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The temperature-jump problem based on the CES model of
the linearized Boltzmann equation
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Abstract. An analytical discrete-ordinates method is used to solve the temperature-jump prob-
lem as defined by a synthetic-kernel model of the linearized Boltzmann equation. In particular,
the temperature and density perturbations and the temperature-jump coefficient defined by the
CES model equation are obtained (essentially) analytically in terms of a modern version of the
discrete-ordinates method. The developed algorithms are implemented for general values of the
accommodation coefficient to yield numerical results that compare well with solutions derived
from more computationally intensive techniques.
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1. Introduction

In a recent work [1] concerning the linearized Boltzmann equation for rigid-sphere
interactions, a synthetic-kernel [2,3] model equation (the CES model) and the ADO
(analytical discrete-ordinates) method [4] were used to solve Kramers’ problem
and the thermal-creep problem in the general area of rarefied gas dynamics. Since
the CES model, which is defined in terms of solutions to the Chapman-Enskog
integral equations for heat conduction and viscosity, yielded good results for the
two mentioned half-space flow problems, we continue here our investigation of the
model. In order to evaluate the effectiveness of the model for problems defined by
projections of the balance equation different from those required for flow problems,
we develop and evaluate in this work our solution of the classical temperature-jump
problem [5–7].

To start this work, we consider the homogeneous and linearized Boltzmann
equation written for rigid-sphere collisions as [8]

cµ
∂

∂τ
h(τ, c) = εL{h}(τ, c) (1)

where

L{h}(τ, c) = −ν(c)h(τ, c) +
∫ ∞

0

∫ 1

−1

∫ 2π

0

e−c′2c′2h(τ, c′)K(c′, c) dχ′ dµ′ dc′. (2)
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Here the scattering kernel is

K(c′, c) =
1
4π

∞∑
n=0

n∑
m=0

(2n + 1)(2 − δ0,m)Pm
n (µ′)Pm

n (µ)kn(c′, c) cos m(χ′ − χ) (3)

where the normalized Legendre functions are given (in terms of the Legendre poly-
nomials) by

Pm
n (µ) =

[
(n − m) !
(n + m) !

]1/2

(1 − µ2)
m/2 dm

dµm
Pn(µ), n ≥ m. (4)

In addition,
ε = σ2

0n0π
1/2l (5)

where l is (at this point) an unspecified mean-free path, n0 is the density and σ0

is the scattering diameter of the gas particles. In this work, the spatial variable τ
is measured in units of the mean-free path l and c(2kT0/m)1/2 is the magnitude
of the particle velocity. Also, k is the Boltzmann constant, m is the mass of a
gas particle and T0 is a reference temperature. The basic unknown h(τ, c) in
Eq. (1) is a perturbation from a Maxwellian distribution. Continuing, we note
that the functions kn(c′, c) in Eq. (3) are the components in an expansion of the
scattering law (for rigid-sphere collisions) reported by Pekeris and Alterman [8],
and

ν(c) =
2c2 + 1

c

∫ c

0

e−x2
dx + e−c2

(6)

is the collision frequency. And finally, we use spherical coordinates ( c, arccos µ, χ )
to define the (dimensionless) velocity vector c .

Due to the presence of a wall located at τ = 0 , we must supplement Eq. (1)
with an appropriate boundary condition. Noting that

h(τ, c) ⇔ h(τ, c, µ, χ), (7)

we express the required boundary condition as

h(0, c, µ, χ) − (1 − α)h(0, c,−µ, χ) − αI{h}(0) = 0 (8)

for µ ∈ (0, 1] , c ∈ [0,∞) and all χ . Here

I{h}(0) =
2
π

∫ ∞

0

∫ 1

0

∫ 2π

0

e−c2
c3h(0, c,−µ, χ)µdχdµdc (9)

and α ∈ (0, 1] is the accommodation coefficient. In this formulation of the
temperature-jump problem there is no driving term in Eq. (1), and so in addi-
tion to the boundary condition listed as Eq. (8), we will include in our statement
of the problem a condition on h(τ, c) as τ tends to infinity. This condition will be
seen clearly once we have expressed the quantities of interest in terms of h(τ, c) .
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2. Quantities of interest

Following the discussion from Ref. [7], we see that, while our problem is defined in
terms of the unknown h(τ, c) , we require only two elementary integrals of h(τ, c)
in order to establish the temperature and density perturbations [7,9] defined by

N(τ) =
1

π3/2

∫ ∞

0

∫ 1

−1

∫ 2π

0

e−c2
c2h(τ, c, µ, χ) dχdµdc (10)

and

T (τ) =
2

3π3/2

∫ ∞

0

∫ 1

−1

∫ 2π

0

e−c2
c2(c2 − 3/2)h(τ, c, µ, χ) dχdµdc, (11)

or

N(τ) =
2

π1/2

∫ ∞

0

∫ 1

−1

e−c2
c2φ(τ, c, µ) dµdc (12)

and

T (τ) =
4

3π1/2

∫ ∞

0

∫ 1

−1

e−c2
c2(c2 − 3/2)φ(τ, c, µ) dµdc (13)

where

φ(τ, c, µ) =
1
2π

∫ 2π

0

h(τ, c, µ, χ) dχ (14)

is an azimuthal average. We can integrate Eqs. (l) and (8) over χ to find

cµ
∂

∂τ
φ(τ, c, µ) + εν(c)φ(τ, c, µ) = ε

∫ ∞

0

∫ 1

−1

e−c′2c′2k(c′, µ′ : c, µ)φ(τ, c′, µ′) dµ′ dc′

(15)
for τ > 0 , µ ∈ [−1, 1] and c ∈ [0,∞) and

φ(0, c, µ)− (1−α)φ(0, c,−µ)− 4α

∫ ∞

0

∫ 1

0

e−c′2c′3φ(0, c′,−µ′)µ′ dµ′ dc′ = 0 (16)

for µ ∈ (0, 1] and c ∈ [0,∞) . In regard to Eq. (15), we note that

k(c′, µ′ : c, µ) =
∫ 2π

0

K(c′, c) dχ (17)

or

k(c′, µ′ : c, µ) =
1
2

∞∑
n=0

(2n + 1)Pn(µ′)Pn(µ)kn(c′, c). (18)

As Eqs. (1) and (8) are homogeneous, we must specify a driving term for the
temperature-jump problem. We do this implicitly by requiring that h(τ, c) di-
verge as τ tends to infinity. More specifically, we impose the condition that the
temperature perturbation satisfies the Welander condition [10]

lim
τ→∞

d
dτ

T (τ) = K (19)

where K is considered specified.
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3. A model equation

Rather than deal with the foregoing exact version of the linearized Boltzmann
equation, we now introduce the approximate CES model. This model is based on
replacing the kernel K(c′, c) defined by Eq. (3) with the simpler form given by

F (c′, c) =
1
4π

2∑
n=0

n∑
m=0

(2n + 1)(2− δ0,m)Pm
n (µ′)Pm

n (µ)fn(c′, c) cos m(χ′ −χ) (20)

that was reported in Ref. [3]. Here we write

f0(c′, c) = ν(c′)ν(c)[�01 + �02(c′
2 − ω)(c2 − ω)], (21)

f1(c′, c) = �11c
′ν(c′)cν(c) + �12∆1(c′)∆1(c) (22)

and
f2(c′, c) = �2∆2(c′)∆2(c). (23)

In regard to Eq. (21), we note that

�01 =
1
ν2

, �02 =
ν2

ν2ν6 − ν2
4

and ω =
ν4

ν2
(24a,b,c)

where
νn =

∫ ∞

0

e−c2
ν(c)cn dc. (25)

To complete Eq. (22), we write

�11 =
1
ν4

, �12 = [a1 − a2 − a∗a3]−1 and a∗ = a3/ν4 (26a,b,c)

where
a1 =

∫ ∞

0

e−c2
ν(c)a2(c)c4 dc, (27a)

a2 =
∫ ∞

0

e−c2
a(c)c6 dc (27b)

and
a3 =

∫ ∞

0

e−c2
ν(c)a(c)c4 dc. (27c)

In addition,
∆1(c) = ν(c)[a∗c − ca(c)] + c(c2 − 5/2). (28)

We note that Eqs. (27) and (28) are defined in terms of the solution to the
Chapman-Enskog equation for heat conduction, viz.

L1{ca}(c) = c(c2 − 5/2) (29a)

and the (normalization) condition∫ ∞

0

e−c2
a(c)c4 dc = 0. (29b)
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And finally, to complete Eq. (23) we note that

�2 =
1
ν∗

, (30)

with

ν∗ =
∫ ∞

0

e−c2
b(c)[ν(c)c2b(c) − c2]c4 dc, (31)

and
∆2(c) = c2 − ν(c)c2b(c). (32)

Note that ∆2(c) is defined in terms of the Chapman-Enskog equation for viscosity,
viz.

L2{c2b}(c) = c2. (33)

Here, in writing Eqs. (29a) and (33), we have made use of the notation

Ln{ψ}(c) = ν(c)ψ(c) −
∫ ∞

0

e−c′2ψ(c′)kn(c′, c)c′2 dc′ (34)

where the components kn(c′, c) are the exact Pekeris-Alterman [8] components of
the scattering law.

Having introduced a synthetic-kernel approximation to the true scattering ker-
nel, we now seek a solution of

cµ
∂

∂τ
φ(τ, c, µ) + εν(c)φ(τ, c, µ) = ε

∫ ∞

0

∫ 1

−1

e−c′2c′2f(c′, µ′ : c, µ)φ(τ, c′, µ′) dµ′ dc′

(35)
for τ > 0 , µ ∈ [−1, 1] and c ∈ [0,∞) and

φ(0, c, µ)− (1−α)φ(0, c,−µ)− 4α

∫ ∞

0

∫ 1

0

e−c′2c′3φ(0, c′,−µ′)µ′ dµ′ dc′ = 0 (36)

for µ ∈ (0, 1] and c ∈ [0,∞) . Here

f(c′, µ′ : c, µ) =
1
2

2∑
n=0

(2n + 1)Pn(µ′)Pn(µ)fn(c′, c). (37)

In addition, the solution we seek must diverge as τ tends to infinity, but at the
same time the solution must be such that Eq. (19) is satisfied.

In order to avoid a change of notation, we continue to use φ(τ, c, µ) in Eqs. (35)
and (36), but we keep in mind that, in general, solutions of Eqs. (35) and (36) will
not be solutions of Eqs. (15) and (16) simply because we have used f(c′, µ′ : c, µ)
to approximate the true scattering kernel k(c′, µ′ : c, µ) .

In Ref. [3] five exact solutions of Eq. (1) that are independent of τ and three
exact solutions linear in τ were listed. However, since Eq. (15) is an azimuthal
average of Eq. (1) only four of the mentioned solutions are relevant to Eq. (15).
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These four solutions allow us to write a component of the complete solution of
Eq. (15) as

φ(τ, c, µ) = A + Bcµ + D(c2 − 5/2) + (K/ε)[(c2 − 5/2)ετ − µca(c)] (38)

where the constants A,B,D and K are arbitrary. Now, because of the way
the synthetic kernel (the CES model) was constructed, the expression given by
Eq. (38) is also a solution of Eq. (35). We therefore write

φ(τ, c, µ) = (K/ε)[φ∗(τ, c, µ) + (c2 − 5/2)ετ − µca(c)] (39)

where φ∗(τ, c, µ) is a solution of Eq. (35) that is bounded as τ tends to infinity
and that satisfies the boundary condition

φ∗(0, c, µ)−(1−α)φ∗(0, c,−µ)−4α

∫ ∞

0

∫ 1

0

e−c′2c′3φ∗(0, c′,−µ′)µ′ dµ′ dc′ = F(c, µ)

(40)
for µ ∈ (0, 1] and c ∈ [0,∞) . Here

F(c, µ) = (2 − α)µca(c). (41)

Finally, in regard to the quantities of interest here, we can use Eq. (39) in Eqs. (12)
and (13) to obtain

N(τ) = K
[ − τ +

2
επ1/2

∫ ∞

0

∫ 1

−1

e−c2
c2φ∗(τ, c, µ) dµdc

]
(42)

and

T (τ) = K
[
τ +

4
3επ1/2

∫ ∞

0

∫ 1

−1

e−c2
c2(c2 − 3/2)φ∗(τ, c, µ) dµdc

]
. (43)

And so we proceed to use some additional transformations and the ADO method
to establish the required integrals of φ∗(τ, c, µ) .

4. A reformulation of the temperature-jump problem

To avoid working with three independent variables, as used in Eq. (35), we follow
Busbridge [11] and, more explicitly, two recent works [1,7] and introduce into
Eq. (35) the composite variable

ξ = cµ/ν(c). (44)

Then, after viewing the resulting form of Eq. (35), we propose a solution written
as

φ∗[τ, c, ξν(c)/c] =
8∑

β=1

fβ(c)gβ(τ, ξ)tβ(ξ) (45)

where the tβ(ξ) are the elements of the vector

T (ξ) =
[

1 1 ξ ξ ξ2 ξ2 1 1
]

(46)
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and the f functions are given by

f1(c) = 1, f2(c) = c2 − ω, f3(c) = ν(c), f4(c) = ∆1(c)/c (47a,b,c,d)

f5(c) = f6(c) = ∆2(c)ν(c)/c2 and f7(c) = f8(c) = ∆2(c)/ν(c). (47e,f)

And so, making use of Eq. (44), we substitute Eq. (45) into Eqs. (35) and (40) to
find a eight-component problem defined by

ξ
∂

∂τ
G(τ, ξ) + εG(τ, ξ) = ε

∫ γ

−γ

Ψ(ξ′)G(τ, ξ′) dξ′ (48)

and the boundary condition

G(0, ξ) − (1 − α)DG(0,−ξ) − αV

∫ γ

0

RT(ξ′)G(0,−ξ′)ξ′ dξ′ = F (ξ), ξ ∈ (0, γ),

(49)
where we use the superscript T to denote the transpose operation,

D = diag
{
1, 1,−1,−1, 1, 1, 1, 1

}
, (50)

V =
[

1 0 0 0 0 0 0 0
]T (51)

and
F (ξ) = (2 − α)

[ −(3/4)ξ ξ a∗ −1 0 0 0 0
]T

. (52)

In addition, the vector R(ξ) has components

rβ(ξ) = 4tβ(−ξ)
∫

Mξ

e−c2
ν2(c)fβ(c)cdc, β = 1, 2, . . . , 8, (53)

γ = π−1/2 , the vector-valued function G(τ, ξ) has gi(τ, ξ) , for i = 1, 2, . . . , 8 ,
as components and the 8 × 8 matrix-valued function Ψ(ξ) has elements

ψi,j(ξ) = (1/2)si(ξ)tj(ξ)
∫

Mξ

e−c2
hi(c)fj(c)c2 dc. (54)

Here the s functions are

s1(ξ) = �01, s2(ξ) = �02, s3(ξ) = 3�11ξ, (55a,b,c)

s4(ξ) = 3�12ξ, s5(ξ) = (45/4)�2ξ
2, s6(ξ) = −(15/4)�2, (55d,e,f)

s7(ξ) = −(15/4)�2ξ
2 and s8(ξ) = (5/4)�2, (55g,h)

and the h functions are given by

hβ(c) = ν2(c)fβ(c)/c, β = 1, 2, 3, 4, (56a,b,c,d)

h5(c) = h7(c) = ν2(c)f5(c)/c and h6(c) = h8(c) = ν2(c)f8(c)/c. (56e,f)

And finally

c ∈ Mξ if
ν(c)|ξ|

c
≤ 1. (57)
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In concluding this section, we note that instead of the 8-component decomposi-
tion listed as Eq. (45) we could have used a representation with only six elements.
We have elected to use the 8-component form in order to have our final reformu-
lation, as defined by Eqs. (48), (49) and (54), of the temperature-jump problem
resemble as much as possible our reformulations of Kramers’ problem and the
half-space thermal-creep problem that were based on the CES model and solved
in Ref. [1].

5. The discrete-ordinates solution

To start our ADO solution of Eq. (48), we look for solutions of the form

Gν(τ, ξ) = Φ(ν, ξ)e−ετ/ν , (58)

and so substituting Eq. (58) into Eq. (48) we find
(
1 − ξ/ν

)
Φ(ν, ξ) =

∫ γ

0

[Ψ(ξ′)Φ(ν, ξ′) + Ψ(−ξ′)Φ(ν,−ξ′)] dξ′. (59)

Now if we use an N -point quadrature scheme to evaluate the integral in Eq. (59),
then we can write

(
1 − ξ/ν

)
Φ(ν, ξ) =

N∑
k=1

wk[Ψ(ξk)Φ(ν, ξk) + Ψ(−ξk)Φ(ν,−ξk)] (60)

where {ξk, wk} are the nodes and weights of the quadrature scheme. Evaluating
Eq. (60) at ξ = ±ξi , we find

(
1 ∓ ξi/ν

)
Φ(ν,±ξi) =

N∑
k=1

wk[Ψ(ξk)Φ(ν, ξk) + Ψ(−ξk)Φ(ν,−ξk)] (61)

for i = 1, 2, ..., N . Following the development given in detail for the “three-
component” temperature-jump problem in Ref. [7] and the two similar problems
solved in Ref. [1], we can convert the system of equations listed as Eq. (61) to
an 8N × 8N eigenvalue problem which we can solve numerically to yield 8N
plus-minus pairs of separation constants ±νj and the corresponding elementary
vectors Φ(±νj , ξi) . And so, keeping in mind that we seek a bounded (as τ tends
to infinity) solution of Eq. (48), we let {νj} denote the set of positive separation
constants and then express the desired solution as

G(τ,±ξi) =
8N∑
j=1

AjΦ(νj ,±ξi)e−ετ/νj (62)

where the constants Aj are to be determined from a discrete-ordinates version of
Eq. (49) written as

G(0, ξi) − (1 − α)DG(0,−ξi) − αV

N∑
k=1

wkξkRT(ξk)G(0,−ξk) = F (ξi), (63)
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for i = 1, 2, . . . , N . We have found, from numerical studies, that there are only
two positive values of the seperation constants ν , say ν1 and ν2 , that tend to
infinity as N increases. We choose to take this fact into account explicitly by
ignoring in Eq. (62) the two largest separation constants and by using instead the
corresponding exact solution. And so we rewrite Eq.(62) as

G(τ,±ξi) = A1Φ1 + A2Φ2 + BΦ3 +
8N∑
j=3

AjΦ(νj ,±ξi)e−ετ/νj (64)

where
Φ1 =

[
0 1 0 0 0 0 0 0

]T
, (65a)

Φ2 =
[

0 0 1 0 0 0 0 0
]T (65b)

and
Φ3 =

[
1 0 0 0 0 0 0 0

]T
. (65c)

It can be seen that Φ3 satisfies the homogeneous version of Eq. (63), and so the
coefficient B is arbitrary in our solution of the temperature-jump problem. On
the other hand, we can now substitute Eq. (64) into Eq. (63) and solve the resulting
system of linear algebraic equations to find the constants Aj , j = 1, 2, . . . , 8N
required to complete our solution of the “ G problem.” In order to establish the
required density and temperature perturbations we use Eq. (45) and our discrete-
ordinates solution of the G problem in a quadrature version (when the integrals
cannot be evaluated analytically) of Eqs. (42) and (43) to find

N(τ) = K
[ − τ + (1/ε)(B − A1/4) + (1/ε)

8N∑
j=3

AjNje−ετ/νj
]

(66)

and

T (τ) = K
[
τ + A1/ε + (1/ε)

8N∑
j=3

AjTje−ετ/νj
]

(67)

where

Nj =
N∑

k=1

wk[UT(ξk)Φ(νj , ξk) + UT(−ξk)Φ(νj ,−ξk)] (68)

and

Tj =
N∑

k=1

wk[V T(ξk)Φ(νj , ξk) + V T(−ξk)Φ(νj ,−ξk)]. (69)

In addition the elements of U(ξ) and V (ξ) are

uβ(ξ) = 2π−1/2tβ(ξ)
∫

Mξ

e−c2
ν(c)fβ(c)cdc (70)
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and
vβ(ξ) = (4/3)π−1/2tβ(ξ)

∫
Mξ

e−c2
ν(c)fβ(c)(c2 − 3/2)cdc (71)

for β = 1, 2, . . . , 8 . At this point we normalize our solution by setting K = 1
and by putting the arbitrary constant B = −(3/4)A1 . We also introduce the
temperature-jump coefficient

ζ = A1/ε (72)

so that we can write Eqs. (66) and (67) as

N(τ) = −τ − ζ + (1/ε)
8N∑
j=3

AjNje−ετ/νj (73)

and

T (τ) = τ + ζ + (1/ε)
8N∑
j=3

AjTje−ετ/νj . (74)

Having completed our ADO solution to the temperature-jump problem, we report
some numerical results defined by the CES model.

6. Numerical results and final comments

To define the quadrature scheme to be used with our ADO solutions, we have
simply mapped the Gauss-Legendre scheme onto the interval [0, γ] . In regard to
numerical linear-algebra packages, we have used the driver program RG from the
EISPACK collection [12] to find the required eigenvalues and eigenvectors, and we
used the subroutines DGECO and DGESL from the LINPACK package [13] to
solve the linear system that defines the constants {Aj} .

Considering the important issue of an appropriate mean-free path, we have
elected to use the mean-free path based on thermal conductivity, and so have used
ε = εt , where, say from Ref. [3],

εt = 0.679630049... . (75)

To complete this work we list in Tables 1, 2 and 3 selected numerical results for
the temperature-jump coefficient and the temperature and density perturbations
obtained from our FORTRAN implementation of the ADO solution developed
here. And, in order to try to evaluate the merits of the CES model and other
model equations, we include in Tables 1 and 3 some results obtained from a work
[7] based on the CLF model of Cercignani [14] and Loyalka and Ferziger [5]. We
also make use of what we take to be reference values, viz. Loyalka’s results [15] that
are based on what appears to be an accurate numerical solution of the linearized
Boltzmann equation for rigid-sphere collisions. We note that our ADO results are
given with what we believe to be seven, in Table 1, and six, in Table 2, figures of
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Table 1. The temperature-jump coefficient ζ

α BGK CLF-w CLF-rs LBE-v † CES LBE-sn †

0.1 21.45012 21.19359 21.24657 21.287 21.32099 21.349
0.2 10.34747 10.10735 10.15704 10.196 10.22670 10.252
0.3 6.630514 6.406417 6.452894 6.4909 6.517910 6.5398
0.4 4.760333 4.551884 4.595202 4.6321 4.655696 4.6747
0.5 3.629125 3.435960 3.476180 3.5118 3.532264 3.5708
0.6 2.867615 2.689383 2.726563 2.7607 2.778342 2.7924
0.7 2.317534 2.153897 2.188095 2.2207 2.235669 2.2476
0.8 1.899741 1.750372 1.781643 1.8123 1.825107 1.8350
0.9 1.570264 1.434848 1.463247 1.4921 1.502689 1.5109
1.0 1.302716 1.180947 1.206526 1.2334 1.242033 1.2486

† Loyalka [15]

Table 2. The temperature and density perturbations

α = 0.3 α = 0.5 α = 0.9

τ T (τ) −N(τ) T (τ) −N(τ) T (τ) −N(τ)

0.0 5.85804 6.09712 2.96157 3.16242 1.09997 1.23407
0.1 6.22678 6.38942 3.29280 3.43017 1.36145 1.45413
0.2 6.43591 6.56105 3.48727 3.59319 1.52824 1.59998
0.3 6.60432 6.70370 3.64660 3.73083 1.67034 1.72754
0.4 6.75177 6.83205 3.78779 3.85591 1.79963 1.84598
0.5 6.88642 6.95200 3.91789 3.97358 1.92106 1.95901
0.6 7.01254 7.06654 4.04060 4.08648 2.03723 2.06856
0.7 7.13268 7.17741 4.15810 4.19614 2.14972 2.17571
0.8 7.24845 7.28569 4.27182 4.30350 2.25950 2.28118
0.9 7.36096 7.39207 4.38270 4.40918 2.36727 2.38541
1.0 7.47098 7.49706 4.49141 4.51363 2.47349 2.48872
2.0 8.50990 8.51488 5.52529 5.52954 3.49770 3.50063

accuracy. While we have no proof of the accuracy achieved in this work and, of
course, we cannot be sure that no programming errors have been made, we have
some confidence in the reported values since (for one thing) we found the results
to be stable as the order N of the quadrature scheme is increased. To be clear, we
note that the accuracy we believe we have achieved here with our ADO solution
refers to the solution of the CES model equation and not to the merits of the
model itself.
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Table 3. The temperature and density perturbations for α = 0.8

T (τ) −N(τ)

τ BGK CLF-w CLF-rs CES LBE-sn † BGK CLF-w CLF-rs CES LBE-sn †

0.00 1.349 1.488 1.414 1.382 1.360 1.472 1.623 1.541 1.531 1.502
0.25 1.811 1.872 1.831 1.909 1.860 1.900 1.939 1.907 1.980 1.930
0.50 2.147 2.168 2.144 2.235 2.190 2.216 2.212 2.198 2.278 2.233
0.75 2.451 2.444 2.431 2.523 2.485 2.506 2.474 2.471 2.549 2.513
1.00 2.739 2.710 2.706 2.793 2.763 2.784 2.732 2.737 2.810 2.782
1.50 3.290 3.228 3.236 3.312 3.296 3.320 3.240 3.255 3.320 3.305
2.00 3.821 3.738 3.753 3.820 3.813 3.843 3.745 3.765 3.823 3.817

† Loyalka [15]

In Table 1 we list values of the temperature-jump coefficient as evaluated from
the BGK model, the Williams variation (CLF-w) of the CLF model [has ν(c) = c ],
the rigid-sphere variation (CLF-rs) of the CLF model [has ν(c) given by Eq. (6)]
and the CES model. We also list Loyalka’s results [15] from his variational solution
(LBE-v) and his results (LBE-sn) from a numerical ( SN ) solution of the linearized
Boltzmann equation for rigid-sphere collisions. In comparing the results listed in
Table 1, we consider that the order with increasing merit is: CLF-w, BGK, CLF-
rs, LBE-v, CES and LBE-sn. It is clear that the variations in these results are the
greatest for the case of diffuse reflection ( α = 1 ), but the order of merit for the
case α = 0.1 is still the same as mentioned.

In Table 2 we list what we consider to be essentially exact solutions for the
temperature and density perturbations as predicted by the CES model equation.
These results are based on using N = 40 in our ADO solution.

While we have found here another example where the ADO method can be used
effectively to solve basic problems in rarefied gas dynamics, the results listed in
Table 3 yield some surprises (at least for the author) in regard to model equations.
For example, it is clear that the best model (CES) results in Table 1 and the
variational results (LBE-v) both give good improvements over the BGK model
for the asymptotic temperature and density results (essentially the temperature-
jump coefficient), but the results in Table 3 show that the BGK model is as good
as (or better than) the other models for defining the temperature and density
perturbations near the wall. Of course, in making these comparisons we must
recall that the mean-free paths for the BGK model and the CLF models are based
on using approximate values for ε , rather than Eq. (75), to define the mean-free
path. On the other hand, since the CES model [3] has the correct Prandtl number,
we feel comfortable in suggesting that this model, while more complicated than
the BGK model, provides a useful alternative to the more computational intensive
SN solution [15] we have taken for our reference results.
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