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Abstract

Analytical techniques are used to solve a class of inverse radiative-transfer problems relevant to 1nite
and semi-in1nite plane-parallel media. While the assumption of isotropic scattering is made, di*use
re+ection is allowed at the surface, for the semi-in1nite case, and at both surfaces for the case of a 1nite
layer. For the general case based on a semi-in1nite medium, a cubic algebraic equation is used to de1ne
the basic result, but for the speci1c case of a semi-in1nite medium illuminated by a constant incident
distribution of radiation, very simple exact expressions are developed for the albedo for single scattering
$ and the coe7cient for di*use re+ection �. Analytical results are also developed (again in terms of
a cubic algebraic equation) for the case of a 1nite layer with equal re+ection coe7cients relevant to
the two surfaces. For the general case of a 1nite layer with unequal re+ection coe7cients, two speci1c
formulations are given. The 1rst algorithm is based on a system of three quadratic algebraic equations
for the two re+ection coe7cients �1 and �2 and the single-scattering albedo $. Secondly, an elimination
between these three algebraic equations is carried out to yield two coupled algebraic equations for �1
and �2 plus an explicit expression for $ in terms of �1 and �2. In addition, an exact expression for �0,
the optical thickness of the 1nite layer, is developed in terms of $, �1 and �2. As is typical with the
considered class of inverse problems in radiative transfer, all surface quantities are either speci1ed or
considered available from experimental measurements. All basic results are tested numerically. ? 2001
Elsevier Science Ltd. All rights reserved.
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1. Introduction

To begin, we note that inverse radiative-transfer problems are of interest in, amongst other
areas, the general 1eld of remote sensing where sunlight can illuminate, for example, a cloud
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layer or the surface of the sea, and by measuring the re+ected and=or transmitted radiation one
seeks to determine some basic properties of the scattering medium. It has to be admitted that
for media described by scattering laws that are not simple there is little hope of 1nding an
explicit solution to a given inverse problem, and so generally some kind of iterative procedure
de1ned between the direct and inverse problems has to be used. However, some simple, but
meaningful, inverse radiative-transfer problems can be solved in a better way. For example, we
found in an early work [1] that the inverse problem based on the equation of transfer

�
@
@�

I(�; �) + I(�; �)=
$
2

∫ 1

−1
[1 + b1��′ + b2P2(�)P2(�′)]I(�; �′) d�′; (1)

for �∈ (0; �0) and �∈ [−1; 1], and the boundary conditions
I(0; �)=F1(�) (2a)

and

I(�0;−�)=F2(�); (2b)

for �∈ (0; 1], could be solved in the following sense. If we consider that the quantities $, b1 and
b2 that de1ne the scattering law used in Eq. (1) are the unknown parameters to be determined,
and if we consider that the boundary functions F1(�) and F2(�) �=F1(�) are given, and noting
that P2(�) is the Legendre polynomial of second order, then we can quote from Ref. [1] three
algebraic equations that, in principle, allow us to determine the three required unknowns in
terms of the exiting intensities I(0;−�) and I(�0; �), for �∈ (0; 1], that are considered available
from experimental data.
In this work we investigate a variation, proposed by Silva Neto [2], of the stated problem.

First of all, we consider that both b1 and b2 are zero, and so we have the equation transfer
written as

�
@
@�

I(�; �) + I(�; �)=
$
2

∫ 1

−1
I(�; �′) d�′; (3)

for �∈ (0; �0) and �∈ [ − 1; 1]. However, rather than considering that the boundary functions
F1(�) and F2(�) are known, we replace Eqs. (2) with the boundary equations

I(0; �)=f(�) + 2�1
∫ 1

0
I(0;−�′)�′ d�′ (4a)

and

I(�0;−�)=2�2
∫ 1

0
I(�0; �′)�′ d�′; (4b)

for �∈ (0; 1]. Here we assume that we know the basic function f(�), but the coe7cients for
di*use re+ection �1 and �2 are considered unknown. And so given a transport problem de1ned
by Eqs. (3) and (4) we seek to determine $; �1; �2 and the optical thickness �0 from the
quantities

R(�)= (1− �1)I(0;−�) (5a)
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and

T (�)= (1− �2)I(�0; �); (5b)

for �∈ (0; 1], that are taken to be available from experimental data. It is clear from Eqs. (5)
that we are allowing that the boundaries to the scattering layer are only partially transparent.

2. The case of the semi-in�nite layer

For this special case we consider the equation of transfer

�
@
@�

I(�; �) + I(�; �)=
$
2

∫ 1

−1
I(�; �′) d�′; (6)

for �¿ 0 and �∈ [− 1; 1], and the boundary equation

I(0; �)=f(�) + 2�
∫ 1

0
I(0;−�′)�′ d�′; (7)

for �∈ (0; 1]. Here the function f(�) is assumed to be given, and we also assume that we
know, from experimental results, the quantity

R(�)= (1− �)I(0;−�); (8)

for �∈ (0; 1]. We therefore wish to determine the unknown physical constants $ and �, and
so we can make use of our earlier work to solve this problem. We 1nd, as special cases of
Eqs. (30) and (31) of Ref. [1], the two results

$I 20 (0)=− 4S0 (9a)

and

$[I 21 (0)− 4S2]=− 4S2; (9b)

where, in general,

I�(�)=
∫ 1

−1
I(�; �)�� d� (10)

and

S�=−
∫ 1

0
I(0;−�)I(0; �)�� d�: (11)

If we now use Eqs. (7) and (8) in Eqs. (10) and (11), we 1nd we can write

I0(0)= (1− �)−1[(1− �)f0 + R0 + 2�R1]; (12)

I1(0)=f1 − R1 (13)

and

S�=− (1− �)−2[(1− �)(Rf)� + 2�R1R�]; (14)
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where

f�=
∫ 1

0
f(�)�� d�; R�=

∫ 1

0
R(�)�� d� and (Rf)�=

∫ 1

0
R(�)f(�)�� d�: (15a,b,c)

We can now use Eqs. (12), (13) and (14) and rewrite Eqs. (9) as

$(a+ b�)2 = c+ d� (16a)

and

$(��2 + ��+ �)= �+ ��; (16b)

where the known constants are

a=f0 + R0; b=2R1 − f0; c=4(Rf)0 and d=4[2R0R1 − (Rf)0] (17a,b,c,d)

along with

�=(f1 − R1)2; �=− 2�+ 4[2R1R2 − (Rf)2]; �= �+ 4(Rf)2; (18a,b,c)

�=4(Rf)2 and �=4[2R1R2 − (Rf)2]: (18d,e)

At this point we can eliminate $ between Eqs. (16) to 1nd a cubic (algebraic) equation for �,
viz.

(c+ d�)(��2 + ��+ �)= (�+ ��)(a+ b�)2: (19)

We have found one case for which Eq. (19) can be reduced to a quadratic, and that is the
case for which f(�)=1. Here we obtain

A�2 + B�+ C=0 (20)

where

A= �R0 − b2R2; B=�R0 − 2abR2 and C= �R0 − a2R2: (21a,b,c)

In regard to the two solutions of Eq. (20), we have found, for the data cases tested, the desired
solution to be

�=[− B+ (B2 − 4AC)1=2]=(2A); (22)

but it is possible that a change of sign before the radical could be required for some other
data sets.
Returning to the general case, it is clear that Eq. (19) has three solutions. We intend to use

Newton’s method of iteration to 1nd the required solution, but of course this means that, in
order to 1nd the appropriate solution of the cubic equation, some care must be taken in starting
the iteration. Later in this work we discuss some test cases and the way we have determined
an initial estimate when using Newton’s method. Of course, once the correct value of � has
been found [from Eq. (20) for the special case of f(�)=1, or from Eq. (19) for the general
case] we can compute the required value of $ from either of Eqs. (16).
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3. The case of a �nite layer with equal re�ection coe�cients

Rather than investigate immediately the general case, we now consider the special, but prac-
tical, case of a 1nite layer with re+ection properties the same at the two surfaces. We thus have
the equation of transfer

�
@
@�

I(�; �) + I(�; �)=
$
2

∫ 1

−1
I(�; �′) d�′; (23)

for �∈ (0; �0) and �∈ [− 1; 1], and the boundary equations

I(0; �)=f(�) + 2�
∫ 1

0
I(0;−�′)�′ d�′ (24a)

and

I(�0;−�)=2�
∫ 1

0
I(�0; �′)�′ d�′; (24b)

for �∈ (0; 1]. We assume that we know the basic function f(�) and the surface results

R(�)= (1− �)I(0;−�) (25a)

and

T (�)= (1− �)I(�0; �); (25b)

for �∈ (0; 1]. Here we seek to determine the single-scattering albedo $ and the coe7cient for
di*use re+ection �. To 1nd these quantities we do not actually require the optical thickness �0,
but later in this work we 1nd an exact inverse solution also for this important quantity. Again,
we 1nd from Eqs. (30) and (31) of Ref. [1] expressions we can use here, viz.

$[I 20 (�0)− I 20 (0)]=4S0 (26a)

and

$[I 21 (�0)− I 21 (0) + 4S2]=4S2; (26b)

where now

S�=
∫ 1

0
[I(�0; �)I(�0;−�)− I(0;−�)I(0; �)]�� d�: (27)

While Eqs. (12) and (13) are still valid for use here, we now also require

I0(�0)= (1− �)−1(T0 + 2�T1) (28a)

and

I1(�0)=T1 (28b)

along with a new version of Eq. (14), viz.

S�=(1− �)−2[2�T1T� − (1− �)(Rf)� − 2�R1R�]: (29)
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For this case, we clearly require, in addition to previously de1ned quantities, the moments

T�=
∫ 1

0
T (�)�� d�: (30)

We can now use

â=T0; b̂=2T1 and d̂=d− 8T0T1 (31a,b,c)

along with

�̂= �− T 21 ; �̂=�+ 2T1(T1 − 4T2); �̂= �− T 21 and �̂= �− 8T1T2 (32a,b,c,d)

in order to rewrite Eqs. (26) as

$[(a+ b�)2 − (â+ b̂�)2]= c+ d̂� (33a)

and

$(�̂�2 + �̂�+ �̂)= �+ �̂�: (33b)

We can now eliminate $ between Eqs. (33) to 1nd a cubic (algebraic) equation for �, viz.

(c+ d̂�)(�̂�2 + �̂�+ �̂)= (�+ �̂�)[(a+ b�)2 − (â+ b̂�)2]: (34)

To be clear, we note that all of the constants in Eq. (34) are taken to be available from
experimental data, and so again, assuming that we can de1ne a suitable starting value for �,
we can use Newton’s method to solve Eq. (34). In this way, once we have found �, we can
compute the single-scattering albedo $ from either of Eqs. (33).

4. The case of a �nite layer with unequal re�ection coe�cients

Turning to the general case, we now consider a 1nite layer with re+ection properties that are
di*erent at the two surfaces. We thus have the equation of transfer

�
@
@�

I(�; �) + I(�; �)=
$
2

∫ 1

−1
I(�; �′) d�′; (35)

for �∈ (0; �0) and �∈ [− 1; 1], and the boundary equations

I(0; �)=f(�) + 2�1
∫ 1

0
I(0;−�′)�′ d�′ (36a)

and

I(�0;−�)=2�2
∫ 1

0
I(�0; �′)�′ d�′; (36b)

for �∈ (0; 1]. Here we assume that we know the basic function f(�) and the surface results

R(�)= (1− �1)I(0;−�) (37a)

and

T (�)= (1− �2)I(�0; �); (37b)
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for �∈ (0; 1], and we seek to determine the single-scattering albedo $ and the two coe7cients
for di*use re+ection �1 and �2.
While Eqs. (26) and (27) are valid also for the considered case, we must use slightly modi1ed

results for some elements of those equations. Here we 1nd

I0(0)= (1− �1)−1[(1− �1)f0 + R0 + 2�1R1]; (38a)

I1(0)=f1 − R1; (38b)

I0(�0)= (1− �2)−1(T0 + 2�2T1) (38c)

and

I1(�0)=T1: (38d)

In regard to Eq. (27), we now 1nd

S�=
2�2

(1− �2)2
T1T� − 1

(1− �1)2
[(1− �1)(Rf)� + 2�1R1R�]: (39)

Now, since we have three unknown quantities to determine, we wish to make use of a third
equation from Ref. [1]. And so here we write Eq. (32) from Ref. [1] in the form

A$2 + B$ − 4S4 =0 (40)

where S4 is available from Eq. (39),

A=4S4 + (1=3)[I 21 (�0)− I 21 (0)]− B (41)

and, after we note Eq. (10),

B=8S4 − [I 22 (�0)− I 22 (0)] + 2[I1(�0)I3(�0)− I1(0)I3(0)]: (42)

It is clear that we now require some additional quantities, which, after noting Eqs. (15), (36),
and (37), we write as

I2(0)= (1− �1)−1[(1− �1)f2 + R2 + (2=3)�1R1]; (43a)

I3(0)= (1− �1)−1[(1− �1)f3 − R3 + (1=2)�1R1]; (43b)

I2(�0)= (1− �2)−1[T2 + (2=3)�2T1] (43c)

and

I3(�0)= (1− �2)−1[T3 − (1=2)�2T1]: (43d)

We can now use the de1ned quantities to rewrite Eqs. (26) as

F1(u; z; $)=0 (44a)

and

F2(u; z; $)=0 (44b)
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where u=1− �1 and z=1− �2. After some algebra, we 1nd we can write

F1(u; z; $)= [a10($) + a11($)u−1 + a12($)u−2]z2 + b1($)z + c1($); (45)

where

a10($)=$(q21 − p21); a11($)=− 2$p1p2 + 4p3; a12($)=−$p22 + 4p4; (46a,b,c)

b1($)=2$q1q2 − 4q3 and c1($)=$q22 − 4q4 (46d,e)

and

F2(u; z; $)= [a20($) + a21($)z−1 + a22($)z−2]u2 + b2($)u+ c2($); (47)

where

a20($)=$(p25 − q25); a21($)=4(1−$)q6; a22($)=4(1−$)q7; (48a,b,c)

b2($)=− 4(1−$)p6 and c2($)=− 4(1−$)p7: (48d,e)

In a similar way, we can rewrite Eq. (40) as

F3(u; z; $)=0 (49)

where, adding more notation, we use

F3(u; z; $)=A(u; z)$2 + B(u; z)$ − 4S4(u; z): (50)

Here, to be explicit, we write

S4(u; z)= q8z−1 + q9z−2 − p8u−1 − p9u−2; (51)

A(u; z)=4S4(u; z) + (1=3)(q25 − p25)− B(u; z) (52a)

and

B(u; z)= b0 + b1zz−1 + b2zz−2 + b1uu−1 + b2uu−2; (52b)

where

b0 =p210 − q210 + 2(p5p13 − q5q13); (53a)

b1z=8q8 − 2(q10q11 + q5q12); b2z=8q9 − q211; (53b,c)

b1u=2(p10p11 + p5p12)− 8p8 and b2u=p211 − 8p9: (53d,e)

Of course, to be complete we still must have the basic constants {p�; q�} that we consider to
be available from experimental data. And so we list

p1 =f0 − 2R1; p2 =2R1 + R0; p3 = (Rf)0 − 2R0R1; p4 =2R0R1; (54a,b,c,d)

p5 =f1 − R1; p6 = (Rf)2 − 2R1R2; p7 =2R1R2; p8 = (Rf)4 − 2R1R4; (54e,f,g,h)

p9 =2R1R4; p10 =f2− (2=3)R1; p11 =R2+(2=3)R1; p12 =R3− (1=2)R1 (54i,j,k,l)
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and

p13 = (1=2)R1 − f3: (54m)

And to complete the listing, we note that

q1 =− 2T1; q2 =2T1 + T0; q3 =− 2T0T1; q4 =2T0T1; (55a,b,c,d)

q5 =− T1; q6 =− 2T1T2; q7 =2T1T2; q8 =− 2T1T4; (55e,f,g,h)

q9 =2T1T4; q10 =− (2=3)T1; q11 =T2 + (2=3)T1; q12 =T3 − (1=2)T1 (55i,j,k,l)

and

q13 = (1=2)T1: (55m)

Turning now to our use of Newton’s method to solve Eqs. (44) and (49), we 1rst write that
collection of equations in the form

F(C)= 0 (56)

where

C=


 u
z
$


 (57)

and

F(C)=


F1(u; z; $)
F2(u; z; $)
F3(u; z; $)


 : (58)

Now using subscripts n and n+ 1 to denote iterates, we write the Newton iteration as

Cn+1 = Cn − J−1(Cn)F(Cn) (59)

where

J(C)=
[
@
@u
F(C) @

@z
F(C) @

@$
F(C)

]
(60)

is the Jacobian matrix. To be more e7cient, we actually solve Eq. (59) rewritten as

J(Cn)x=F(Cn) (61)

and then use

Cn+1 = Cn − x: (62)

As a procedure alternative to the foregoing, we note that we can solve Eq. (40) to 1nd

$(u; z)=− [B− signum(B)(B2 + 4AS4)1=2]=(2A); (63)
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which we can then use in Eqs. (44) to 1nd the 2× 2 system
G1(u; z)=0 (64a)

and

G2(u; z)=0 (64b)

where

G�(u; z)=F�[u; z; $(u; z)]: (65)

Clearly, once Eqs. (64) are solved to yield �1 and �2, we can compute $ from Eq. (63), but
it is worthwhile to note that we have used some numerical experiments to decide which of the
two solutions of Eq. (40) should be used, and so, as with Eq. (22), it is possible that a change
of sign before the radical in Eq. (63) could be required for some other cases. Of course we
require initial values of u, z and $ to start our iteration procedure based on Eq. (56). And we
must have initial values of u and z if we work with Eqs. (64). Later is this work this issue
will be addressed in the context of test calculations.

5. An inverse solution for the optical thickness of a �nite layer

We base our solution for the optical thickness �0 on the method of elementary solutions [3],
and so we write our solution to Eq. (3) as

I(�; �)= I∗(�; �) +
∫ 1

0
[A($)%($; �)e−�=$ + B($)%(−$; �)e−(�0−�)=$] d$; (66)

where

I∗(�; �)=A%($0; �)e−�=$0 + B%(−$0; �)e−(�0−�)=$0 (67)

is the component of the solution that is derived from the discrete part of the spectrum. Here

%(±$0; �)= $$0
2

1
$0 ∓ �

(68)

where the positive “discrete eigenvalue” can be written as [4,5]

$0 = (1−$)−1=2 exp
{
−1
&

∫ 1

0
'($; x)

dx
x

}
(69a)

or

$0 =
{
3− 2$
3− 3$ − 2

&

∫ 1

0
x'($; x) dx

}1=2
; (69b)

where

'($; x)= arctan
{

$&x
2)($; x)

}
(70)
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has continuous values in [0; &] and where

)($; x)=1 +
$x
2
ln

{
1− x
1 + x

}
: (71)

Since the elementary functions %(±$; �) based on the continuum, $∈ (0; 1), make no explicit
contribution to our calculation of �0, we omit these de1nitions. Of course, to de1ne the complete
solution for the radiation intensity I(�; �), all of Eq. (66) must be used. Finally, we note that
to complete the solution given by Eq. (66), the constants A and B and the functions A($)
and B($) are to be determined so that the solution satis1es the boundary conditions given by
Eqs. (4). However, as mentioned, simply to determine �0 for our inverse problem we don’t
require the complete solution I(�; �).
We note that the elementary solutions are known [6] to be orthogonal on the full range

[− 1; 1], and so we can, for example, evaluate Eq. (66) at �=0 and �= �0 and conclude that

AN =
∫ 1

−1
%($0; �)I(0; �)� d�; (72a)

Be−�0=$0N =−
∫ 1

−1
%(−$0; �)I(0; �)� d�; (72b)

Ae−�0=$0N =
∫ 1

−1
%($0; �)I(�0; �)� d� (72c)

and

BN =−
∫ 1

−1
%(−$0; �)I(�0; �)� d�; (72d)

where

N =
∫ 1

−1
[%($0; �)]2� d�: (73)

Now, from Eqs. (72a) and (72c), we see that

e�0=$0 =K(0)=K(�0); (74)

where

K(�)=
∫ 1

−1
%($0; �)I(�; �)� d�′; (75)

and, from Eqs. (72b) and (72d), it follows that

e�0=$0 =L(�0)=L(0); (76)

where

L(�)=
∫ 1

−1
%(−$0; �)I(�; �)� d�: (77)

For the considered inverse problem, we assume that we know the boundary data, i.e. the “in-
coming” intensity is speci1ed by f(�) in Eq. (4a) and the “outgoing” intensity is given, by
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Eqs. (5), as experimental data. And so, we can solve Eqs. (74) and (76) to 1nd explicit ex-
pressions for the optical thickness, viz.

�0 = $0 ln{K(0)=K(�0)} (78)

and

�0 = $0 ln{L(�0)=L(0)}: (79)

While we have made use of the boundary data to 1nd Eqs. (78) and (79), it is clear that were
it more convenient, from say an experimental point of view, to know the intensity at any two
values of � would be su7cient to determine, in a manner analogous to what has been done
here, the optical distance between the two values of �. Of course, we can use Eqs. (4) and (5)
to be more explicit, i.e.

K(0)= (%f)($0) +
1

1− �1
[2�1R1-($0)− (%R)(−$0)]; (80a)

K(�0)=
1

1− �2
[(%T )($0)− 2�2T1-(−$0)]; (80b)

L(0)= (%f)(−$0) + 1
1− �1

[2�1R1-(−$0)− (%R)($0)] (80c)

and

L(�0)=
1

1− �2
[(%T )(−$0)− 2�2T1-($0)]; (80d)

where, in addition to the de1nitions given by Eqs. (15b) and (30), we have introduced

(%f)($0)=
∫ 1

0
%($0; �)f(�)� d�; (81a)

(%R)($0)=
∫ 1

0
%($0; �)R(�)� d�; (81b)

(%T )($0)=
∫ 1

0
%($0; �)T (�)� d� (81c)

and

-($0)=
∫ 1

0
%($0; �)� d�: (81d)

We note that Eqs. (78) and (79) are valid for $∈ (0; 1). For the conservative case ($=1)
we 1nd an even simpler result, viz.

�0 = [I2(0)− I2(�0)]=I1(0); (82)

where we have made use of the de1nitions introduced in Eq. (10).
While there exist methods for estimating the optical thickness of a 1nite layer (see for example

Refs. [7,8]) from boundary data, we note that since Eqs. (69) are exact and explicit expressions
for $0, we believe we are justi1ed in claiming that Eqs. (78), (79) and (82), along with the
given de1nitions, are exact and explicit expressions for the optical thickness �0.
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In concluding this section, we have two observations to make. First of all, it should be clear
that, in claiming to have exact results for �0, we have assumed that $, �1 and �2 have already
been established. Next, we note that Eqs. (78) and (79) can be immediately generalized so as
to be valid for any value of $∈ (0; 1); however, to be rigorous some ensuing integrals would
have to be evaluated in the Cauchy principal-value sense.

6. Some test cases and initial estimates

In order to check the developed results we have carried out a series of numerical experiments.
By 1rst solving the direct problem numerically and then trying to extract the input data from
our developed algorithms, we can attempt to con1rm the correctness of the formulas and to
evaluate the e*ectiveness of the schemes. Of course, in dealing with inverse problems we must
always worry about the uniquenesses of the solution and the e*ects of errors in the experimental
data. While we will report some observations about the uniqueness issue, we do not investigate,
in any serious way, the e*ect of (simulated) experimental errors in observed data.
Starting with the simplest case, a half space with f(�)=1, we solved Eq. (20) to 1nd two

values of �. To choose the correct one of these two results proved to be a simple matter, and
then $ was immediately available from either of Eqs. (16).
Next the half-space case with a non constant f(�) was considered, and the cubic equation

for � was solved. We 1rst used Newton’s method, with �=0 as a starting value, to solve
Eq. (19) by iteration. The value of $ was then computed from either of Eqs. (16). This
procedure worked well. We then used the Cardano formulas [9] to solve the cubic equation.
Then with each of the three solutions for �, we computed $ from either of Eqs. (16). And so
given three sets of solutions, we sometimes had the problem of deciding which was correct.
However, since Newton’s algorithm (with a simple initial value) worked well here, we consider
that procedure to be the method of choice for this case. Since our result, for the case of the
1nite layer, with two equal re+ection coe7cients, also is a cubic equation for the common �, we
again used Newton’s method of iteration (with an initial value of zero) and the exact Cardano
formulas to 1nd �. Here too the issue of uniquenesses was a signi1cant one. To address this
point, we used each of the three sets of results (obtained from the use of the Cardano formulas)
for � and $ in the right-hand side of Eq. (40) written as

$=(4S4 − A$2)=B (83)

to re-compute a new value of $. While we generally were able, in this way, to determine which
of the three sets of results was the correct one, it was not always easy. In fact, we found cases
where Eq. (83) gave, for two sets of input data, a new result for $ that di*ered only after many
signi1cant 1gures to the input value. This degree of accuracy could, of course, not be expected
from experimental data. And so we found, also for this case, that the problem of uniqueness of
the derived result was very much in doubt. Again, it has to be said that the use of Newton’s
method was the preferred computation since convergence to the correct result generally was
achieved with a staring value of �=0.
Proceeding to the most di7cult case where, for the 1nite layer, we note that we have three

basic unknowns �1; �2 and $ to determine from the three nonlinear conditions listed as Eq. (56).
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Here, of course, we have no analytical solutions to investigate, and so we have used only
Newton’s method to de1ne our algorithm. Also, here we have many variations on the basic
formulations available. For example, the three quadratic equations listed as Eqs. (44) and (49)
can each be solved to yield two variations (± radicals) that can be used to seek, again by
Newton’s method, the desired result. Or, Eqs. (44) and (49) can be multiplied by known
functions in order to try to improve the iteration process. Further, we could eliminate $ between
the equations and seek to 1nd, by Newton’s method, �1 and �2 from just two equations. We
have, in fact, tried all of these approaches, and while some variations can be better for some
data sets, we found no de1nitive formulation that was always e*ective. Added to these possible
variations, we also must de1ne starting values for the iteration process. In the end, we have
elected to de1ne one of our methods of choice in a simple way. We applied Newton’s method
to the collection of functions

F̂1(u; z; $)= u2F1(u; z; $); (84a)

F̂2(u; z; $)= z2F2(u; z; $) (84b)

and

F̂3(u; z; $)=F3(u; z; $) (84c)

and we started our iteration with �1 and �2 both zero and $=0:1. Of course, we found data
sets we could not solve is this way, but, in general, we found good success with this scheme,
and certainly for some cases many iterations were required to achieve the four or 1ve 1gure
accuracy we sought. It should be clear that the iteration over a set of algebraic equations goes
quickly when compared to solving iteratively direct and inverse problems where the equation
of transfer has to be solved many times.
In regard to our algorithm based on Eqs. (64), we again found we could solve well, with

simply chosen initial values, say �1 =0 and �2 =0, many data sets, but we again found some
problems where it proved di7cult to de1ne initial estimates for �1 and �2 for which the
Newton’s iteration would converge. However, for this formulation there are only two
unknowns, and so, since the iteration over the two algebraic equations is very simple, we see
that it would not be di7cult to consider, for example, all 121 possibly starting values of
�1; �2 ∈ [0; 1] on a grid de1ned by 0.1 intervals.
Finally, we can report that given good results for the re+ection coe7cients, the single-scattering

albedo and the re+ection and transmission functions R(�) and T (�), we obtained, from each of
Eqs. (78), (79) and (82), very good results for the optical thickness �0.

7. Concluding comments

The use of Newton’s method and a collection of exact expressions have been used to solve a
challenging class of inverse problems based on a basic radiative-transfer model. The possibility
of non unique results has been clearly exposed, and a way of using Newton’s method to obtain,
in general, the desired results has been de1ned. A signi1cant number of data sets has been
used to validate the results, but clearly more work can be done to improve the results for the
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most di7cult case (a 1nite layer with di*erent re+ection properties on the two surfaces) when
the de1ned (simple) algorithms do not always yield the desired results. For example, we have
not made use of any preconceived ideas about what the results might be, but in practice some
qualitative idea about the results could be used to de1ne initial estimates (for Newton’s method)
that are better than the simple initial values used here. Some knowledge of a speci1c problem
to be solved could also be used to rede1ne a variation of Eqs. (44) and (49) or Eqs. (64) to be
used. While the formulation developed here is general, we have based most of our numerical
testing of the algorithms on the speci1c case f(�)=1. Clearly, if in practice more than one
experiment can be done (for example, by varying the incoming distribution and=or the optical
thickness) then more de1nitive results, for di7cult cases, can be obtained simply by utilizing
simultaneously the various algorithms de1ned here.
Finally we note that the exact expression for the optical thickness �0 derived here was shown

to yield very good results once the other basic properties were established. This result should
prove useful for inverse radiative-transfer problems more general than the one considered here.
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