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Abstract

An analytical version of the discrete-ordinates method is used to solve the classical problems of
Poiseuille +ow and thermal-creep +ow in a plane channel. The kinetic theory for the rare4ed-gas +ow
is based on the S model (a generalization of the BGK model), and in addition to the use of the
di9use–specular re+ection model (based on a single accommodation coe:cient) for describing particle
scattering from the channel walls, the Cercignani–Lampis model de4ned in terms of normal and tangential
accommodation coe:cients is implemented. The established solution is tested numerically, and results
for the velocity and heat-+ow pro4les, the particle-+ow rate and the heat-+ow rate thought to be correct
to many signi4cant 4gures are reported for various values of the channel width. ? 2001 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Two recent papers, one by Valougeorgis [1] and the other by Sharipov [2], have discussed
the +ow, as described by the so-called S model [3], of a rare4ed gas in a plane channel.
The Valougeorgis paper [1] makes use of an analytical version [4] of the discrete-ordinates
method [5] and deals with Poiseuille and thermal-creep +ow for the general case of di9use–
specular re+ection by the channel walls that con4ne the +ow. On the other hand, Sharipov [2]
used an optimized discrete velocity method [6] to solve these same two problems (with an
error estimated to be less than 0.1%) by considering that the re+ection by the channel walls
is described by the Cercignani–Lampis model [7]. In this work these two classical problems
are resolved in a concise and accurate way, and some comparisons are made between the two
models for describing the re+ections by the channel walls. While the books of Cercignani [8,9]
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and Williams [10] provide excellent material relevant to this 4eld, a comprehensive review
recently reported by Sharipov and Seleznev [11] is also a useful up-to-date source that pays
much attention to comparing di9erent computational methods as well as di9erent mathematical
formulations basic to rare4ed-gas dynamics.

2. De�ning equations

We start with the basic equation relevant to S-model applications in plane geometry written
as

c · ∇h(r; c) + h(r; c) = �−3=2
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−c

′2
h(r; c′)K(c′ : c) dc′x dc′y dc′z + k(c); (1)

where the inhomogeneous driving term, relevant to +ow in the x direction, is

k(c) = −cx[k1 + k2(c2
x + c2

y + c2
z − 5=2)]: (2)

Here

K(c′ : c) = 1 + 2c′ · c + (2=3)(c′2 − 3=2)(c2 − 3=2) +M (c′ : c); (3)

where

M (c′ : c) = (4=15)c′ · c(c′2 − 5=2)(c2 − 5=2) (4)

is the term [11] added to the BGK form [12] to yield the scattering kernel for the S model. We
note that the problems of Poiseuille +ow and thermal-creep +ow discussed later in this work
are de4ned, respectively, by the choices k1 = 1; k2 = 0 and k1 = 0; k2 = 1 in the driving term
k(c). Also, we note that the velocity vector c has the rectangular components {cx; cy; cz} and
magnitude c. Now with regard to +ow (in the x direction) in a plane channel (without variation
in the x and z directions) de4ned by y ∈ [ − a; a] we can rewrite Eq. (1) as

cy
@
@y
h(y; c) + h(y; c) = �−3=2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−c

′2
h(y; c′)K(c′ : c) dc′x dc′y dc′z + k(c); (5)

where we have taken account of the fact that the distribution function h depends on one spatial
variable only. In regard to boundary conditions we consider that

h(−a; cx; cy; cz) =
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
e−c

′2
h(−a; c′x;−c′y; c′z)R(c′x;−c′y; c′z : cx; cy; cz) dc′x dc′z dc′y (6a)

and

h(a; cx;−cy; cz) =
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
e−c

′2
h(a; c′x; c

′
y; c

′
z)R(c′x; c

′
y; c

′
z : cx;−cy; cz) dc′x dc′z dc′y (6b)
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for cy ∈ (0;∞) and all cx and cz. Here R(c′ : c) is used to describe the e9ect of the walls on
the particle distribution function, and we have written

h(y; c) = h(y; cx; cy; cz): (7)

We consider that the distribution function h(y; cx; cy; cz) de4ned by the basic kinetic equation,
written as Eq. (5), and the boundary conditions, written as Eqs. (6), depends on the spatial
variable y ∈ [ − a; a], written in dimensionless units, and the three components of velocity
cx; cy; cz ∈ (−∞;∞) which are also expressed in dimensionless units. Following Valougeorgis
[1] and Sharipov [2], we use the S model to study the e9ect on the +ow resulting from the
action of the re+ection kernel R(c′ : c), and while various physical constraints must be placed
on this function, we use, at this point, only the condition

R(c′x;−c′y; c′z : cx; cy; cz) = R(c′x; c
′
y; c

′
z : cx;−cy; cz) (8)

for cy and c′y ∈ (0;∞) and all cx; c′x; cz and c′z. It is clear that Eq. (8) implies that the two
surfaces of the channel re+ect gas particles in the same way. And so we conclude from
Eqs. (8) that the basic distribution function satis4es the symmetry condition

h(y; cx; cy; cz) = h(−y; cx;−cy; cz) (9)

for all y; cx; cy and cz.
In this work we seek to compute physical quantities related to particle velocities and heat

+ow, and since some di9erent notations are used [1,2] and in order to be very clear about our
terminology we refer to

u(y) = �−3=2
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−c

2
h(y; cx; cy; cz)cx dcx dcy dcz (10)

as the velocity pro4le and to

q(y) = �−3=2
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−c

2
h(y; cx; cy; cz)(c2 − 5=2)cx dcx dcy dcz (11)

as the heat-+ow pro4le. We note that u(y) and q(y) are the basic quantities of interest, and so
we do not actually have to compute the complete distribution function h(y; cx; cy; cz). Instead, we
can obtain the results we seek from various moments, or integrals, of the distribution function.
And so to start our development, we multiply Eq. (5) by

�1(cx; cz) = (1=�)cxe−(c2
x+c2

z ); (12)

integrate over all cx and cz and introduce the new variables �= cy and �′ = c′y to 4nd

�
@
@y
h1(y; �) + h1(y; �) = �−1=2

∫ ∞

−∞
e−�

′2
[f11(�′; �)h1(y; �′) + f12(�)h2(y; �′)] d�′ + a1(�) (13)

where

h1(y; cy) =
∫ ∞

−∞

∫ ∞

−∞
�1(cx; cz)h(y; cx; cy; cz) dcx dcz (14a)
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and

h2(y; cy) =
∫ ∞

−∞

∫ ∞

−∞
�2(cx; cz)h(y; cx; cy; cz) dcx dcz: (14b)

Here

�2(cx; cz) = (1=�)2−1=2cx(c2
x + c2

z − 2)e−(c2
x+c2

z ); (15)

a1(�) = −(1=2)[k1 + k2(�2 − 1=2)]; (16)

f11(�′; �) = 1 + (2=15)(�′2 − 1=2)(�2 − 1=2) (17a)

and

f12(�) = (2=15)21=2(�2 − 1=2): (17b)

Now multiplying Eq. (5) by �2(cx; cz) and integrating, we 4nd an equation to go with Eq. (13),
viz.

�
@
@y
h2(y; �) + h2(y; �) = �−1=2

∫ ∞

−∞
e−�

′2
[f12(�′)h1(y; �′) + f22h2(y; �′)] d�′ + a2; (18)

where

f22 = 4=15 (19)

and

a2 = −2−1=2k2: (20)

If we let H(y; �) denote the vector-valued function with components h1(y; �) and h2(y; �), then
we can write Eqs. (13) and (18) as

�
@
@y
H(y; �) +H(y; �) = �−1=2Q(�)

∫ ∞

−∞
e−�

′2
QT(�′)H(y; �′) d�′ + A(�); (21)

where we use the superscript T to denote the transpose operation,

Q(�) =

[
(2=15)1=2(�2 − 1=2) 1

2(15)−1=2 0

]
(22)

and the two elements of A(�) are a1(�) and a2 as de4ned by Eqs. (16) and (20). If we now
let

H(y; �) =Q(�)G(y; �) (23)

and

A(�) =Q(�)� (24)
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then we can rewrite Eq. (21) as

�
@
@y
G(y; �) + G(y; �) =

∫ ∞

−∞
�(�′)G(y; �′) d�′ + �; (25)

where

�(�) = �−1=2e−�
2
QT(�)Q(�): (26)

To be explicit, we note that

�= −(1=2)

[
(15=2)1=2k2

k1

]
: (27)

Now with regard to the boundary conditions listed as Eqs. (6), we follow Sharipov [2] and
use

R(c′x; c
′
y; c

′
z : cx; cy; cz) = ec

2
T (c′x : cx)S(c′y : cy)T (c′z : cz); (28)

where

T (x :y) = [��t(2 − �t)]−1=2e−[y−(1−�t)x]2=[�t(2−�t)] (29a)

and

S(x :y) =
2|x|
�n

e−[y2+(1−�n)x2]=�nI0[2(1 − �n)1=2|xy|=�n]: (29b)

Here I0(z) is used to denote a modi4ed Bessel function, viz.

I0(z) =
1

2�

∫ 2�

0
ez cos � d�: (30)

In writing Eqs. (28)–(30), Sharipov [2] based his development of the boundary condition on
the gas–surface interaction model introduced by Cercignani and Lampis [7]. We note that �t
is the accommodation coe:cient of tangential momentum and that �n is the accommodation
coe:cient of energy corresponding to the normal component of velocity [2,7].

Since we have the symmetry conditions listed as Eqs. (8) and (9), we need consider only
one of Eqs. (6). And so if we now multiply Eq. (6b) by �1(cx; cy) or �2(cx; cy) and integrate
over all cx and cz, we 4nd, after making use of Eqs. (28)–(30),

H(a;−�) = A
∫ ∞

0
e−�

′2
H(a; �′)f(�′; �) d�′; � ∈ (0;∞); (31)

where

A= diag{1 − �t; (1 − �t)3} (32)

and

f(�′ : �) = (2�′=�n)e−(1−�n)(�′2+�2)=�nI0[2(1 − �n)1=2�′�=�n] (33)

for �; �′ ∈ (0;∞). As a special case, we note that

lim
�n→0

e−�
′2
f(�′ : �) = N(�− �′); (34)
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where

N(�− �′) = lim
�→0

1
(��)1=2 e−(�−�′)2=� (35)

is a “representation” of the generalized function �(�− �′). So Eq. (31) yields

H(a;−�) = AH(a; �); � ∈ (0;∞); (36)

for the case �n → 0. Considering another special case of interest, we see that Eq. (31) yields

H(a;−�) = 2A
∫ ∞

0
�′e−�

′2
H(a; �′) d�′; � ∈ (0;∞); (37)

for the case �n = 1. Now since we have formulated our basic problem in terms of G(y; �) we
require the boundary conditions to go with Eq. (25). Noting Eq. (23), we rewrite Eq. (31) as

G(a;−�) =
∫ ∞

0
T(�′ : �)G(a; �′) d�′; � ∈ (0;∞); (38)

where

T(�′ : �) =Q(�)−1AQ(�′)k(�′ : �): (39)

For computational reasons we choose to write

k(�′ : �) = e−�
′2
f(�′ : �) (40)

as

k(�′ : �) = (2�′=�n)e−(1=�n)[(1−�n)1=2�−�′]2
Î 0[2(1 − �n)1=2�′�=�n] (41)

for �; �′ ∈ (0;∞). Here

Î 0(z) = I0(z)e−z: (42)

To be consistent with Eq. (38), we rewrite the two special cases listed as Eqs. (36) and (37)
as

G(a;−�) =Q−1(�)AQ(�)G(a; �); � ∈ (0;∞); �n = 0; (43)

and

G(a;−�) = 2Q−1(�)A
∫ ∞

0
�′e−�

′2
Q(�′)G(a; �′) d�′; � ∈ (0;∞); �n = 1: (44)

To reiterate, we note that the general result of the Cercignani–Lampis model for the wall
re+ection function is represented here by Eq. (38) and that Eqs. (43) and (44) are two special
cases of this model. This Cercignani–Lampis model clearly is based on two accommodation
coe:cients �n and �t. On the other hand, the usual combination of di9use and specular re+ection
[8–10], as used by Valougeorgis [1] and by Siewert and Valougeorgis [12] for Poiseuille and
thermal-creep +ow in cylindrical tubes, corresponds to writing Eq. (38) as

G(a;−�) = (1 − �)G(a; �); � ∈ (0;∞); (45)

where � ∈ (0; 1] is the (single) accommodation coe:cient. It is clear that the Cercignani–Lampis
model does not include the di9use–specular model as a special case.
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So having formulated the G problem we intend to solve, we can express the physical quantities
we seek, viz. the velocity pro4le and the heat-+ow pro4le as de4ned by Eqs. (10) and (11), as

u(y) = [0 1]G(y) (46)

and

q(y) = (15=2)1=2[1 0]G(y); (47)

where

G(y) =
∫ ∞

−∞
�(�)G(y; �) d�: (48)

3. A particular solution and the discrete-ordinates method

Before starting our discrete-ordinates solution we develop an analytical particular solution to
account for the inhomogeneous term in Eq. (25). Proposing a solution of the form

G p(y; �) = By2 + Cy�+D�2 + E ; (49)

where B;C ;D and E are constant vectors, we can easily 4nd that

G p(y; �) =
1
2

[
(1=10)301=2k1 − (3=4)(30)1=2k2

(y2 − 2y�+ 2�2)k1

]
(50)

is a solution of Eq. (25). So now if we write

G(y; �) = G h(y; �) + G p(y; �); (51)

then to complete the desired solution we must solve the homogeneous equation

�
@
@y
G h(y; �) + G h(y; �) =

∫ ∞

−∞
�(�′)G h(y; �′) d�′ (52)

subject to either the Cercignani–Lampis boundary condition

G h(a;−�) −
∫ ∞

0
T(�′ : �)G h(a; �′) d�′ = R(�); � ∈ (0;∞); (53)

where the known term is

R(�) =
∫ ∞

0
T(�′ : �)G p(a; �′) d�′ − G p(a;−�) (54)

or the di9use–specular boundary condition

G h(a;−�) − (1 − �)G h(a; �) = R(�); � ∈ (0;∞); (55)

where the known term is

R(�) = (1 − �)G p(a; �) − G p(a;−�): (56)
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Of course, since the particular solution G p(y; �) already has the appropriate symmetry, we
must also insist that the homogeneous component G h(y; �) be such that

G h(y;−�) = G h(−y; �) (57)

for all y and �. Since the development of our discrete-ordinates solution follows very closely
Ref. [13], we can be brief here. We replace the integral term in Eq. (52) by a quadrature
approximation and look for solutions of the form

G h(y; �) =�(�; �)e−y=� (58)

to 4nd

(�− �)�(�; �) = �
N∑
k=1

wk�(�k)[�(�; �k) +�(�;−�k)]; (59)

where the N nodes and weights {�k ; wk} are de4ned for evaluating integrals over the interval
[0;∞). If we now let �+(�) and �−(�) denote 2N × 1 vectors, the 2× 1 components of which
are, respectively, �(�; �k) and �(�;−�k), then we can let

U =�+(�) +�−(�) (60)

and deduce from Eq. (59) evaluated at �= ±�k the eigenvalue problem

(D − 2W)U = �U ; (61)

where � = 1=�2. In addition

D= diag{(1=�1)2I ; (1=�2)2I ; : : : ; (1=�N )2I} (62)

and W is a 2N × 2N matrix each 2 × 2N row of which is given by

Ri = (1=�i)2 [w1�(�1) w2�(�2) · · · wN�(�N )] (63)

for i = 1; 2; : : : ; N . We note also that I in Eq. (62) is used to denote the 2 × 2 identity matrix.
If we now let {�j;Uj}, j = 1; 2; : : : ; 2N , denote the eigenvalues and eigenvectors de4ned by
Eq. (61), then we 4nd that we can write

�+(�j) =
1

2�j
diag{(�j + �1)I ; (�j + �2)I ; : : : ; (�j + �N )I}Uj (64a)

and

�−(�j) =
1

2�j
diag{(�j − �1)I ; (�j − �2)I ; : : : ; (�j − �N )I}Uj; (64b)

where �j is the positive square root of 1=�j. If we let G h±(y) denote vectors with the vectors
G h(y;±�k) as components, then we can make note of Eq. (57) and write

G h
±(y) =

2N∑
j=1

Aj[�±(�j)e−(a+y)=�j +�∓(�j)e−(a−y)=�j ]; (65)
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where the {Aj} are arbitrary constants to be determined from a discrete-ordinates version of
the boundary condition listed as either Eq. (53) or Eq. (55). Now since, as discussed in
Ref. [13], one of the separation constants, say �1, becomes unbounded as N tends to in4n-
ity, we choose to use the exact result (N → ∞) corresponding to this separation constant and
therefore to rewrite Eq. (65) as

G h
±(y) = A1�+

2N∑
j=2

Aj[�±(�j)e−(a+y)=�j +�∓(�j)e−(a−y)=�j ]; (66)

where the � has N vector components given by

�+ =

[
0

1

]
: (67)

Considering that we have established the constants Aj; j = 1; 2; : : : ; 2N , by solving the linear
system obtained when Eq. (66) is substituted into a discrete-ordinates version of Eq. (53) or
(55), we 4nd that we can now use Eq. (51), with Eqs. (50) and (66), to deduce from Eq. (48)
that

G(y) = G∗(y) +
2N∑
j=2

Aj[e−(a+y)=�j + e−(a−y)=�j ]N (�j); (68)

where

G∗(y) =

[
301=2[(1=20)k1 − (1=8)k2]

(1=2)(y2 + 1)k1 + A1

]
(69)

and

N (�j) = [w1�(�1) w2�(�2) · · · wN�(�N )][�+(�j) +�−(�j)]: (70)

Having found G(y), we can use Eq. (68) in Eqs. (46) and (47) to 4nd the velocity and
heat-+ow pro4les we seek. In this way we obtain

u(y) = (1=2)(y2 + 1)k1 + A1 +
2N∑
j=2

Aj[e−(a+y)=�j + e−(a−y)=�j ]N2(�j) (71)

and

q(y) = (3=4)k1 − (15=8)k2 + (15=2)1=2
2N∑
j=2

Aj[e−(a+y)=�j + e−(a−y)=�j ]N1(�j); (72)

where N1(�j) and N2(�j) are the components of N (�j). At this point we can complete this
section by using Eqs. (71) and (72) in

U =
1

2a2

∫ a

−a
u(y) dy (73)

and

Q =
1

2a2

∫ a

−a
q(y) dy (74)
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to 4nd expressions for the particle-+ow rate U and the heat-+ow Q, viz.

U =
1

2a2 [ak1(a2=3 + 1) + 2aA1 + 2
2N∑
j=2

Aj�j(1 − e−2a=�j)N2(�j)] (75)

and

Q =
1

2a2 [(3a=2)k1 − (a=4)k2 + 2(15=8)1=2
2N∑
j=2

Aj�j(1 − e−2a=�j)N1(�j)]: (76)

4. Numerical results

Repeating much of the discussion given in Ref. [13], where the version of the discrete-ordinates
method used here was used to solve the Poiseuille and thermal-creep problems for +ow in a
cylindrical tube, we note that what we must now do is to de4ne the quadrature scheme to be
used in our discrete-ordinates solution. In this work we have used the (nonlinear) transformation

u(�) = exp{−�} (77)

to map � ∈ [0;∞) into u ∈ [0; 1], and we then used a Gauss–Legendre scheme mapped (linearly)
onto the interval [0; 1].

Table 1
Pro4les (2a = 1): Cercignani–Lampis model (�n = 0:5 and �t = 0:5)

x=a −uP(x) qP(x) uT(x) −qT(x)

0.00 1.777590 2:406295(−1) 2:308391(−1) 1.054961
0.05 1.776919 2:404129(−1) 2:306809(−1) 1.054427
0.10 1.774904 2:397614(−1) 2:302050(−1) 1.052822
0.15 1.771536 2:386709(−1) 2:294087(−1) 1.050134
0.20 1.766801 2:371338(−1) 2:282867(−1) 1.046342
0.25 1.760680 2:351396(−1) 2:268318(−1) 1.041417
0.30 1.753144 2:326737(−1) 2:250342(−1) 1.035317
0.35 1.744158 2:297176(−1) 2:228811(−1) 1.027993
0.40 1.733678 2:262477(−1) 2:203564(−1) 1.019378
0.45 1.721646 2:222343(−1) 2:174400(−1) 1.009390
0.50 1.707993 2:176404(−1) 2:141065(−1) 9:979281(−1)
0.55 1.692628 2:124192(−1) 2:103243(−1) 9:848626(−1)
0.60 1.675437 2:065109(−1) 2:060530(−1) 9:700305(−1)
0.65 1.656272 1:998383(−1) 2:012403(−1) 9:532213(−1)
0.70 1.634936 1:922988(−1) 1:958173(−1) 9:341567(−1)
0.75 1.611157 1:837514(−1) 1:896892(−1) 9:124570(−1)
0.80 1.584542 1:739924(−1) 1:827199(−1) 8:875782(−1)
0.85 1.554483 1:627059(−1) 1:746988(−1) 8:586841(−1)
0.90 1.519916 1:493411(−1) 1:652605(−1) 8:243358(−1)
0.95 1.478540 1:327038(−1) 1:536164(−1) 7:814630(−1)
1.00 1.419022 1:068938(−1) 1:358984(−1) 7:153601(−1)
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Table 2
Flow rates: Cercignani–Lampis model (�n = 0:5 and �t = 0:5)

2a −UP QP = UT −QT

1:0(−2) 5.014219 1.423000 7.460666
2:0(−2) 4.668298 1.249702 6.602193
3:0(−2) 4.474712 1.151878 6.102448
4:0(−2) 4.342079 1.084182 5.748874
5:0(−2) 4.242237 1.032667 5.475141
7:0(−2) 4.097278 9:566156(−1) 5.063181
9:0(−2) 3.993879 9:010436(−1) 4.756102
1:0(−1) 3.951889 8:780440(−1) 4.627533
3:0(−1) 3.573656 6:471470(−1) 3.298498
5:0(−1) 3.447263 5:444746(−1) 2.698543
7:0(−1) 3.388287 4:786409(−1) 2.317748
9:0(−1) 3.359841 4:307185(−1) 2.044533
1.0 3.352483 4:110242(−1) 1.933542
3.0 3.499791 2:272407(−1) 9:539034(−1)
3.5 3.565466 2:056379(−1) 8:481270(−1)
4.0 3.634859 1:879290(−1) 7:634316(−1)
5.0 3.780735 1:604938(−1) 6:361523(−1)
6.0 3.932453 1:401296(−1) 5:450338(−1)
7.0 4.087720 1:243653(−1) 4:765955(−1)
9.0 4.404578 1:014953(−1) 3:807025(−1)
1.0(1) 4.565036 9:292892(−2) 3:458333(−1)
1.0(2) 19.50102 1:065782(−2) 3:720775(−2)

Having de4ned our quadrature scheme and in developing a FORTRAN implementation of
our solution, we found the required separation constants {�j} by using the driver program RG
from the EISPACK collection [14] to solve the eigenvalue=eigenvector problem de4ned by
Eq. (61). The required separation constants were then available as the reciprocals of the positive
square roots of these eigenvalues, and the eigenvectors were used in Eqs. (64) to establish the
elementary vectors �+(�j) and �−(�j). We then used the subroutines DGECO and DGESL
from the LINPACK package [15] to solve the linear system that de4nes the required constants
Aj; j= 1; 2; : : : ; 2N . And in this way our solution was established as a viable algorithm. Finally,
but importantly, we have found that elements of the matrix-valued function �(�) as de4ned by
Eqs. (26) can be essentially zero (from a computational point-of-view). In such cases, we found
that by de4ning an element to be precisely zero when that element is less than, say, #= 10−20,
we increased the ability of the linear-algebra package [14] to yield the required number of
independent eigenvectors when there is a (nearly) repeated eigenvalue.

To complete our work we list in Tables 1–4 some results obtained from our FORTRAN
implementations of the developed solutions for Poiseuille +ow (identi4ed by the subscript P) and
thermal-creep +ow (identi4ed by the subscript T) in a plane channel. In Table 1 the velocity and
heat-+ow pro4les are given for a case based on the Cercignani–Lampis boundary condition. In
Table 2 the particle-+ow rates and the heat-+ow rates are given, again relevant to the Cercignani–
Lampis boundary condition, for selected values of the channel width 2a. In Tables 3 and 4 we
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Table 3
Pro4les (2a = 1): di9use–specular model (� = 0:5)

x=a −uP(x) qP(x) uT(x) −qT(x)

0.00 1.792544 2:766993(−1) 2:637228(−1) 1.288279
0.05 1.791906 2:765059(−1) 2:636069(−1) 1.287935
0.10 1.789989 2:759243(−1) 2:632585(−1) 1.286901
0.15 1.786786 2:749506(−1) 2:626755(−1) 1.285169
0.20 1.782284 2:735782(−1) 2:618543(−1) 1.282727
0.25 1.776464 2:717975(−1) 2:607896(−1) 1.279557
0.30 1.769301 2:695955(−1) 2:594743(−1) 1.275633
0.35 1.760763 2:669553(−1) 2:578994(−1) 1.270925
0.40 1.750808 2:638558(−1) 2:560532(−1) 1.265393
0.45 1.739384 2:602701(−1) 2:539213(−1) 1.258987
0.50 1.726425 2:561643(−1) 2:514854(−1) 1.251644
0.55 1.711849 2:514960(−1) 2:487226(−1) 1.243285
0.60 1.695548 2:462105(−1) 2:456037(−1) 1.233812
0.65 1.677384 2:402368(−1) 2:420909(−1) 1.223094
0.70 1.657173 2:334803(−1) 2:381337(−1) 1.210963
0.75 1.634657 2:258098(−1) 2:336630(−1) 1.197185
0.80 1.609464 2:170352(−1) 2:285787(−1) 1.181426
0.85 1.581011 2:068584(−1) 2:227252(−1) 1.163173
0.90 1.548275 1:947554(−1) 2:158304(−1) 1.141540
0.95 1.509013 1:795760(−1) 2:073022(−1) 1.114627
1.00 1.451987 1:555159(−1) 1:941861(−1) 1.073270

report similar results based on the use of the di9use–specular boundary condition. As expected
the Onsager reciprocity relation, viz. UT =QP, was veri4ed for all cases listed in Tables 2 and
4. We note that our results are given with what we believe to be seven 4gures of accuracy.
While we have no proof of the accuracy achieved in this work, we have done some things to
support the con4dence we have. First of all the fact that we found apparent convergence in our
numerical results as we increased N , the number of quadrature points used, was considered a
necessary test we passed. In addition, we found agreement with the +ow rates reported with
four 4gures of accuracy by Sharipov [2] for the S-model theory with the Cercignani–Lampis
boundary condition. We also con4rmed the results given with 4ve=six 4gures of accuracy by
Valougeorgis [1] for the S-model theory with the di9use–specular boundary condition. We note
also that Valougeorgis [16] has con4rmed the velocity and heat-+ow pro4les given in Table
3 and that Sharipov [17] has con4rmed (with four 4gures of accuracy) the pro4les listed in
Table 1.

To conclude this work, we note that we have typically used N = 60 to generate the results
shown in our tables. Since the FORTRAN implementation of our discrete-ordinates solution
(with N = 60) runs in a second on a 400 MHz Pentium-based PC, we feel justi4ed in thinking
the reported solution to the Poiseuille and thermal-creep problems in a plane-parallel channel
is e:cient as well as accurate.
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Table 4
Flow rates: di9use–specular model (� = 0:5)

2a −UP QP = UT −QT

1:0(−2) 7.210007 2.770617 15.50420
2:0(−2) 6.298270 2.311215 13.11035
3:0(−2) 5.808061 2.060542 11.75386
4:0(−2) 5.482139 1.891307 10.81454
5:0(−2) 5.242765 1.765080 10.10061
7:0(−2) 4.905303 1.583132 9.050784
9:0(−2) 4.672567 1.453788 8.289623
1:0(−1) 4.580089 1.401214 7.976847
3:0(−1) 3.806140 9:094469(−1) 4.983364
5:0(−1) 3.571767 7:155058(−1) 3.798980
7:0(−1) 3.464010 6:004731(−1) 3.108895
9:0(−1) 3.409028 5:216112(−1) 2.644884
1.0 3.392769 4:904286(−1) 2.463996
3.0 3.503677 2:349312(−1) 1.061216
3.5 3.569734 2:091089(−1) 9:302355(−1)
4.0 3.640058 1:885784(−1) 8:280755(−1)
5.0 3.788425 1:578737(−1) 6:789398(−1)
6.0 3.942771 1:359157(−1) 5:752755(−1)
7.0 4.100498 1:193805(−1) 4:990293(−1)
9.0 4.421533 9:606501(−2) 3:943911(−1)
1.0(1) 4.583722 8:752351(−2) 3:569419(−1)
1.0(2) 19.53951 9:670226(−3) 3:731918(−2)
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