. (111), we 6nd our 6nal results

U =
1
4R
(4− R2)k1 + �−1=2


 2
R
A1 +

4
R2

2N∑
j=2

Aj�jN2(�j)Î 1(R=�j)


 (116)

and

Q=
1
2R
[3k1 − (15=2)k2] + 4

R2
[15=(2�)]1=2

2N∑
j=2

Aj�jN1(�j)Î 1(R=�j): (117)

6. Numerical results

Repeating much of the discussion given in Ref. [12], where the version of the discrete-ordinates
method used here was used to solve the Poiseuille and thermal-creep problems for *ow, as de-
scribed by the BGK model, in a cylindrical tube, we note that what we must now do is to
de6ne the quadrature scheme to be used in our discrete-ordinates solution. In this work we have
used both (non-linear) transformations

u(�)= exp{−�} (118a)

and

u(�)=
1

1 + �
(118b)

to map �∈ [0;∞) into u∈ [0; 1], and we then used a Gauss–Legendre scheme mapped (linearly)
onto the interval [0; 1]. Of course other quadrature schemes could be used. In fact we note
that recent works by Garcia [17] and Gander and Karp [18] have reported special quadrature
schemes for use in the general area of particle transport theory. Such an approach clearly could
be used here. In fact the choice of a quadrature scheme based on the integration interval [0;∞)
with a weight function exp(−�2) is a natural choice for this work. However, we have found the
use of a mapping de6ned by either of Eqs. (118) followed by the use of the Gauss–Legendre
integration formulas to be so e4ective that we have not developed any special-purpose quadrature
schemes.
Having de6ned our quadrature scheme and in developing a FORTRAN implementation of our

solution, we found the required separation constants {�j} by using the driver program RG from
the EISPACK collection [19]. The required separation constants were then available as the recip-
rocals of the positive square roots of these eigenvalues. We then used the subroutines DGECO
and DGESL from the LINPACK package [20] to solve the linear system obtained when Eq.
(103) was substituted into Eq. (104). And in this way our solution was established as a viable
algorithm. As an alternative computation our solution was also evaluated using the MATLAB
software. Finally, but importantly, we have found, that elements of the matrix-valued function
�(�) as de6ned by Eq. (73) can be essentially zero (from a computational point-of-view). In
such cases, we found that by de6ning an element to be precisely zero when that element is less
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Table 1
Velocity and heat-*ow pro6les for the case R=2

r=R −uP(r) qP(r) uT(r) −qT(r)
0.00 2.386147 4.389470(−1) 4.088331(−1) 1.458556
0.05 2.382966 4.384708(−1) 4.084530(−1) 1.457669
0.10 2.373416 4.370367(−1) 4.073086(−1) 1.454995
0.15 2.357468 4.346288(−1) 4.053878(−1) 1.450495
0.20 2.335079 4.312198(−1) 4.026700(−1) 1.444104
0.25 2.306182 4.267700(−1) 3.991252(−1) 1.435726
0.30 2.270689 4.212262(−1) 3.947133(−1) 1.425232
0.35 2.228483 4.145192(−1) 3.893822(−1) 1.412453
0.40 2.179415 4.065609(−1) 3.830660(−1) 1.397174
0.45 2.123296 3.972404(−1) 3.756817(−1) 1.379120
0.50 2.059884 3.864177(−1) 3.671254(−1) 1.357945
0.55 1.988870 3.739155(−1) 3.572657(−1) 1.333204
0.60 1.909852 3.595061(−1) 3.459354(−1) 1.304325
0.65 1.822296 3.428926(−1) 3.329176(−1) 1.270556
0.70 1.725481 3.236767(−1) 3.179239(−1) 1.230881
0.75 1.618383 3.013050(−1) 3.005569(−1) 1.183888
0.80 1.499485 2.749676(−1) 2.802418(−1) 1.127506
0.85 1.366352 2.433855(−1) 2.560820(−1) 1.058480
0.90 1.214573 2.042772(−1) 2.265030(−1) 9.710624(−1)
0.95 1.034121 1.525221(−1) 1.880381(−1) 8.526430(−1)
1.00 7.710133(−1) 6.071916(−2) 1.227525(−1) 6.400572(−1)

than, say, -=10−20, we increased the ability of the linear-algebra package to yield the required
number of independent eigenvectors when there is a (nearly) repeated eigenvalue.
To complete our work we list in Tables 1–3 some results obtained from our FORTRAN

and MATLAB implementations of the developed solutions for Poiseuille *ow (identi6ed by the
subscript P) and thermal-creep *ow (identi6ed by the subscript T). In Table 1 the complete
velocity and heat-*ow pro6les are given for the case R=2. In Tables 2 and 3 the particle-*ow
rates and the heat-*ow rates, accompanied by the velocity slips and the heat-*ow pro6les
evaluated at the wall, are given for selected values of R. It is interesting to observe that
the heat-*ow pro6le evaluated at the wall can, for the case of Poiseuille *ow, actually have
a change of sign as the rarefaction parameter increases from R=3 to R=3:5. As expected,
the Onsager reciprocity relation [6,10], viz. UT =QP, is clearly veri6ed for all cases listed in
Tables 2 and 3. We note that our results are given with what we believe to be seven 6gures
of accuracy. While we have no proof of the accuracy achieved in this work, we have done
some things to support the con6dence we have. First of all the fact that our results from the
FORTRAN implementation and the MATLAB implementation agreed gave us some con6dence
in the programming aspect of the computations. We also found apparent convergence in our
numerical results as we increased N , the number of quadrature points used. Finally, we note
that for the case of R=2 we found agreement with results communicated by Sharipov [21].
While the agreement was not to as many 6gures that we believe we have correct, the degree
of agreement was signi6cant.
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Table 2
Velocity slips and particle-*ow rates

R −uP(R) uT(R) −UP UT

1.0(−3) 5.615159(−4) 2.793541(−4) 1.499564 7.469327(−1)
1.0(−2) 5.484670(−3) 2.657321(−3) 1.477013 7.210237(−1)
2.0(−2) 1.077748(−2) 5.110821(−3) 1.461627 7.019628(−1)
3.0(−2) 1.593887(−2) 7.421781(−3) 1.450166 6.868658(−1)
4.0(−2) 2.099655(−2) 9.618488(−3) 1.441014 6.741078(−1)
5.0(−2) 2.596783(−2) 1.171873(−2) 1.433444 6.629545(−1)
7.0(−2) 3.569677(−2) 1.567695(−2) 1.421555 6.439594(−1)
9.0(−2) 4.519237(−2) 1.936570(−2) 1.412653 6.280139(−1)
1.0(−1) 4.986657(−2) 2.112361(−2) 1.409017 6.208757(−1)
3.0(−1) 1.370961(−1) 4.851826(−2) 1.386792 5.304811(−1)
5.0(−1) 2.179308(−1) 6.729058(−2) 1.400539 4.784350(−1)
7.0(−1) 2.955389(−1) 8.122695(−2) 1.426619 4.404396(−1)
9.0(−1) 3.711649(−1) 9.197151(−2) 1.458860 4.100247(−1)
1.0 4.084491(−1) 9.645221(−2) 1.476445 3.967500(−1)
1.5 5.914445(−1) 1.127909(−1) 1.573028 3.429561(−1)
2.0 7.710133(−1) 1.227525(−1) 1.677914 3.027037(−1)
3.0 1.125576 1.334554(−1) 1.899694 2.450111(−1)
3.5 1.301794 1.364345(−1) 2.014114 2.234706(−1)
4.0 1.477686 1.385637(−1) 2.130089 2.052718(−1)
5.0 1.829008 1.413013(−1) 2.365454 1.762377(−1)
6.0 2.180127 1.429115(−1) 2.604078 1.541579(−1)
7.0 2.531257 1.439333(−1) 2.844990 1.368475(−1)
9.0 3.233786 1.451138(−1) 3.331419 1.115442(−1)
1.0(1) 3.585202 1.454767(−1) 3.576236 1.020442(−1)
1.0(2) 3.527277(1) 1.474937(−1) 2.602506(1) 1.159143(−2)

While higher-order approximations were required to achieve the desired degree of accuracy
for the case R=0:001, we have typically used N =80 to generate the results shown in Tables
1–3, and we note that our FORTRAN implementation (no special e4ort was made to make the
code especially ePcient) of our discrete-ordinates solution (with N =80) runs in a few seconds
on a 400 MHz Pentium-based PC.

7. Final remarks

In successfully extending the use of the Mitsis transformations to 6nd a convenient pseudo-
problem to describe *ow, as described by the S-model kinetic equations, we have been able to
use e4ectively an analytical version of the discrete-ordinates method to solve especially well
(we believe) the important problems of Poiseuille and thermal-creep *ow in a cylindrical tube.
While the kinetic equations for the S model lead to a system of moment equations, in contrast
to the scalar formulation obtained from the classical BGK model, the 6nal computations were
successfully implemented in what we consider to be a de6nitive manner. It can be seen clearly
that a great deal of analytical work (calculus) has been used to obtain the forms that de6ned
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Table 3
Heat-*ow pro6les at the wall and heat-*ow rates

R qP(R) −qT(R) QP −QT
1.0(−3) 2.793537(−4) 1.261629(−3) 7.469327(−1) 3.369503
1.0(−2) 2.657105(−3) 1.219530(−2) 7.210237(−1) 3.284827
2.0(−2) 5.109436(−3) 2.371572(−2) 7.019628(−1) 3.216628
3.0(−2) 7.417747(−3) 3.472991(−2) 6.868658(−1) 3.159537
4.0(−2) 9.609956(−3) 4.532003(−2) 6.741078(−1) 3.109260
5.0(−2) 1.170357(−2) 5.553981(−2) 6.629545(−1) 3.063811
7.0(−2) 1.564123(−2) 7.501621(−2) 6.439594(−1) 2.983242
9.0(−2) 1.929858(−2) 9.338320(−2) 6.280139(−1) 2.912576
1.0(−1) 2.103640(−2) 1.022000(−1) 6.208757(−1) 2.880057
3.0(−1) 4.730447(−2) 2.431888(−1) 5.304811(−1) 2.425120
5.0(−1) 6.345393(−2) 3.420581(−1) 4.784350(−1) 2.136032
7.0(−1) 7.329508(−2) 4.160334(−1) 4.404396(−1) 1.920322
9.0(−1) 7.858345(−2) 4.733153(−1) 4.100247(−1) 1.748587
1.0 7.986698(−2) 4.972763(−1) 3.967500(−1) 1.674548
1.5 7.618417(−2) 5.852983(−1) 3.429561(−1) 1.383987
2.0 6.071916(−2) 6.400572(−1) 3.027037(−1) 1.179408
3.0 9.743156(−3) 7.016543(−1) 2.450111(−1) 9.082233(−1)
3.5 −2:172108(−2) 7.200142(−1) 2.234706(−1) 8.136837(−1)
4.0 −5:564367(−2) 7.338079(−1) 2.052718(−1) 7.365532(−1)
5.0 −1:283763(−1) 7.529442(−1) 1.762377(−1) 6.184590(−1)
6.0 −2:051841(−1) 7.654700(−1) 1.541579(−1) 5.324764(−1)
7.0 −2:844151(−1) 7.742648(−1) 1.368475(−1) 4.672002(−1)
9.0 −4:469509(−1) 7.857839(−1) 1.115442(−1) 3.748535(−1)
1.0(1) −5:294313(−1) 7.897641(−1) 1.020442(−1) 3.410421(−1)
1.0(2) −8:177668 8.214638(−1) 1.159143(−2) 3.715566(−2)

our 6nal computational problem, but the end result was a more or less analytical solution for
the considered S-model *ow problems that yields high quality numerical results at very modest
computational expense.
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