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Abstract

Analytical techniques are used to solve two inverse radiative-transfer problems, for a 5nite plane-parallel
medium, that are (i) based on the binomial scattering law and (ii) based on the Henyey–Greenstein scat-
tering law. In addition, previously reported analytical results (valid for isotropic scattering) that yield an
analytical inverse solution for the unknown optical thickness of the medium are extended to the case
of anisotropic scattering. The algorithms for the inversions are veri5ed numerically, and some e8ects of
noise on the simulated experimental data are observed. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

While in this brief work we do not attempt to review the many existing variations of inverse
problems in the general area of radiative transfer, we can make some general comments. Perhaps
the most important inverse problem is the one where we consider the radiation intensity to be
known (or available from experimental observations) on the boundaries, and we then attempt to
deduce the albedo for single scattering and the scattering law. For other applications, we might
consider that the scattering data are known and then attempt to deduce the inhomogeneous source
term in the equation of transfer. In another case, some aspect of the internal radiation 5eld is
speci5ed and the scattering data are assumed to be known, and we then seek to determine the
incoming boundary data. A fourth variation of inverse problems in radiative transfer is de5ned
by known boundary data (incoming and outgoing intensities) and we seek to determine the
degree of transparency of the boundary and the re=ection coe>cients for the two surfaces of a
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5nite plane-parallel medium. Of course, we can easily imagine that combinations of these four
basic types of inverse problems can yield a very large class of problems of general interest.
Also, it is clear that each variation on the basic idea of an inverse radiative-transfer problem
poses speci5c challenges, and so there already exist numerous works devoted to this subject.
Good discussions of many of these numerous works are given in McCormick’s three review
papers [1–3]. It can be seen [1–3] that most of the existing work in regard to inverse problems in
radiative transfer has to do with explicit or implicit solutions or iterative algorithms, but there
is very little serious work concerning the proof of existence and=or uniqueness of solutions
to de5ned inverse problems. Unfortunately, we also have nothing to say in regard to these
important issues.
We choose to introduce our work here with, what we consider to be, one of the 5rst analytical

results for an inverse radiative-transfer problem. We found in an early work [4] that the inverse
problem based on the equation of transfer

�
@
@�
I(�; �) + I(�; �)=

$
2

∫ 1

−1
[1 + b1��′ + b2P2(�)P2(�′)]I(�; �′) d�′; (1)

for �∈ (0; �0) and �∈ [− 1; 1], and the boundary conditions
I(0; �)=F1(�) (2a)

and

I(�0;−�)=F2(�); (2b)

for �∈ (0; 1], could be solved in the following sense. If we consider that the quantities $, b1 and
b2 that de5ne the scattering law used in Eq. (1) are the unknown parameters to be determined,
and if we consider that the boundary functions F1(�) and F2(�) �=F1(�) are given, and noting
that P2(�) is the Legendre polynomial of second order, then we can quote from Ref. [4] three
algebraic equations that, in principle, allow us to determine the three required unknowns in terms
of the exiting intensities I(0;−�) and I(�0; �), for �∈ (0; 1], that are considered available from
experimental data. McCormick, in a subsequent work [5], considered an inverse problem for a
more general scattering law and de5ned algorithms based on assumed knowledge of the exiting
components of the nonazimuthally symmetric radiation 5eld. Included in McCormick’s work
[5] are also results we use here where we assume that measurements only of the azimuthally
symmetric component of the exiting radiation are available.
In this work, we investigate a variation of the stated problem. Instead of the three-term

scattering law used in Eq. (1), we assume that the scattering is described by one of the two
speci5ed forms. We work, 5rst of all, with the binomial form

p(cos)=
K + 1
2K

(1 + cos)K (3)

introduced by Kaper et al. [6]. Here  is the scattering angle, and K is a nonnegative parameter.
It is known that Eq. (3) can be rewritten in terms of Legendre polynomials as

p(cos)=
∞∑
l=0

�lPl(cos); (4)
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where, as reported by McCormick and Sanchez [7], the � coe>cients can be computed from
the recursion formula

�l=
(
2l+ 1
2l− 1

)(
K + 1− l
K + 1+ l

)
�l−1; (5)

for l=1; 2; : : : ; with �0 =1. And so, while we continue to use boundary conditions as given
by Eqs. (2a and b), we now work with truncated scattering laws and the equation of transfer
written as [8]

�
@
@�
I(�; �) + I(�; �)=

$
2

L∑
l=0

�lPl(�)
∫ 1

−1
Pl(�′)I(�; �′) d�′; (6)

for �∈ (0; �0) and �∈ [− 1; 1].
The inverse problem solved here can now be stated simply. We assume that F1(�) and F2(�),

for �∈ (0; 1], as used in Eqs. (2a and b) along with the exiting intensities
G1(�)= I(0;−�) (7a)

and

G2(�)= I(�0; �); (7b)

for �∈ (0; 1], are known, say from experimental data, and we seek to determine the albedo for
single scattering $, the parameter K of the scattering law, and the optical thickness �0.
The second form we consider here is the Henyey–Greenstein scattering law [9] which can

be written as

p(cos)= (1− g2)(1 + g2 − 2g cos)−3=2 (8)

or

p(cos)=
∞∑
l=0

(2l+ 1)glPl(cos); (9)

for g∈ (−1; 1). For the inverse problem de5ned by the Henyey–Greenstein model, we consider,
again, that F�(�), for �∈ (0; 1], and G�(�), for �∈ (0; 1], �=1; 2, are known, and so we wish
to determine the albedo for single scattering $, the constant g, and the optical thickness �0.

2. The scattering parameters

While the inverse problem solved in Ref. [4] was de5ned in terms of a three-term scattering
law, some basic results derived in that work were, as mentioned, extended and generalized by
McCormick [5] to a scattering law with L+ 1 terms, as used in Eq. (6). And so we write the
two results of McCormick [5] we use here as

4S0 =$
L∑
l=0

(−1)l�l[I 2l (�0)− I 2l (0)] (10)
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and

4S2 =$
L∑
l=0

(−1)l(2l+ 1)(�l=hl)[J 2l (�0)− J 2l (0)]; (11)

where

Il(�)=
∫ 1

−1
I(�; �)Pl(�) d�; (12a)

Jl(�)=
∫ 1

−1
I(�; �)Pl(�)� d�; (12b)

and

hl=2l+ 1−$�l: (13)

In addition,

S0 =
∫ 1

0
[G2(�)F2(�)−G1(�)F1(�)] d� (14a)

and

S2 =
∫ 1

0
[G2(�)F2(�)−G1(�)F1(�)]�2 d�: (14b)

It is clear that Eqs. (10) and (11) are valid for all $∈ (0; 1). However, while Eq. (10) is also
valid for $=1, Eq. (11) clearly contains an indeterminate form for this special (conservative)
case since h0 =0 and J0(0)= J0(�0) when $=1. Of course, by comparing J0(0) to J0(�0) we
can tell immediately if we have an inverse problem for the conservative case.
It should be noted that, while knowledge of the intensity on the two boundaries of the medium

is required in Eqs. (10), (11) and (14), the optical thickness �0 is not needed, and so, since
we intend to develop our inverse solution for the scattering law from these equations, we can
delay our discussion of the inverse solution for the optical thickness.
For the case of the binomial scattering law, our algorithm for extracting the desired unknowns

$ and K is very simple. We 5rst choose some (large) value, say L=1000, and rewrite Eq. (4)
as

p(cos)=
L∑
l=0

�lPl(cos): (15)

Next, we solve Eq. (10) for $ and use that result in Eq. (11) to de5ne a function of one
unknown (viz., K) a zero of which we then 5nd by Newton’s method of iteration with K =0
as an initial estimate. Then, once K has been found in this way, we obtain $ from Eq. (10).
For the Henyey–Greenstein case, we again choose some (large) value, say L=1000, and

rewrite Eq. (9) as

p(cos)=
L∑
l=0

(2l+ 1)glPl(cos): (16)
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Next, we solve Eq. (10) for $ and use that result in Eq. (11) to de5ne a function of one
unknown (viz., g) a zero of which we 5nd by Newton’s method of iteration with g=1 as an
initial estimate. Then, once g has been found in this way, we obtain $ from Eq. (10).
Of course for either the binomial case or the Henyey–Greenstein case, if some knowledge of

K or g is already available, a more precise value of L could (perhaps) be used. In any case,
once converged values of K and $ or g and $ have been obtained with an assumed value of
L, more con5dence in the results can be obtained by increasing L and repeating the calculation.
For the conservative case, we also use L=1000 as the upper summation limit in Eq. (10),

and then, with $=1, we use Newton’s method to 5nd K or g from the resulting equation.
To conclude this section, we note that while we have based our solutions on knowledge of the

boundary data (incoming and outgoing intensities), the same procedure could be used to yield
similar results if the total intensities were known (or available from experimental observations)
at any two points within the medium.

3. The optical thickness

At this point, we assume that we have solved the inverse problem to establish the scattering
law, and so now we wish to extend a result, valid only for isotropic scattering, from Ref. [10]
in order to 5nd an explicit inverse solution for the optical thickness �0. We therefore consider
the equation of transfer

�
@
@�
I(�; �) + I(�; �)=

$
2

L∑
l=0

�lPl(�)
∫ 1

−1
Pl(�′)I(�; �′) d�′; (17)

for �∈ (0; �0) and �∈ [− 1; 1], and the boundary conditions
I(0; �)=F1(�) (18a)

and

I(�0;−�)=F2(�); (18b)

for �∈ (0; 1]. Here we assume that we know $, the order of the scattering law L, and the coef-
5cients {�l} that de5ne the scattering law and (from experimental data) the exiting intensities

I(0;−�)=G1(�) (19a)

and

I(�0; �)=G2(�); (19b)

for �∈ (0; 1]. We base our solution for the optical thickness �0 on the method of elementary
solutions [11], and so to start we write our solution to Eq. (17) as

I(�; �)= I∗(�; �) +
∫ 1

0
[A(�)�(�; �)e−�=� + B(�)�(−�; �)e−(�0−�)=�] d�; (20)

where

I∗(�; �)=
ℵ∑
j=1

[Aj�(�j; �)−�=�j + Bj�(−�j; �)e−(�0−�)=�j ] (21)



832 C.E. Siewert / Journal of Quantitative Spectroscopy & Radiative Transfer 72 (2002) 827–835

and

�(±�j; �)= $�j2
L∑
l=0

�lPl(�)gl(±�j) 1
�j ∓ � : (22)

Here we use ℵ to denote the number of pairs of discrete eigenvalues {±�j}, and we use gl(�)
to denote the Chandrasekhar polynomials [8]. These polynomials are de5ned by the three-term
recursion formula

(2l+ 1−$�l)�gl(�)= (l+ 1)gl+1(�) + lgl−1(�) (23)

and the starting values

g0(�)=1 and g1(�)= (1−$)�: (24a,b)

Since the elementary functions �(±�; �) based on the continuum, �∈ (0; 1), make no explicit
contribution to our calculation of �0, we omit these de5nitions. Of course, to de5ne the complete
solution for the radiation intensity, all of Eq. (20) must be used, and to complete that solution,
the constants Aj and Bj and the functions A(�) and B(�) must be determined so that the solution
satis5es the boundary conditions given by Eqs. (18). However, simply to determine �0 for our
inverse problem we do not require the complete solution I(�; �).
While we do not have, in general, explicit expressions for the eigenvalues ±�j, j=1; 2; : : : ;ℵ,

as we did have for the isotropic case [10], these discrete eigenvalues can be computed as zeros
of the dispersion function

�(z)=1 +
∫ 1

−1
 (�)

d�
�− z ; z �∈ [− 1; 1]; (25)

where the characteristic function is

 (�)=
$
2

L∑
l=0

�lPl(�)gl(�): (26)

The elementary functions �(�; �) are orthogonal (with weight function �) on the full-range [12],
and so we can, for example, evaluate Eq. (20) at �=0 and �= �0 and conclude that

AjNj=
∫ 1

−1
�(�j; �)I(0; �)� d�; (27a)

Bje−�0=�jNj=−
∫ 1

−1
�(−�j; �)I(0; �)� d�; (27b)

Aje−�0=�jNj=
∫ 1

−1
�(�j; �)I(�0; �)� d�; (27c)

and

BjNj=−
∫ 1

−1
�(−�j; �)I(�0; �)� d�; (27d)
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for j=1; 2; : : : ;ℵ. Here

Nj=
∫ 1

−1
[�(�j; �)]2� d�: (28)

Now, from Eqs. (27a) and (27c), we see that

e�0=�j =M (0; �j)=M (�0; �j); (29)

where

M (�; �j)=
∫ 1

−1
�(�j; �)I(�; �)� d�: (30)

Also, from Eqs. (27b) and (27d), it follows that

e�0=�j =M (�0;−�j)=M (0;−�j): (31)

We therefore conclude that

�0 = �j ln{M (0; �j)=M (�0; �j)} (32)

and

�0 = �j ln{M (�0;−�j)=M (0;−�j)}; (33)

for any j=1; 2; : : : ;ℵ. Of course, we can use Eqs. (18) and (19) to write

M (0;±�j)=
∫ 1

0
�(±�j; �)F1(�)� d� −

∫ 1

0
�(∓�j; �)G1(�)� d� (34)

and

M (�0;±�j)=
∫ 1

0
�(±�j; �)G2(�)� d� −

∫ 1

0
�(∓�j; �)F2(�)� d�: (35)

We note that Eqs. (32) and (33) are valid for $∈ (0; 1). For the conservative case, $=1,
we 5nd an even simpler result, viz.

�0 = (3− �1)[J1(0)− J1(�0)]=[3J0(0)]; (36)

where we have made use of the de5nitions introduced in Eq. (12b). Since Eq. (36) is written
in terms of boundary results, we can use in that equation

J�(0)=
∫ 1

0
[F1(�)− (−1)�G1(�)]��+1 d�; �=0; 1; (37a)

and

J�(�0)=
∫ 1

0
[G2(�)− (−1)�F2(�)]��+1 d�; �=0; 1: (37b)

While we have made use of the boundary data to 5nd Eqs. (32), (33) and (36), it is clear
that were it more convenient, from say an experimental point of view, to know the intensity at
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any two values of � would be su>cient to determine, in a manner analogous to what has been
done here, the optical distance between the two chosen values of �. We note that Eqs. (32)
and (33) can be immediately generalized so as to be valid for any value of �∈ (0; 1); however,
to be rigorous some ensuing integrals in Eqs. (34) and (35) would have to be evaluated in
the Cauchy principal-value sense. Finally, although there exist methods [13,14] for estimating
the optical thickness of a 5nite layer from boundary data, we believe that we are justi5ed in
claiming that the results given by Eqs. (32), (33) and (36) are de5nitive.

4. Concluding comments

The algorithms de5ned for solving the inverse problems considered in this work were tested
numerically by using a version of the discrete-ordinates method [15,16] to solve the direct
problem. We found, typically using F1(�)=1 and F2(�)=0, that we could, for the binomial
scattering law, then extract $, K and �0 with 5ve 5gures of accuracy with a discrete-ordinates
solution of order N =40. Similar results were found for the Henyey–Greenstein scattering law.
The solution of the direct problems and the solving of the inverse problems, as implemented
in FORTRAN and run on a 400 MHz PC, required, for the (typical) cases tested, less than 1 s
of computation time. Of course, such testing only helps con5rm the validity of the inversion
method and does not, in any serious way, address the important issue of how experimental
errors could a8ect the results. We note that Chalhoub and Campos Velho [17,18] recently used
an approach based on optimization techniques and repeated solutions of the direct problem to
show the e8ects of errors [on their algorithm] for a model based on the Henyey–Greenstein
scattering law. Of course neither the Henyey–Greenstein nor the binomial scattering law can
be expected to describe well the scattering process for all applications, but when the binomial
scattering law or the Henyey–Greenstein law can be used, we believe that the method reported
here can be used with con5dence.
To give some numerical results, we report on what we consider to be two reasonably se-

vere cases. First of all we used our [15,16] discrete-ordinates solution with N =40 to solve
the direct problem based on the binomial model with K =543:21, $=0:92, and �0 =2. Using
our algorithm for the inverse problem, we found (without adding any noise to the solution
of the direct problem) in less than a second for both the direct and the inverse solutions,
K =543:21, $=0:92000, and �0 =2:0000. Following this calculation, we added 5% of ran-
dom noise to the solution of the direct problem and saw that the results (with N =200)
from the inverse solution changed to K =537, $=0:919 and �0 =1:96. Our results for the
Henyey–Greenstein scattering law are similar. Here the direct problem was de5ned by $=0:9,
g=0:97 and �0 =2. Without noise, we found (with N =50) $=0:90000, g=0:97000 and
�0 =2:0000 when solving the inverse problem. With 5% of random noise added to the so-
lution of the direct problem, these results became (with N =200) $=0:909, g=0:972
and �0 =2:17.
To conclude, we note that we have found that the algorithms developed here work well, but

we must not forget that the issues of existence and uniqueness of the solutions to the inverse
problems considered have not been addressed.
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