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Model equations in rarefied gas dynamics: Viscous-slip
and thermal-slip coefficients
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Departamento de Fı´sica, Universidade Federal do Parana´, 81531-990 Curitiba, Brazil
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Various model equations are used to define the viscous-slip and the thermal-slip coefficients in
rarefied gas dynamics. More specifically, the BGK model, theS model, the variable collision model
and the CES model are used to establish the slip coefficients basic to Kramers’ problem and the
half-space problem of thermal creep. While the most general results are developed from use of the
Maxwell boundary condition, results for the BGK model and theS model as defined by the
Cercignani–Lampis boundary condition are also reported. An analytical discrete-ordinates method
is used to establish the reported numerical results, and when available results from a numerical
solution of the linearized Boltzmann equation are used as reference values. In addition to the
numerical work based on model equations, the important issue of how to define meaningful ways
~appropriate mean-free paths! to compare the results for the various models is discussed. ©2002
American Institute of Physics.@DOI: 10.1063/1.1514973#
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I. INTRODUCTION

In reviewing numerous papers devoted to model eq
tions in rarefied gas dynamics, we have found no definit
way to compare in a consistent manner the results from
ferent model approximations to the linearized Boltzma
equation. However, as will be seen here for rigid-sphere
teractions, we can make use of kernels1,2 that approximate
the exact scattering kernels from the Pekeris–Alterm
analysis2 of the linearized Boltzmann equation and follo
Loyalka and co-workers3–5 to define convenient mean-fre
paths for the various models considered.

While essentially all of the definitive numerical work i
rarefied gas dynamics is based on the use of the clas
Maxwell gas–surface interaction law~characterized by a
single accommodation coefficient!, we have two recen
works6,7 that include the effects of the accommodation co
ficientsa t andan on two flow problems in a plane channe
Note that, in contrast to the Maxwell boundary conditi
which has the unique accommodation coefficienta for all
physical properties, the Cercignani–Lampis~CL! condition8

allows us to distinguish the accommodation of differe
properties. Physically, the quantitya t is the accommodation
coefficient of the tangential momentum, while the oth
quantityan describes the accommodation of the kinetic e
ergy corresponding to the normal velocity. Since the
boundary condition is based on the two mentioned acc
modation coefficients, the use of this boundary condit
yields the possibility of including better physics in the stu
of the basic problems of rarefied gas dynamics. In this w
we report numerical results for the viscous-slip and
thermal-slip coefficients for both the Maxwell boundary co
dition and the Cercignani–Lampis boundary condition. T
inclusion in this work of the Cercignani–Lampis gas
4121070-6631/2002/14(12)/4123/7/$19.00
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surface interaction model is considered to be important c
tribution since essentially all definitive numerical work ava
able is based on the classical Maxwell gas–surf
interaction model.

While the study of approximating models to the linea
ized Boltzmann equation and the inclusion of various ga
surface iteration models is considered important if we
going to be able to obtain, at a modest computational c
good results for practical problems, it is also important to
able to solve well the formulated model problem. It is f
this reason that we continue here our work with an analyt
discrete-ordinates method9 that can be implemented to yiel
what we believe to be excellent numerical results.

To start this work, we consider the linearized Boltzma
equation written for rigid-sphere collisions as2

S~c!1cm
]

]t
h~t,c!5«L$h%~t,c!, ~1!

where

L$h%~t,c!52n~c!h~t,c!1E
0

`E
21

1 E
0

2p

e2c82
h~t,c8!

3K~c8:c!c82dx8dm8dc8. ~2!

Here the scattering kernel is

K~c8:c!5
1

4p (
n50

`

(
m50

n

~2n11!~22d0,m!Pn
m~m8!

3Pn
m~m!kn~c8,c!cosm~x82x!, ~3!

where thenormalizedLegendre functions are given~in terms
of the Legendre polynomials! by
3 © 2002 American Institute of Physics
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Pn
m~m!5F ~n2m!!

~n1m!! G
1/2

~12m2!m/2
dm

dmm Pn~m!, n>m.

~4!

In addition

«5s0
2n0p1/2l , ~5!

wherel is ~at this point! an unspecified mean-free path,n0 is
the density of the gas particles ands0 is the scattering diam
eter of the gas molecules. In this work, the spatial variabt
is measured in units of the mean-free pathl and
c(2kT0 /m)1/2 is the magnitude of the particle velocity. He
k is the Boltzmann constant,m is the mass of a gas particl
and T0 is a convenient reference temperature. It should
noted that we have included in Eq.~1! an inhomogeneous
driving termS(c) that we will specify, along with an appro
priate definition of the perturbationh(t,c), for the two types
of flow ~the Kramers problem and the problem of therm
creep flow! we consider in this work. Continuing, we no
that the functionskn(c8,c) in Eq. ~3! are the components in
an expansion of the scattering law~for rigid-sphere colli-
sions! reported by Pekeris and Alterman2 and

n~c!5
2c211

c E
0

c

e2x2
dx1e2c2

, ~6!

is the collision frequency. Note that we use spherical coo
nates (c,arccosm,x) to define the~dimensionless! velocity
vectorc.

While the scattering kernel as defined by Pekeris a
Alterman2 for rigid-sphere collisions is given by Eq.~3! in
which the component functionskn(c8,c) are required for all
n, our work here with model equations is based on using
mostn50, 1, and 2. And so we list the exact forms for the
component functions only for these same values ofn. Noting
thatkn(c8,c)5kn(c,c8), we consult other works2,3 and write
for c8,c

2~1/2!c8ck0~c8,c!5~2/3!c8312c8c224P~c8!, ~7a!

2~1/2!c82c2k1~c8,c!5~2/15!c8524c82~2/3!c83c2

24~c8221!P~c8!, ~7b!

and

2~1/2!c83c3k2~c8,c!5a2~c8,c!1b2~c8,c!P~c8!, ~7c!

where

a2~c8,c!5~2/35!c8723c83118c8

2@~2/15!c8523c8#c2 ~8a!

and

b2~c8,c!526c84115c822181@2c8223#c2. ~8b!

Here

P~c!5ec2E
0

c

e2x2
dx. ~9!

Now, as discussed in other works,1,2,5 if we wish to use a
mean-free path based on the viscosity, i.e.,

l 5 l p5~m* /p0!~2kT0 /m!1/2, ~10!
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where m* is the viscosity andp05n0kT0 is the pressure,
then we should use in Eq.~1!

«5«p5
16

15p1/2E
0

`

e2c2
b~c!c6dc, ~11!

whereb(c) is defined by the Chapman–Enskog equation
viscosity, viz.

n~c!c2b~c!2E
0

`

e2c82
b~c8!k2~c8,c!c84dc85c2. ~12!

On the other hand, if we wish to use a mean-free path ba
on heat conduction, then we should use1,2,4

l 5 l t5@4l* /~5n0k!#@m/~2kT0!#1/2, ~13!

wherel* is the heat-conduction coefficient and where

«5« t5
16

15p1/2E
0

`

e2c2
a~c!c6dc. ~14!

Herea(c) is determined by the Chapman–Enskog equat
for heat conduction

n~c!ca~c!2E
0

`

e2c82
a~c8!k1~c8,c!c83dc85c~c225/2!

~15!

and the normalizing condition

E
0

`

e2c2
a~c!c4dc50. ~16!

Continuing to quote from another work,1 we note that the
component functions forn50 and 1 satisfy the integral con
ditions ~which result from the conditions of conservation
mass, momentum and energy!

n~c!5E
0

`

e2c82
k0~c8,c!c82dc8, ~17a!

n~c!c5E
0

`

e2c82
k1~c8,c!c83dc8, ~17b!

and

n~c!c25E
0

`

e2c82
k0~c8,c!c84dc8. ~17c!

As we intend to solve both the viscous-slip problem a
the problem of thermal creep in a semi-infinite half-spa
we will specify conditions onh(t,c) as t tends to infinity
differently for each of these two problems. However, t
boundary condition at the wall for these two problems is
same, viz.

h~0,c,m,x!5E
0

`E
0

1E
0

2p

e2c82
h~0,c8,2m8,x8!

3R~c8:c!c82dx8dm8dc8, ~18!

for mP(0,1# and allc andx. Here theR function ~yet to be
specified! describes the manner in which the gas partic
interact with the wall.

Having given an exact formulation of the linearize
Boltzmann equation for rigid-sphere collisions and expr
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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sions required to define mean-free paths in terms of
Chapman–Enskog equations for viscosity and heat con
tion, we are essentially ready to investigate some mode
netic equations that can be used to approximate the e
formulation. However, before proceeding to our numeri
work, we note that numerous important mathematical iss
such as the existence and uniqueness of solutions, have
addressed by many authors, see~for example! the works by
Bardos, Caflisch and Nicolaenko,10 Coron, Golse and
Sulem11 and the important books of Cercignani,12,13 and so
the basis for numerical work is considered well in place.

II. THE BGK MODEL AND THE S MODEL

Since the BGK model14 can easily be obtained from
formulation of theS-model equation proposed, as mention
by Sharipov and Seleznev,15 by Shakhov,16 we consider these
two kinetic models together. And so for the BGK and for t
S model, we express the scattering kernel required in Eq.~2!
as

K~c8:c!5p23/2@112~c8•c!1~2/3!~c8223/2!~c223/2!

1bM ~c8:c!#, ~19!

where

M ~c8:c!5~4/15!~c8•c!~c8225/2!~c225/2!, ~20!

and where~in a consistent notation!

c8•c5c8c (
m50

1

~22d0,m!P1
m~m8!P1

m~m!cosm~x82x!.

~21!

We use the parameterb in Eq. ~19! as a switch:b50 yields
the BGK model, whileb51 yields theS model. In order to
put Eq.~19! in the form of Eq.~3!, we take

k0~c8,c!54p21/2@11~2/3!~c8223/2!~c223/2!#,
~22a!

k1~c8,c!5~8/3!c8cp21/2@11~2/15!b~c8225/2!

3~c225/2!#, ~22b!

and

kn~c8,c!50, n.1. ~22c!

If we now use Eqs.~22! in Eqs. ~17!, we see at once tha
n(c)51 is the correct collision frequency for the BG
model and for theS model. In addition, if we use Eqs.~22! in
Eqs.~12!, ~15!, and~16! we find that the Chapman–Ensko
functions appropriate to the these models are

b~c!51, ~23!

for both the BGK model and theS model, while

a~c!5~c225/2!, ~24a!

for the BGK model and

a~c!5~3/2!~c225/2!, ~24b!

for the S model. Using Eqs.~24! in Eq. ~14! we find

« t51, ~25a!
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e
c-
i-
ct
l
s,
een

for the BGK model and

« t53/2, ~25b!

for the S model, whereas for both models we find fro
Eq. ~11!

«p51. ~26!

To conclude this section, we point out that in order to avo
excess notation, we are using, in the various sections of
work based on different kinetic models, the same symb
for the scattering kernelK(c8:c), the component functions
kn(c8,c), the Chapman–Enskog functionsa(c) and b(c)
and the two constants«p and« t .

III. THE CLF MODEL

The variable collision frequency model of Cercignan17

and Loyalka and Ferziger4 has the scattering kernel ex
pressed in terms of the collision frequencyn(c) as

K~c8:c!5
1

4p
n~c8!n~c!@Ã0113Ã11~c8•c!

1Ã02~c822v!~c22v!#, ~27!

where

Ã015
1

n2
, ~28a!

Ã115
1

n4
, ~28b!

Ã025
n2

n2n62n4
2 , ~28c!

and

v5
n4

n2
, ~28d!

with

nn5E
0

`

e2c2
n~c!cndc. ~29!

It follows that we can write the scattering kernel listed
Eq. ~27! in the form of Eq.~3! by using

k0~c8,c!5n~c8!n~c!@Ã011Ã02~c822v!~c22v!#,

~30a!

k1~c8,c!5Ã11c8cn~c8!n~c!, ~30b!

and

kn~c8,c!50, n.1. ~30c!

We can now use Eqs.~30a! and ~30b! to confirm that the
identities listed as Eqs.~17! are satisfied without specifying
the collision frequency. And so for this model we consid
n(c) to be arbitrary. Now we can use Eqs.~30a! and~30b! in
Eqs. ~12!, ~15!, and ~16! to find that the Chapman–Ensko
functions appropriate to the CLF model are

b~c!5n21~c! ~31a!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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and

a~c!5n21~c!~c225/2!1â, ~31b!

where

â52
8

3p1/2E
0

`

e2c2
n21~c!~c225/2!c4dc. ~32!

At this point we can use Eqs.~31! and~32! in Eqs.~11! and
~14! to find that here

«p5
16

15p1/2E
0

`

e2c2
n21~c!c6dc ~33!

and

« t5
16

15p1/2E
0

`

e2c2
n21~c!~c225/2!2c4dc. ~34!

To be clear, we note that the CLF model as used here is s
that we are free to choose any form of the collision f
quency we wish. In two previous works,18,19 some basic nu-
merical results were reported for three specific forms of
collision frequency:n(c)51 which yields the BGK model,
the Williams modeln(c)5c and the case of rigid sphere
~within the context of the CLF model! wheren(c) is given
by Eq. ~6!.

IV. THE CES MODEL

For background material relevant to the CES model,
refer to a recent paper by Barichello and Siewert1 where an
explicit development of the model was given. For this mod
the exact form of the collision frequency, as given by Eq.~6!,
is used and the kernel is still in the form of Eq.~3!, but now
we have

k0~c8,c!5n~c8!n~c!@Ã011Ã02~c8227/4!~c227/4!#,
~35a!

k1~c8,c!5Ã11c8n~c8!cn~c!1Ã12D1~c8!D1~c!, ~35b!

k2~c8,c!5Ã2@c822n~c8!c82b~c8!#@c22n~c!c2b~c!#,
~35c!

and

kn~c8,c!50, n.2. ~35d!

Continuing, we note thatÃ01, Ã11, andÃ02 are still given
by Eqs. ~28a!–~28c! and ~29!. Also, quoting from another
work,1 we write

D1~c!5n~c!@a* c2ca~c!#1c~c225/2!, ~36!

Ã125@a12a22a* a3#21 ~37a!

and

Ã251/n* , ~37b!

where

a* 5a3 /n4 , ~38a!

a15E
0

`

e2c2
n~c!a2~c!c4dc, ~38b!
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a25E
0

`

e2c2
a~c!c6dc, ~38c!

a35E
0

`

e2c2
n~c!a~c!c4dc, ~38d!

and

n* 5E
0

`

e2c2
b~c!@n~c!c2b~c!2c2#c4dc. ~38e!

We note that the terminology CES model derives from
fact that the synthetic kernel used here is based on the e
Chapman–Enskog functionsa(c) and b(c). Now, to be
complete, we make use of theMAPLE V software package and
a numerical algorithm20 for computing the Chapman–
Enskog functions and list the following values for the para
eters required here:

Ã0150.797 884 561. . . , ~39a!

Ã0250.425 538 432. . . , ~39b!

Ã1150.455 934 035. . . , ~39c!

Ã1250.586 873 122. . . , ~39d!

a* 50.221 880 745. . . , ~39e!

and

Ã252.164 003 46. . . . ~39f!

For convenience, we also list here

«p50.449 027 806 . . . ~40a!

and

« t50.679 630 049. . . . ~40b!

Having defined the kinetic models we use in this work, w
are ready to discuss our computations of the viscous-slip
thermal-slip coefficients.

V. THE VISCOUS-SLIP COEFFICIENT

In regard to the viscous-slip or Kramers’ problem, w
consider that the required functionh(t,c) denotes the pertur
bation from an absolute Maxwellian distribution, i.e.,

f ~t,c!5 f 0~c!@11h~t,c!#, ~41!

where

f 0~c!5n0@m/~2pkT0!#3/2e2c2
, ~42!

and so for this problem there is no driving term in Eq.~1!.
We, therefore, seek a solution~valid for t.0) of

cm
]

]t
h~t,c!5«L$h%~t,c!, ~43!

where the collision operator is, in general, given by Eqs.~2!
and ~3! and the boundary condition at the wall is given b
Eq. ~18!. In addition to the boundary condition at the wa
we must define a condition onh(t,c) ast tends to infinity.
We make use of the condition that the bulk velocity
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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TABLE I. The viscous-slip coefficientzP for the Maxwell boundary condition.

a BGK S model CLF-w CLF-rs CES LBEa

0.1 1.710 313~1! 1.711 289~1! 1.700 079~1! 1.701 536~1! 1.704 462~1! 1.7049~1!
0.2 8.224 902 8.233 445 8.128 966 8.142 636 8.169 615 8.1729
0.3 5.255 112 5.262 546 5.165 447 5.178 235 5.203 049 5.2059
0.4 3.762 619 3.769 046 3.679 096 3.691 017 3.713 778 3.7163
0.5 2.861 190 2.866 704 2.783 682 2.794 754 2.815 562 2.8178
0.6 2.255 410 2.260 100 2.183 795 2.194 033 2.212 984 2.2149
0.7 1.818 667 1.822 617 1.752 827 1.762 247 1.779 429 1.7810
0.8 1.487 654 1.490 942 1.427 475 1.436 091 1.451 586 1.4530
0.9 1.227 198 1.229 898 1.172 569 1.180 396 1.194 279 1.1955
1.0 1.016 191 1.018 372 9.670 050(21) 9.740 570(21) 9.864 009(21) 9.8737(21)

aWakabayashi, Ohwada, and Golse~Ref. 26!.
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u~t!5
1

p3/2E
0

`E
21

1 E
0

2p

e2c2
h~t,c!c3~12m2!1/2

3cosxdxdmdc, ~44!

must diverge ast tends to infinity, but at the same time

lim
t→`

d

dt
u~t!5kP . ~45!

Here kP is a normalizing constant. We now follow anoth
work21 where this problem was solved for the CES mod
make use of a subscriptP and write our final solution for the
bulk velocity for this~Kramers! problem as

uP~t!5kP@t1zP1uP* ~t!#, ~46!

wherekPuP* (t) is the component of the bulk velocity tha
vanishes ast tends to infinity. It follows that the constantzP

is the viscous-slip coefficient.

VI. THE THERMAL-SLIP COEFFICIENT

Considering now the thermal-slip problem, we note th
for this problem the flow is caused by a constant tempera
gradient in a direction parallel to the wall, and so it is co
venient to linearize about a local Maxwellian rather than
absolute Maxwellian as was done in Eqs.~41! and~42!. Here
we follow Williams22 and express the distribution function a

f ~t,h,c!5 f 0~c!@11~c225/2!kTh1h~t,c!#, ~47!

wheref 0(c) is given by Eq.~42! and we have expressed th
imposed temperature variation as

T~h!5T0~11kTh!. ~48!

We continue to useT0 as a convenient reference temperatu
h is used to define~in terms of the mean-free pathl ) the
direction of flow andkT is the constant gradient~in dimen-
sionless units! of the temperature. Now, as noted b
Williams,22 the defining equation forh(t,c) is in the inho-
mogeneous form given by Eq.~1!, viz.

c~12m2!1/2cosx~c225/2!kT1cm
]

]t
h~t,c!5«L$h%~t,c!.

~49!

And so we now seek a bounded~ast tends to infinity! solu-
tion of Eq. ~49! that also satisfies the boundary conditi
Nov 2002 to 152.1.79.116. Redistribution subject to A
l,

t
re
-
e

,

listed as Eq.~18!. Again, we omit the details of our math
ematical algorithms for solving this problem and list only o
final result written as

uT~t!5kT@zT1uT* ~t!#, ~50!

where kTuT* (t) is the component of the bulk velocity tha
vanishes ast tends to infinity. Note that we now use th
subscriptT in order to tag this thermal-creep problem. W
consider that the constantzT is the thermal-slip coefficient.

VII. NUMERICAL RESULTS

In his fundamental work in the area of radiative transf
Chandrasekhar23 used a numerical quadrature scheme to r
resent the scattering integral in the equation of trans
Chandrasekhar subsequently reduced his problem to a
tem of first-order ordinary differential equations that cou
be solved essentially analytically. This approach of usin
quadrature scheme to evaluate the scattering integral wa
tended and used, with various numerical improvements,
Barichello and Siewert9 to solve a nongray problem in th
field of radiative transfer. This approach, now referred to
the ADO method, was then used in the field of rarefied g
dynamics to solve various basic problems based on the B
model.24,25 Here we have used the analytical discre
ordinates ~ADO! method as defined by Barichello an
Siewert9 to solve Kramers’ problem and the half-spa
thermal-creep problem for all of the models discussed in
work. However, since the solutions for the CES model ha
been recently reported and since the BGK and the CLF m
els can be obtained as special cases of the CES mode
omit the details of our ADO solution as implemented f
these problems. As the purpose of this work is to evaluate
slip coefficients for the various models, we list in Tables
and II the viscous-slip and the thermal-slip coefficients
the different kinetic models considered and for various v
ues of the accommodation coefficienta basic to the Maxwell
boundary condition~a mixture of specular and diffuse reflec
tion!. We note that the results listed in Tables I and II und
the labels CLF-w and CLF-rs correspond, respectively,
using in the CLF modeln(c)5c and n(c) as given by
Eq. ~6!. We have also included in Tables I and II referen
results under the label of LBE. These LBE results26 are based
on a numerical solution of the linearized Boltzmann equat
~for rigid-sphere collisions! and so are thought to be the be
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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TABLE II. The thermal-slip coefficientzT for the Maxwell boundary condition.

a BGK S model CLF-w CLF-rs CES LBEa

0.1 2.641 783~21! 2.660 636~21! 2.777 778~21! 2.684 888~21! 2.671 726~21!
0.2 2.781 510(21) 2.816 551(21) 2.777 778(21) 2.730 999(21) 2.770 231(21) 2.744(21)
0.3 2.919 238(21) 2.967 944(21) 2.777 778(21) 2.776 571(21) 2.864 184(21)
0.4 3.055 019(21) 3.115 005(21) 2.777 778(21) 2.821 617(21) 2.953 902(21) 2.911(21)
0.5 3.188 906(21) 3.257 911(21) 2.777 778(21) 2.866 147(21) 3.039 673(21)
0.6 3.320 949(21) 3.396 832(21) 2.777 778(21) 2.910 174(21) 3.121 761(21) 3.069(21)
0.7 3.451 195(21) 3.531 928(21) 2.777 778(21) 2.953 707(21) 3.200 405(21)
0.8 3.579 692(21) 3.663 351(21) 2.777 778(21) 2.996 757(21) 3.275 826(21) 3.219(21)
0.9 3.706 483(21) 3.791 246(21) 2.777 778(21) 3.039 336(21) 3.348 226(21)
1.0 3.831 612(21) 3.915 748(21) 2.777 778(21) 3.081 452(21) 3.417 790(21) 3.362(21)

aWakabayashi, Ohwada and Golse~Ref. 26!.
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available. To be explicit about the~Maxwell! boundary con-
dition we have used, we make use of the generalized fu
tion d(x) and write, for this case, theR function used in
Eq. ~18! as

R~c8:c!52~a/p!c8m81~12a!ec2
~1/c2!d~m82m!

3d~c82c!d~x82x!, ~51!

wherea is the accommodation coefficient.
It should be noted that we have used a mean-free p

based on viscosity («5«p) for the viscous-slip problem. On
the other hand, we have used a mean-free based on hea
(«5« t) for the thermal-creep problem. It is clear that wh
the values of«p and « t are very different for the various
models, the final slip-coefficients are similar when a me
free path is defined in a way consistent with the model.
other words, we find reasonable comparisons between
various models when values of«p and« t deduced from the
same models are used.

In two previous works6,7 the S model was used with the
Cercignani–Lampis boundary condition8 to analyze Poi-
seuille flow and thermal-creep flow in a plane channel. B
cause of our current interest in the CL boundary condit
we have added Table III to this work in order to show t
effects of the normal (an) and the tangential (a t) accommo-
Nov 2002 to 152.1.79.116. Redistribution subject to A
c-

th

ow

-
n
he

-
n

dation coefficients on the two slip coefficients consider
here. Since the BGK results can easily be obtained from
S model, we have also included in Table III slip coefficien
for the BGK model. Finally we complete this section b
listing the explicit expression for theR function we have
used in our numerical with the CL boundary condition, vi

R~c8:c!5ec2
T~cx8 ,cx!S~cy8 ,cy!T~cz8 ,cz!, ~52!

where

T~x,y!5@pa t~22a t!#
21/2e2[ y2(12a t)x] 2/[a t(22a t)]

~53a!

and

S~x,y!5
2uxu
an

e2[ y21(12an)x2]/anI 0@2~12an!1/2uxyu/an#.

~53b!

HereI 0(z) is used to denote a modified Bessel function, i.

I 0~z!5
1

2p E
0

2p

ez cosfdf. ~54!

Note that to be consistent with our previous computation6,7

with the CL boundary condition, we have listed theR func-
TABLE III. The slip coefficients for the Cercignani–Lampis boundary condition.

an a t

zP zT

BGK S model BGK S model

0.25 0.25 6.412 098 6.417 960 3.103 473(21) 3.179 911(21)
0.25 0.50 2.840 346 2.844 690 3.351 889(21) 3.448 837(21)
0.25 0.75 1.632 538 1.635 681 3.594 527(21) 3.689 663(21)
0.25 1.00 1.016 191 1.018 372 3.831 612(21) 3.915 748(21)
0.50 0.25 6.383 796 6.388 167 3.350 826(21) 3.422 777(21)
0.50 0.50 2.821 884 2.825 386 3.513 446(21) 3.603 901(21)
0.50 0.75 1.623 502 1.626 289 3.673 690(21) 3.764 752(21)
0.50 1.00 1.016 191 1.018 372 3.831 612(21) 3.915 748(21)
0.75 0.25 6.357 833 6.361 016 3.593 360(21) 3.659 777(21)
0.75 0.50 2.804 774 2.807 569 3.673 334(21) 3.757 197(21)
0.75 0.75 1.615 045 1.617 514 3.752 749(21) 3.839 875(21)
0.75 1.00 1.016 191 1.018 372 3.831 612(21) 3.915 748(21)
1.00 0.25 6.333 553 6.335 792 3.831 612(21) 3.891 445(21)
1.00 0.50 2.788 645 2.790 843 3.831 612(21) 3.908 681(21)
1.00 0.75 1.607 009 1.609 192 3.831 612(21) 3.914 871(21)
1.00 1.00 1.016 191 1.018 372 3.831 612(21) 3.915 748(21)
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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tion here with the velocity vector expressed in the rectan
lar coordinates

cy5cm, ~55a!

cx5c~12m2!1/2cosx, ~55b!

and

cz5c~12m2!1/2sinx. ~55c!

VIII. CONCLUDING REMARKS

In this work we have made use of various kinetic mod
to solve two basic problems in the area of rarefied gas
namics, viz. Kramers’ problem and the problem of therm
creep flow in a semi-infinite half space. We have also sho
how ~for rigid-sphere collisions! the solutions of the
Chapman–Enskog~CE! equations basic to viscosity and he
conduction and solutions of model versions of the CE eq
tions provide convenient definitions of mean-free pathsl p

and l t in order to compare well the various kinetic mode
We have reported extensive numerical results for the cas
a Maxwell boundary condition at the wall since there exi
reference quality results available for this boundary con
tion, but we have also extended our previous work6,7 to yield
the viscous-slip and the thermal-creep slip coefficients as
fined by the Cercignani–Lampis boundary condition. Fina
we note two somewhat surprising results we have found~i!
The CLF-w kinetic model yields, for the case of the Maxwe
boundary condition, the same thermal-slip coefficient for
values of the accommodation coefficienta, while for the
linearized Boltzmann equation and all the other conside
model equations the thermal-slip coefficient depends sig
cantly ona, and~ii ! the BGK model yields, for the case o
the CL boundary condition, the same thermal-slip coeffici
for all values of the tangential momentum accommodat
a t when the normal energy accommodationan is equal to
unity. We note that Loyalka and Cipolla27 have considered a
boundary condition that, like the Cercignani–Lampis mod
contains two accommodation coefficients. However,
boundary condition defined by Eq.~46! of the mentioned
work27 is not the Cercignani–Lampis condition used in th
work. Interestingly, Loyalka and Cipolla,27 in regard to
kinetic models and to the linearized Boltzmann equati
noted that the thermal-slip coefficient, when based on th
Eq. ~46!, did not depend on the two accommodation coe
cients (ap and aE) used in that work. Although similar re
sults for some special cases of the Cercignani–Lam
boundary condition may be true, such results, while valid
the BGK model, have not been found in this work for theS
model.
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