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Abstract

Some exact solutions of the homogeneous and the inhomogeneous linearized Boltzmann equation (LBE) for
rigid-sphere collisions are used to de5ne two model equations in the general area of rare5ed-gas dynamics.
These equations are obtained from a systematic development of two synthetic scattering kernels that yield
model equations that have as exact solutions certain known exact solutions of the homogeneous and of the
inhomogeneous LBE. The 5rst model established is de5ned in terms of the collisional invariants and the
Chapman–Enskog integral equations for viscosity and for heat conduction. An extended model is de5ned also
in terms of the collisional invariants and the Chapman–Enskog functions for viscosity and heat conduction,
but the 5rst and second Burnett functions are also included in the model. The variable collision frequency
or generalized BGK model is also obtained as a special case. In addition, the exact mean-free paths de5ned,
for rigid-sphere collisions and the LBE, in terms of viscosity or heat conduction are employed to de5ne
approximations of these quantities that are consistent with the use of the variable collision frequency model.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Internal rare5ed-gas :ows de5ne a 5eld of major interest in the general area of rare5ed-gas
dynamics, and so the contributions to this body of knowledge are many. The books of Cercignani
[1,2] and Williams [3] provide excellent material relevant to this 5eld and a comprehensive review
recently reported by Sharipov and Seleznev [4] also is a useful up-to-date source that pays much
attention to comparing di?erent computational methods as well as di?erent mathematical formulations
basic to rare5ed-gas dynamics. In recent years, we have seen an increased interest in the general
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area of rare5ed-gas dynamics essentially because of applications in nanotechnology (for example, as
related to micro-machines and high-speed disk drives) where the Boltzmann equation or a model
equation is required in order to describe well gas-:ow and heat-:ow mechanisms. It was also pointed
out in Ref. [4] that the thermal transpiration phenomena, which exist in internal :ows produced by
a temperature or pressure gradient, continue to attract the attention of scientists. Moreover, there
is additional recent interest in these e?ects due to applications in micro-electro-mechanical systems
(MEMS), and so we believe there is need for further improvements in computational methods
and mathematical modeling for the :ow of micro:uids. In many cases the :ow conditions are in
the transition regime and as a result the well-known and commonly used Navier–Stokes equations
can not be applied. In these cases the Boltzmann equation or suitable kinetic models should be
utilized.

In regard to improvements in computational methods in the general area of rare5ed-gas dynamics,
we note that our analytical discrete-ordinates (ADO) method [5] has been shown [6–9] to be a
useful method for solving a class of basic problems in this 5eld. For example, many of the classical
problems based on the BGK model [10] have been solved in a uni5ed and especially accurate way
with the ADO method. Following beginning work with the BGK model, we extended the ADO
method in order to solve many of the basic problems in rare5ed-gas dynamics that were de5ned in
terms of the variable collision frequency model (CLF model) of Cercignani [11] and Loyalka and
Ferziger [12]. Having seen that the ADO method is a convenient computational method for solving
problems based on the CLF model and seeking improved results for physical quantities of interest,
we now go back and make use of some early work of Shapiro and Corngold [13] and Loyalka
and Ferziger [12] in order to de5ne explicitly two extended model equations based on approximated
forms of the linearized Boltzmann equation (LBE). While Refs. [2,12,13] have discussed, in general
terms, the use of degenerate kernels for use in particle transport theory, we believe the use we make
here of exact solutions of the homogeneous and of the inhomogeneous LBE provides a systematic
basis for approximating the scattering kernel in the LBE. It is for this reason that the two models
(the CES model and the CEBS model) are developed in detail.

This work starts with the LBE for rigid-sphere interactions, as discussed by Pekeris and Alterman
[14], and so, while the model equations developed may readily be extended to other interaction
laws, the basis of the work must be taken in the light of the LBE and rigid-sphere collisions.
Although modern and intensive numerical methods based on 5nite-di?erence techniques and the
numerical evaluation of multi-dimensional integrals can be used, as can the Monte Carlo method, to
solve practical problems based on the LBE, our goal here is to explore a class of model equations
that can be solved (essentially) analytically to yield results good enough for selected engineering
applications. It is for this reason that we provide a systematic derivation of the models and report
the 5nal forms in suIcient detail that researchers seeking to develop numerical algorithms to solve
practical problems will have a clearly de5ned starting point. We note here that while we have found
success with our ADO method, the kernel of the integral operator of the LBE is not continuous [15]
in the relevant variables, and for this reason we avoid the use of a global quadrature method for
evaluating such integrals.

To start we follow the papers of Pekeris and Alterman [14] and Loyalka and Hickey [16] and
consider the LBE written as

c�
@
@x

h(x; c) = �2
0n0	

1=2L{h}(x; c); (1)
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where c(2kT0=m)1=2 is the magnitude of a particle velocity, x is the spatial variable (measured in
cm) and h(x; c) de5nes the perturbation from the equilibrium distribution

f0(c) = n0[m=(2	kT0)]3=2e−c2 : (2)

Here n0 is the (constant) density of gas particles, each of mass m, k is the Boltzmann constant and
T0 is a (constant) reference temperature. To be clear, we note while h(x; c) de5nes the focus of our
attention, the actual distribution function f(x; c) in this formulation is expressed as

f(x; c) = f0(c)[1 + h(x; c)]: (3)

In regard to Eq. (1), we continue to follow Refs. [14,16], and so we state that �0 is the collision
diameter of the gas particles (in the rigid-sphere approximation) and that the collision process is
described by

L{h}(x; c) =−�(c)h(x; c) +
∫ ∞

0

∫ 1

−1

∫ 2	

0
e−c′2h(x; c′)K(c′; c)c′2 d�′ d�′ dc′; (4)

where we use spherical coordinates (c; arccos �; �) to de5ne the (dimensionless) velocity vector,
where �(c) is the “collision frequency” and where K(c′; c) is the scattering kernel. It is clear that
to proceed we require de5nitions of the scattering kernel K(c′; c) and the collision frequency �(c).
In their work, Pekeris and Alterman [14] used an expansion in terms of Legendre polynomials (as
functions of the scattering angle between “before” and “after” directions) to describe the scattering
process. We use the spherical-harmonics addition theorem and write the scattering kernel of Pekeris
and Alterman [14] as

K(c′; c) =
1
4	

∞∑
n=0

n∑
m=0

(2n+ 1)(2− �0;m)Pm
n (�

′)Pm
n (�)kn(c

′; c) cosm(�′ − �): (5)

Here the normalized Legendre functions

Pm
n (�) =

[
(n− m)!
(n+ m)!

]1=2
(1− �2)m=2 dm

d�mPn(�); n¿m; (6)

where Pn(�) denotes the usual Legendre polynomial, are such that∫ 1

−1
Pm

n (�)P
m
n′(�) d� =

(
2

2n+ 1

)
�n;n′ : (7)

The basic elements kn(c′; c) in the expansion of the scattering kernel are, in principle, available from
the paper of Pekeris and Alterman [14] where explicit expressions are given for n = 1 and 2. For
future use, we list these components, as well as the cases n = 0 and 3 taken from Loyalka and
Hickey [16]. Noting that, in general, kn(c′; c) = kn(c; c′), we make two corrections to the listing in
Ref. [16], follow the style of Loyalka and Hickey [16] and write for c′ ¡c

− (1=2)c′ck0(c′; c) = (2=3)c′3 + 2c′c2 − 4P(c′); (8a)

− (1=2)c′2c2k1(c′; c) = (2=15)c′5 − 4c′ − (2=3)c′3c2 − 4(c′2 − 1)P(c′); (8b)

− (1=2)c′3c3k2(c′; c) = a2(c′; c) + b2(c′; c)P(c′) (8c)
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and

− (1=2)c′4c4k3(c′; c) = a3(c′; c) + b3(c′; c)P(c′) (8d)

where

a2(c′; c) = (2=35)c′7 − 3c′3 + 18c′ − [(2=15)c′5 − 3c′]c2; (9a)

b2(c′; c) =−6c′4 + 15c′2 − 18 + [2c′2 − 3]c2; (9b)

a3(c′; c) = (2=63)c′9 − 5c′5 + 20c′3 − 150c′ − [(2=35)c′7 − c′3 + 30c′]c2 (9c)

and

b3(c′; c) =−10c′6 + 45c′4 − 120c′2 + 150 + [6c′4 − 21c′2 + 30]c2: (9d)

Here

P(c) = ec
2
∫ c

0
e−x2 dx: (10)

At this point we introduce a mean-free path l (which, for the moment, we leave arbitrary) and
use the dimensionless variable �= x=l to rewrite Eq. (1) as

c�
@
@�

h(�; c) = �L{h}(�; c); (11)

where the operator L is de5ned by Eq. (4) and

�= �2
0n0	

1=2l: (12)

While it might be convenient to have introduced the idea of a mean-free path, we must keep in
mind that this quantity cannot, at this point, be considered known since in reality it is a function of
the actual solution we seek. Some workers choose to use a mean-free path based on viscosity for
:ow problems and a mean-free path based on thermal conductivity for heat-:ow problems. In either
case, the use of an appropriate mean-free path is especially important when working with model
equations such as the CLF model we discuss later in this work.

2. Some solutions

In order to conserve mass, momentum and energy, the kernel K(c′; c) used in Eq. (4) must be
such that

�(c)S(c; �; �) =
∫ ∞

0

∫ 1

−1

∫ 2	

0
e−c′2S(c′; �′; �′)K(c′; c)c′2 d�′ d�′ dc′; (13)

where

S(c; �; �) =




1

c�

c(1− �2)1=2 cos �

c(1− �2)1=2 sin �

c2



: (14)
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Taking note of Eq. (5), we 5nd that Eq. (13) yields only the three conditions

�(c) =
∫ ∞

0
e−c′2k0(c′; c)c′

2 dc′; (15a)

�(c)c =
∫ ∞

0
e−c′2k1(c′; c)c′

3 dc′ (15b)

and

�(c)c2 =
∫ ∞

0
e−c′2k0(c′; c)c′

4 dc′: (15c)

Using Eqs. (8a) and (8b), we can con5rm Eqs. (15b) and (15c) once we have used Eqs. (8a) and
(15a) to 5nd the collision frequency:

�(c) =
2c2 + 1

c

∫ c

0
e−x2 dx + e−c2 : (16)

There are examples [17] in linear transport theory which suggest that, when there is a “discrete”
solution that is independent of the spatial variable, we are able to 5nd a second solution that is
linear in the spatial variable. While there are not 5ve solutions of Eq. (11) that are linear in the
spatial variable, Cercignani [18] has reported three such solutions. The components of S(c; �; �) as
listed in Eq. (14) are normally [1,2] referred to as the collisional invariants. To be clear, we let

h1(�; c) = 1; (17a)

h2(�; c) = c�; (17b)

h3(�; c) = c(1− �2)1=2 cos �; (17c)

h4(�; c) = c(1− �2)1=2 sin � (17d)

and

h5(�; c) = c2 − 5=2 (17e)

denote the exact solutions of Eq. (11) that are independent of the spatial variable. Note that instead
of using c2 as the 5fth solution, we have elected to use a convenient linear combination of the 5rst
and 5fth components of S(c; �; �) to de5ne h5(�; c). To list the solutions of Eq. (11) that are linear
in the spatial variable we 5rst introduce the notation we use to discuss a class of integral equations
that is basic to this work, viz.

Ln{f}(c) = r(c); c∈ [0;∞); (18)

with r(c) considered given, and with

Ln{f}(c) = �(c)f(c)−
∫ ∞

0
e−x2f(x)kn(x; c)x2 dx: (19)

While it is clear that Eq. (5) de5nes the scattering kernel for the LBE, we note that the components
kn(c′c) of this scattering kernel, as used in Eq. (5), are the functions required in the integral equations
de5ned in Eq. (18). We see also that, in contrast to the integration over velocity space that is required
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in the Boltzmann equation, we have in Eq. (18) a one-dimensional integral. Finally, we observe that
Eq. (18) is not in the form of a classical Fredholm equation (because of the improper integral),
but with some changes of variables the equation can clearly be rede5ned on a 5nite interval even
though this process can introduce singularities into the kernel function [19].

Looking now to Refs. [14,16], we see that the Chapman–Enskog integral equations relevant to
viscosity and heat conduction can be written, in our notation, respectively, as

L2{c2b}(c) = c2 (20)

and

L1{ca}(c) = c(c2 − 5=2) (21)

for c∈ [0;∞). We note that the functions a(c) and b(c) are the same as the functions a(p) and
b(p) used by Pekeris and Alterman [14]. We see also that we can rewrite our Eqs. (15) as

L0{1}(c) = 0; (22a)

L1{c}(c) = 0 (22b)

and

L0{c2}(c) = 0 (22c)

for c∈ [0;∞). Noting Eqs. (21) and (22b), we conclude that an arbitrary constant can be added to
any function a(c) that satis5es Eq. (21), and so this function is generally normalized by imposing
the condition [3]∫ ∞

0
e−c 2

a(c)c4 dc = 0: (23)

Making use of the manifestations of the Fredholm alternative [19] and the fact that Eqs. (22) show
that there are solutions of homogeneous versions of the integral equations

Ln{f}(c) = r(c); c∈ [0;∞); (24)

for the cases of n=0 and 1, we can list solvability conditions for these two cases, viz.∫ ∞

0
e−c 2

[
1

c2

]
r(c)c2 dc = 0; n= 0 (25a)

and ∫ ∞

0
e−c 2

r(c)c3 dc = 0; n= 1: (25b)

It can be seen from the forms of the kernels required in Eqs. (20) and (21) that these integral
equations can provide a challenge to workers seeking numerical results for the functions a(c) and
b(c), and so Pekeris and Alterman [14] reduced these two integral equations to ordinary 4th-order
di?erential equations from which they obtained numerical results for the required functions a(c) and
b(c). More recently, additional numerical results (based directly on the integral equations) for these
important functions have been reported [16,20,21].
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Having de5ned, by way of Eqs. (20), (21) and (23), the Chapman–Enskog functions a(c) and
b(c), we have found three solutions of Eq. (11) that are linear in �. We report these solutions as

h∗3(�; c) = c(1− �2)1=2 cos �[��− �cb(c)]; (26a)

h∗4(�; c) = c(1− �2)1=2 sin �[��− �cb(c)] (26b)

and

h∗5(�; c) = (c2 − 5=2)��− �ca(c): (26c)

While Cercignani [18] has expressed his three solutions that are linear in the spatial variable in a
di?erent and less explicit way, those three solutions are linear combinations of our Eqs. (26). Having
listed in Eqs. (17) and (26) eight linearly independent solutions of Eq. (11), we proceed now to
use these eight solutions to de5ne a synthetic kernel F(c′; c) we can use to approximate the exact
kernel K(c′; c) that is listed as Eq. (5).

3. A synthetic kernel

Even if we truncate the expansion of the scattering kernel given as Eq. (5) after only a few terms,
the problem of solving the resulting approximation of the LBE is still diIcult from a numerical
point of view. The numerical diIculty comes about basically because the components kn(c′; c) re-
quired in Eq. (5) have derivatives (even for small values of n) that are discontinuous at c′ = c. It
is for this reason, keeping in mind that we intend to implement our work numerically, that we seek
to approximate the true kernel by physically meaningful approximations that can be more easily
incorporated into a numerical algorithm. In this regard, we note that the variable collision (CLF)
model of Cercignani [11] and Loyalka and Ferziger [22] has been used in two recent works [8,9] in
order to try to improve basic results available from the classical BGK model [10]. We now extend
the variant of the variable collision frequency model used in Refs. [8,9] by replacing the exact com-
ponents kn(c′; c) of a truncated form of the scattering kernel K(c′; c) with a more general synthetic
approximation. And so to begin, we truncate Eq. (5) and write the synthetic scattering kernel as

F(c′; c) =
1
4	

N∑
n=0

n∑
m=0

(2n+ 1)(2− �0;m)Pm
n (�

′)Pm
n (�)fn(c′; c) cosm(�′ − �); (27)

where, instead of using kn(c′; c) as in Eq. (5), we intend to use synthetic approximations fn(c′; c)
which we express, initially for N = 2, as

f0(c′; c) = A0(c′)A0(c) + B0(c′)B0(c); (28a)

f1(c′; c) = A1(c′)A1(c) + B1(c′)B1(c) (28b)

and

f2(c′; c) = A2(c′)A2(c); (28c)

where the functions {An(x); Bn(x)} are to be determined. Continuing, we now write our approximated
balance equation as

c�
@
@�

h(�; c) = �L∗{h}(�; c); (29)
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where

L∗{h}(�; c) =−�(c)h(�; c) +
∫ ∞

0

∫ 1

−1

∫ 2	

0
e−c′2h(�; c′)F(c′; c)c′2 d�′ d�′ dc′: (30)

Here F(c′; c) is given by Eq. (27) with N = 2.
At this point we de5ne the conditions we wish to use to de5ne the components fn(c′; c); n=0; 1; 2,

of the F(c′; c). We simply insist that the 5ve exact solutions listed as Eqs. (17) and the three exact
solutions listed as Eqs. (26) be also solutions to Eq. (29). And so upon substituting Eqs. (17) into
Eq. (29) we 5nd three conditions:∫ ∞

0
e−c′2f0(c′; c)c′

2 dc′ = �(c); (31a)

∫ ∞

0
e−c′2f0(c′; c)c′

4 dc′ = �(c)c2 (31b)

and ∫ ∞

0
e−c′2f1(c′; c)c′

3 dc′ = �(c)c: (31c)

Now substituting the three solutions listed as Eqs. (26) into Eq. (29), we 5nd two additional con-
ditions, viz.∫ ∞

0
e−c′2a(c′)f1(c′; c)c′

3 dc′ = �(c)ca(c)− c(c2 − 5=2) (31d)

and ∫ ∞

0
e−c′2b(c′)f2(c′; c)c′

4 dc′ = �(c)c2b(c)− c2: (31e)

To reiterate, we consider here that the only unknowns in Eqs. (31) are the components fn(c′; c);
n = 0; 1; 2, that we seek to de5ne our approximate scattering kernel F(c′; c) for N = 2. We can
substitute the forms given by Eqs. (28) into Eqs. (31) to 5nd the required approximating components.
For f0(c; c) we 5nd

f0(c′; c) = �(c′)�(c)[,01 +,02(c′
2 − !)(c2 − !)]; (32)

where

,01 =
1
�2

; (33a)

,02 =
�2

�2�6 − �24
(33b)

and

!=
�4
�2

(33c)

with

�n =
∫ ∞

0
e−c 2

�(c)cn dc: (34)
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For f1(c; c) we 5nd

f1(c′; c) =,11c′�(c′)c�(c) +,12#1(c′)#1(c); (35)

where

#1(c) = �(c)[a∗c − ca(c)] + c(c2 − 5=2): (36)

In addition,

,11 =
1
�4

; (37a)

,12 = [a1 − a2 − a∗a3]−1 (37b)

and

a∗ = a3=�4 (37c)

where

a1 =
∫ ∞

0
e−c 2

�(c)a2(c)c4 dc; (38a)

a2 =
∫ ∞

0
e−c 2

a(c)c6 dc (38b)

and

a3 =
∫ ∞

0
e−c 2

�(c)a(c)c4 dc: (38c)

Finally, for f2(c; c) we 5nd

f2(c′; c) =,2[c′
2 − �(c′)c′2b(c′)][c2 − �(c)c2b(c)]; (39)

where

,2 =
1
�∗

(40)

with

�∗ =
∫ ∞

0
e−c 2

b(c)[�(c)c2b(c)− c2]c4 dc: (41)

At this point our model of the LBE is completely de5ned, viz.

c�
@
@�

h(�; c) = �L∗{h}(�; c); (42)

where

L∗{h}(�; c) =−�(c)h(�; c) +
∫ ∞

0

∫ 1

−1

∫ 2	

0
e−c′2h(�; c′)F(c′; c)c′2 d�′ d�′ dc′: (43)

Here

F(c′; c) =
1
4	

�(c′)�(c)[,01 + 3,11(c′ · c) +,02(c′
2 − !)(c2 − !)] +M (c′; c) + N (c′; c); (44)
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where

M (c′; c) =
1
4	

3,12[(c′ · c)=(c′c)]#1(c′)#1(c) (45a)

and

N (c′; c) =
5
4	
,2#2(c′)#2(c)

2∑
m=0

(2− �0;m)Pm
2 (�

′)Pm
2 (�) cosm(�

′ − �) (45b)

with

#1(c) = �(c)[a∗c − ca(c)] + c(c2 − 5=2); (46a)

#2(c) = c2 − �(c)c2b(c) (46b)

and (in a consistent notation)

c′ · c = c′c
1∑

m=0

(2− �0;m)Pm
1 (�

′)Pm
1 (�) cosm(�

′ − �): (47)

We note that M (c′; c) and N (c′; c) in Eq. (44) are the terms resulting from the use of the Chapman–
Enskog functions a(c) and b(c) and the conditions listed as Eqs. (31d) and (31e). To have a simple
way to refer to this model that we considered to derive much of its character from the Chapman–
Enskog integral equations relevant to viscosity and heat conduction and synthetic approximations,
we refer to this model as the CES model. Although we have used here a di?erent and more explicit
procedure to derive this model, the resulting kernel satis5es some conditions suggested by Loyalka
and Ferziger [12].

4. Mean-free paths

To have our 5nal results in terms of the real spatial variable x (in cm), what we use for a mean-free
path l is not important, if the molecular diameter �0 and the density n0 are known. However, since
these physical quantities may not be known some workers choose to work in terms of a speci5c
mean-free path. We can mention two convenient choices. For the Poiseuille-:ow problem, Loyalka
and Hickey [16] use

l= lp = (�∗=p0)(2kT0=m)1=2; (48)

where �∗ is the mean viscosity and p0 = n0kT0 is the pressure. And so since Pekeris and Alterman
[14] give (for rigid-sphere collisions)

�∗ =
8(2mkT0)1=2

15	�2
0

∫ ∞

0
e−c2b(c)c6 dc; (49)

where b(c) is de5ned by

�(c)c2b(c)−
∫ ∞

0
e−c′2b(c′)k2(c′; c)c′

4 dc′ = c2; (50)
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we can use Eq. (12) to 5nd, for this case,

�= �p =
16
15

	−1=2
∫ ∞

0
e−c 2

b(c)c6 dc: (51)

For the temperature-jump problem, Loyalka and Ferziger [22] use

l= lt = [4&∗=(5n0k)][m=(2kT0)]1=2; (52)

where &∗ is the heat-conduction coeIcient, which Pekeris and Alterman [14] express (for rigid-sphere
collisions) as

&∗ =
4k(2kT0=m)1=2

3	�2
0

∫ ∞

0
e−c 2

a(c)c6 dc; (53)

where

�(c)ca(c)−
∫ ∞

0
e−c′2a(c′)k1(c′; c)c′

3 dc′ = c(c2 − 5=2) (54a)

with ∫ ∞

0
e−c 2

a(c)c4 dc = 0: (54b)

In this way we 5nd

�= �t =
16
15

	−1=2
∫ ∞

0
e−c 2

a(c)c6 dc: (55)

In regard to numerical work, we note that Hermite cubic splines have been used [21] to solve the
Chapman–Enskog integral equations for viscosity and heat conduction, our Eqs. (20), (21) and (23),
and Eqs. (51) and (55) have been evaluated to yield

�p = 0:449027806 : : : (56a)

and

�t = 0:679630049 : : : : (56b)

Noting that the Prandtl number normally used in kinetic theory written as

Pr =
5
2
�∗k
m&∗

(57)

can be expressed as

Pr = �p=�t (58)

and so using Eqs. (56) in Eq. (58), we 5nd the result

Pr = 0:660694457 : : : ; (59)

which we believe to be correct (for the LBE and rigid-sphere collisions) to all digits given.
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5. The CLF model

If we wish to use the CES model worked out in detail in Section 3 of this paper, we must
5rst solve the Chapman–Enskog integral equations for viscosity and heat conduction to obtain the
functions a(c) and b(c). On the other hand, we can obtain a lower-order model just by approximating
these two functions. If we go back to Eqs. (50) and (54a) and ignore the integral terms we obtain
what we consider to be 5rst estimates of a(c) and b(c). We label these estimates a0(c) and b0(c)
and write

a0(c) = �−1(c)(c2 − 5=2) + â (60a)

and

b0(c) = �−1(c); (60b)

where we have included in Eq. (60a) a constant â since we know a(c) is determined from Eq. (54a)
only to within an additive constant. Now applying the normalization condition listed as Eq. (23) to
a0(c), we 5nd

â=−(8=3)	−1=2
∫ ∞

0
e−c 2

�−1(c)(c2 − 5=2)c4 dc: (61)

If we use a0(c) and b0(c), in place of the correct solutions a(c) and b(c), we 5nd that Eq. (44)
reduces to

F(c′; c) =
1
4	

�(c′)�(c)[,01 + 3,11(c′ · c) +,02(c′
2 − !)(c2 − !)] (62)

and so using Eq. (62) with Eqs. (42) and (43) and considering that the collision frequency is
arbitrary, not 5xed by Eq. (16), we then have what we [8,9] refer to as the CLF model (variable
collision frequency model) or the generalized BGK model [3].

Returning now to the issue of mean-free paths, or alternatively corresponding choices for the �
de5ned by Eq. (12), we note that within the context of the CLF model, we can use Eqs. (60) and
(61) in Eqs. (51) and (55) to 5nd the approximate results

�p;0 =
16
15

	−1=2
∫ ∞

0
e−c 2

�−1(c)c6 dc (63)

and

�t;0 =
16
15

	−1=2
∫ ∞

0
e−c 2

�−1(c)(c2 − 5=2)2c4 dc: (64)

Eqs. (63) and (64), yield, respectively, for the BGK case [�(c) = 1], the Williams case [�(c) = c]
and the rigid-sphere case [�(c) as given by Eq. (16)], the following:

�p;0 = 1; (65a)

�p;0 = 0:601802222 : : : (65b)

and

�p;0 = 0:278804053 : : : (65c)
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along with

�t;0 = 1; (66a)

�t;0 = 0:677027500 : : : (66b)

and

�t;0 = 0:275334588 : : : : (66c)

We can see that using, for the three variants of the CLF model mentioned above, the approximate
values �p;0 and �t;0 in Eq. (58) yields poor results for the Prandtl number.

6. An additional model equation

In de5ning what we have called the CES model of the linearized Boltzmann equation, we estab-
lished 5ve conditions on the synthetic kernel F(c′; c) by insisting that the known solutions of the
homogeneous LBE listed as Eqs. (17) and (26) be also solutions of the model equation. As we
have no more known solutions we require other conditions if we wish to have a more general model
equation. Since the classical problems of Poiseuille :ow and thermal-creep :ow in a plane channel
are normally de5ned in terms of an inhomogeneous version of the LBE, we intend to de5ne our new
model equation by insisting that the particular solution required for the LBE be also a particular
solution of the inhomogeneous model equation. We therefore add driving terms to Eq. (11) and
consider :ow in a plane-parallel channel, �∈ [− a; a], to be de5ned by

c(1− �2)1=2 cos �[k1 + k2(c2 − 5=2)] + c�
@
@�

h(�; c) = �L{h}(�; c): (67)

Here we have the Cartesian components of velocity de5ned as

cx = c�; (68a)

cy = c(1− �2)1=2 sin � (68b)

and

cz = c(1− �2)1=2 cos � (68c)

and so the driving terms in Eq. (67) correspond to :ow in the z direction due to a pressure gradient
(Poiseuille :ow: k1=1 and k2=0) and due to a temperature gradient (thermal-creep :ow: k1=0 and
k2 = 1). For this class of :ow problems, we consider that the information we seek can be expressed
in terms of the velocity pro5le

u(�) =
1

	3=2

∫ ∞

0

∫ 1

−1

∫ 2	

0
e−c 2

h(�; c)(1− �2)1=2c3cos � d� d� dc (69)

and the heat-:ow pro5le

q(�) =
1

	3=2

∫ ∞

0

∫ 1

−1

∫ 2	

0
e−c 2

h(�; c)(1− �2)1=2(c2 − 5=2)c3cos � d� d� dc; (70)
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which we can write as

u(�) =
1

	1=2

∫ ∞

0

∫ 1

−1
e−c 2

g(�; c; �)(1− �2)1=2c3 d� dc (71)

and

q(�) =
1

	1=2

∫ ∞

0

∫ 1

−1
e−c 2

g(�; c; �)(1− �2)1=2(c2 − 5=2)c3 d� dc; (72)

where we have de5ned

g(�; c; �) =
1
	

∫ 2	

0
h(�; c) cos � d�: (73)

Since the velocity and heat-:ow pro5les have been expressed in terms of an azimuthal moment of
h(�; c), we multiply Eq. (67) by cos �, integrate over � and let

g(�; c; �) = (1− �2)1=2 (�; c; �) (74)

to 5nd

c[k1 + k2(c2 − 5=2)] + c�
@
@�

 (�; c; �) = �L1{ }(�; c; �); (75)

where

L1{ }(�; c; �) =−�(c) (�; c; �) +
∫ ∞

0

∫ 1

−1
e−c′2 (�; c′�′)k(c′; �′ : c; �)c′2 d�′ dc′ (76)

with

k(c′; �′ : c; �) = (1− �′2)
∞∑
n=1

-n(�′)-n(�)kn(c′; c): (77)

Here the component functions kn(c′; c) are the same as used in Eq. (5) and the polynomials

-n(�) =
[

2n+ 1
2n(n+ 1)

]1=2 d
d�

Pn(�); n¿ 1; (78)

are such that∫ 1

−1
(1− �2)-n(�)-n′(�) d� = �n;n′ : (79)

Since Eq. (75) has an inhomogeneous driving term, we now wish to de5ne particular solutions
corresponding to the two special cases k1=1; k2=0 and k1=0; k2=1 that are appropriate, respectively,
to Poiseuille :ow and thermal-creep :ow. We consider 5rst the case of thermal creep, and proposing
a particular solution that depends only on c, we 5nd

 ps(�; c; �) =−ca(c)=�; k1 = 0; k2 = 1; (80)

where (still) a(c) is de5ned by the Chapman–Enskog equation for heat conduction. Turning to the
case of Poiseuille :ow, we note that the driving term is itself a solution of the homogeneous equation,
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and so we can anticipate that some e?ort will be required to de5ne a particular solution. We follow
Simons [23], Williams [3] and Loyalka and Hickey [16] and propose, in our notation,

 ps(�; c; �) = [A(c)�2 + D(c)]-1(�) + B(c)�-2(�) + E(c)-3(�) (81)

which we substitute into Eq. (75), with k1 = 1; k2 = 0, to 5nd

 ps(�; c; �) = {c(��)2 − 2c2b(c)��� + c3d(c)=5 + c3e(c)(5�2 − 1)=5}=(��p): (82)

Here (still) b(c) is de5ned by the Chapman–Enskog equation for viscosity, d(c) must satisfy

L1{c3d}(c) = 2c3b(c)− 5c�p (83)

and e(c) must be a solution of

L3{c3e}(c) = 2c3b(c): (84)

Here we continue to make use of the notation introduced in Eq. (19).
We note that because of the de5nition of �p, as given by Eq. (51), we are assured that the

right-hand side of Eq. (83) satis5es the solvability condition listed as Eq. (25b). Finally, since
a constant multiple of c can, because of Eq. (22b), always be added to c3d(c), we can use the
normalization∫ ∞

0
e−c2d(c)c6 dc = 0 (85)

so that (for Poiseuille :ow) the contribution to the velocity pro5le from the particular solution
will come only from the 5rst term in Eq. (82). We note that Loyalka and Hickey [16] refer to
the functions we have called d(c) and e(c) as Burnett solutions. To distinguish between these two
important functions, which have been discussed by Simons [23] and which were also evaluated
numerically in Refs. [20,21], we refer to them as the 5rst and second Burnett functions. Considering
that the two Burnett functions are known, we 5nd that we can extend our synthetic kernel to the
case of N = 3 by adding to the conditions listed as Eqs. (31) two new conditions, viz.∫ ∞

0
e−c′2d(c′)f1(c′; c)c′

5 dc′ = �(c)c3d(c)− 2c3b(c) + 5c�p (86a)

and ∫ ∞

0
e−c′2e(c′)f3(c′; c)c′

5 dc′ = �(c)c3e(c)− 2c3b(c): (86b)

It follows that we can now write

f0(c′; c) = A0(c′)A0(c) + B0(c′)B0(c); (87a)

f1(c′; c) = A1(c′)A1(c) + B1(c′)B1(c) + C1(c′)C1(c); (87b)

f2(c′; c) = A2(c′)A2(c) (87c)

and

f3(c′; c) = A3(c′)A3(c): (87d)

Eqs. (31) and (86) are used to determine fn(c′; c); n = 0; 1; 2; 3, so as to de5ne our new syn-
thetic kernel. Because we have now included the 5rst and second Burnett functions, as well as the
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Chapman–Enskog functions for viscosity and heat conduction, we refer to this new model based on
a synthetic kernel as the CEBS model. This model, we recall, will have the eight exact solutions
listed as Eqs. (17) and (26) as solutions of the homogeneous model equation, and it will also have
the exact particular solutions for thermal creep and Poiseuille :ow as particular solutions of the
corresponding inhomogeneous model equation. Finally, since our CEBS model has one more term
(N =3 rather than N =2) in the synthetic scattering kernel, we have hopes that the model will prove
to be a good addition to the class of model equations already available for approximating the LBE.

7. Concluding remarks

In this work we have made consistent use of the idea of approximating the exact scattering
kernel relevant to the linearized Boltzmann equation (LBE) for rigid-sphere interactions with a
synthetic kernel that maintains some basic properties of the exact kernel. More speci5cally we
insist that a model equation de5ned by an approximating synthetic kernel accept as solutions certain
known solutions of the homogeneous LBE or the inhomogeneous LBE relevant to forced :ow in
a plane channel. By developing what we hope will prove to be improved model equations (what
we call the CES model and the CEBS model) that are amenable to analytical and simple numerical
methods of solution, we anticipate that numerical results for engineering applications will be made
available without the need of extensive computation methods required when the LBE must be solved
numerically. In addition to the two mentioned model equations, the variable collision frequency
model (CLF model) or generalized BGK model is obtained as a special case, and expressions from
approximations to the solutions of the Chapman–Enskog integral equations for viscosity and heat
conduction are used to de5ne mean-free paths that are consistent with the CLF model equation.
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