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Abstract

Polynomial expansion procedures, along with an analytical discrete-ordinates method, are used to solve the
temperature-jump problem based on a rigorous version of the linearized Boltzmann equation for rigid-sphere
interactions. In particular, the temperature and density perturbations and the temperature-jump coe5cient are
obtained (essentially) analytically in terms of a modern version of the discrete-ordinates method. The developed
algorithms are implemented for general values of the accommodation coe5cient to yield numerical results
that can be considered a new standard of reference.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the general area of rare8ed gas dynamics we typically have to make a choice between: (i) an
analytically and computationally elegant solution of a problem based on one of the many models of
the linearized Boltzmann equation and (ii) a strictly numerical solution of the true linearized Boltz-
mann equation for rigid-sphere interactions. In three recent works [1–3] we have reported what we
consider to be concise and accurate (essentially analytical) solutions of the temperature-jump problem
based on di<erent model equations. The 8rst work [1] used the analytical discrete-ordinates (ADO)
method [4] to solve the temperature-jump problem for the classical BGK model [5]. This work was
subsequently extended to include the variable collision frequency model (CLF) of Cercignani [6]
and Loyalka and Ferziger [7], and most recently [3] the CES model [8] was used to solve this
same temperature-jump problem. As a result of these studies we can see clearly that as the models
are improved the analysis becomes more di5cult, but the obtained numerical results get closer to
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what we have considered reference values. In regard to numerical results for the temperature-jump
problem based on the linearized Boltzmann equation, we have found the works by Loyalka [9,10],
Sone et al. [11] and Ohwada and Sone [12] to be especially valuable. The two 8rst papers [9,11]
were limited to the case of purely di<use reGection at the wall. However, in subsequent papers
[10,12] the earlier work was extended to the general case of a mixture of specular and di<use re-
Gection at the wall, and improved numerical results were reported. These papers [9–12] are based
on what we consider to be strictly numerical methods (8nite di<erence techniques coupled with
multi-dimensional numerical quadrature schemes and/or collocation methods) that can be considered
computationally intensive; however these works are the best we have available, and so in the past we
have used these papers to de8ne reference results against which we have evaluated our solutions to
the various model equations. However, we have now extended our work so as to be able to provide
what we consider to be a concise and accurate solution to the temperature-jump problem based on
the full linearized Boltzmann equation for rigid-sphere collisions. This solution and the associated
computational algorithm de8ne what we consider to be a new and improved standard of reference.
To start this work, we consider the homogeneous and linearized Boltzmann equation written for

rigid-sphere collisions as

c�
@
@�

h(�; c) = �L{h}(�; c); (1)

where

L{h}(�; c) =−	(c)h(�; c) +
∫ ∞

0

∫ 1

−1

∫ 2


0
e−c′2c′2h(�; c′)K(c′; c) d�′ d�′ dc′: (2)

Here the scattering kernel is written in the expanded (Pekeris) form [13], viz.

K(c′; c) =
1
4


∞∑
n=0

n∑
m=0

(2n+ 1)(2− �0;m)Pm
n (�

′)Pm
n (�)kn(c

′; c) cosm(�′ − �); (3)

where the normalized Legendre functions are given (in terms of the Legendre polynomials) by

Pm
n (�) =

[
(n− m)!
(n+ m)!

]1=2
(1− �2)m=2

dm

d�mPn(�); n¿m: (4)

In addition,

�= �20n0

1=2l; (5)

where l is (at this point) an unspeci8ed mean-free path, n0 is the density and �0 is the scattering
diameter of the gas particles. In this work, the spatial variable � is measured in units of the mean-free
path l and c(2kT0=m)1=2 is the magnitude of the particle velocity. Also, k is the Boltzmann constant,
m is the mass of a gas particle and T0 is a reference temperature. The basic unknown h(�; c) in
Eq. (1) is a perturbation from a Maxwellian distribution. Continuing, we note that the functions
kn(c′; c) in Eq. (3) are the components in an expansion of the scattering law (for rigid-sphere
collisions) reported by Pekeris [13], and

	(c) =
2c2 + 1

c

∫ c

0
e−x2 dx + e−c2 (6)



C.E. Siewert / Journal of Quantitative Spectroscopy & Radiative Transfer 77 (2003) 417–432 419

is the collision frequency. And 8nally, we use spherical coordinates (c′; arccos �′; �′) and (c; arccos �; �)
to de8ne the (dimensionless) velocity vectors c′ and c.
Since the component kernels kn(c′; c) used in Eq. (3) are essential to our work here, we restate

some basic results developed and reported by Pekeris [13], Pekeris and Alterman [14] and Pekeris
et al. [15]. First of all, Pekeris [13] gives (in our notation) the expression

kn(c′; c) = 2
∫ 


0
[(2=R)e!

2 − R]Pn(cos �)sin � d�; (7)

where

R= |c′ − c| (8a)

and

!= (1=R)c′csin � (8b)

and where � is the angle between c′ and c. In Ref. [14] Pekeris and Alterman discussed the coe5-
cients of viscosity and heat conduction and used the kernel functions k1(c′; c) and k2(c′; c) to de8ne
the Chapman–Enskog integral equations for viscosity and heat conduction. We write these equations
here as

	(c)c2b(c)−
∫ ∞

0
e−c′2b(c′)k2(c′; c)c′

4 dc′ = c2 (9)

and

	(c)ca(c)−
∫ ∞

0
e−c′2a(c′)k1(c′; c)c′

3 dc′ = c(c2 − 5=2) (10a)

with ∫ ∞

0
e−c2a(c)c4 dc = 0: (10b)

Now, as discussed (for example) in Refs. [14,16], if we wish to use a mean-free path based on the
viscosity, i.e.

l= lp = (�∗=p0)(2kT0=m)1=2 (11)

where �∗ is the viscosity and p0 = n0kT0 is the pressure, then we should use in Eq. (1)

�= �p =
16

15
1=2

∫ ∞

0
e−c2b(c)c6 dc; (12)

where b(c) is de8ned by Eq. (9). On the other hand, if we wish to use a mean-free path based on
heat conduction,

l= lt = [4�∗=(5n0k)][m=(2kT0)]1=2; (13)

where �∗ is the heat-conduction coe5cient, then in Eq. (1) we should use [7,14]

�= �t =
16

15
1=2

∫ ∞

0
e−c2a(c)c6 dc (14)
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where a(c) is de8ned by Eqs. (10). While only the component kernel functions kn(c′; c), n = 1–3,
are required for the Chapman–Enskog equations for viscosity and heat conduction and the so-called
Burnett integral equations [16], we intend to use more of these component kernels in a truncated
version of Eq. (3). We note here that in Ref. [15], Pekeris and co-workers have reported an ingenious
set of expressions and recursion formulas that they used (along with a computer program) to evaluate
analytically the expression listed here as Eq. (7). Pekeris et al. [15] also give explicit results for the
cases up to and including k8(c′; c), but we believe there is at least one misprint in those (extensive)
results. As will be discussed in more detail later in this work, we have used the MAPLE software
package to evaluate Eq. (7) analytically for essentially any value of n, but we have actually used
the kernel functions (so far) only up to n= 8.
Due to the presence of a wall located at �= 0, we must supplement Eq. (1) with an appropriate

boundary condition. Noting that

h(�; c)⇔ h(�; c; �; �); (15)

we express the required boundary condition as

h(0; c; �; �)− (1−  )h(0; c;−�; �)−  I{h}(0) = 0 (16)

for �∈ (0; 1], c∈ [0;∞) and all �. Here

I{h}(0) = 2



∫ ∞

0

∫ 1

0

∫ 2


0
e−c2c3h(0; c;−�; �)� d� d� dc (17)

and  ∈ (0; 1] is the accommodation coe5cient. In this formulation of the temperature-jump problem
there is no driving term in Eq. (1), and so in addition to the boundary condition listed as Eq. (16),
we will include in our statement of the problem a condition on h(�; c) as � tends to in8nity. This
condition will be seen clearly once we have expressed the quantities of interest in terms of h(�; c).

2. Quantities of interest

Following the discussion from Ref. [3], we see that, while our problem is de8ned in terms of the
unknown h(�; c), we require only two elementary integrals of h(�; c) in order to establish the density
and temperature perturbations [17] de8ned by

N (�) =
1


3=2

∫ ∞

0

∫ 1

−1

∫ 2


0
e−c2c2h(�; c; �; �) d� d� dc (18)

and

T (�) =
2

3
3=2

∫ ∞

0

∫ 1

−1

∫ 2


0
e−c2c2(c2 − 3=2)h(�; c; �; �) d� d� dc (19)

or

N (�) =
2


1=2

∫ ∞

0

∫ 1

−1
e−c2c2"(�; c; �) d� dc (20)
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and

T (�) =
4

3
1=2

∫ ∞

0

∫ 1

−1
e−c2c2(c2 − 3=2)"(�; c; �) d� dc; (21)

where

"(�; c; �) =
1
2


∫ 2


0
h(�; c; �; �) d� (22)

is an azimuthal average. We can integrate Eqs. (1) and (16) over � to 8nd

c�
@
@�

"(�; c; �) + �	(c)"(�; c; �) = �
∫ ∞

0

∫ 1

−1
e−c′2c′2k(c′; �′ : c; �)"(�; c′; �′) d�′ dc′; (23)

for �¿ 0, �∈ [− 1; 1] and c∈ [0;∞), and

"(0; c; �)− (1−  )"(0; c;−�)− 4 
∫ ∞

0

∫ 1

0
e−c′2c′3"(0; c′;−�′)�′ d�′ dc′ = 0 (24)

for �∈ (0; 1] and c∈ [0;∞). In regard to Eq. (23), we note that

k(c′; �′ : c; �) =
∫ 2


0
K(c′; c) d� (25)

or

k(c′; �′ : c; �) =
1
2

∞∑
n=0

(2n+ 1)Pn(�′)Pn(�)kn(c′; c): (26)

As Eqs. (1) and (16) are homogeneous, we must specify a driving term for the temperature-jump
problem. We do this implicitly by requiring that h(�; c) diverge as � tends to in8nity. More specif-
ically, we impose the condition that the temperature perturbation satis8es the Welander condition
[18]

lim
�→∞

d
d�

T (�) =K (27)

where K is considered speci8ed.
In Ref. [8] 8ve exact solutions (collisional invariants) of Eq. (1) that are independent of � and

three exact (in terms of solutions of the Chapman–Enskog integral equations for viscosity and heat
conduction) solutions linear in � were listed. However, since Eq. (23) is an azimuthal average of
Eq. (1) only four of the mentioned solutions are relevant to Eq. (23). These four solutions allow us
to write a component of the complete solution of Eq. (23) as

"a(�; c; �) = A+ Bc� + D(c2 − 5=2) + (K=�)[(c2 − 5=2)��− �A(c)]; (28)

where the constants A; B; D and K are arbitrary. To be clear, we consider that the Chapman–Enskog
function A(c) = ca(c) is available [16,19]. We therefore write

"(�; c; �) = (K=�)["∗(�; c; �) + (c2 − 5=2)��− �A(c)]; (29)
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where "∗(�; c; �) is a solution of Eq. (23) that is bounded as � tends to in8nity and satis8es the
boundary condition that is obtained once we use Eq. (29) in Eq. (24), viz.

"∗(0; c; �)− (1−  )"∗(0; c;−�)− 4 
∫ ∞

0

∫ 1

0
e−c′2c′3"∗(0; c′;−�′)�′ d�′ dc′ =R(c; �) (30)

for �∈ (0; 1] and c∈ [0;∞). Here
R(c; �) = (2−  )�A(c): (31)

Finally, in regard to the quantities of interest here, we can use Eq. (29) in Eqs. (20) and (21) to
obtain

N (�) =K

[
−�+

2
�
1=2

∫ ∞

0

∫ 1

−1
e−c2c2"∗(�; c; �) d� dc

]
(32)

and

T (�) =K

[
�+

4
3�
1=2

∫ ∞

0

∫ 1

−1
e−c2c2(c2 − 3=2)"∗(�; c; �) d� dc

]
: (33)

In order to complete the computation of the temperature and density perturbations, we now must
establish a bounded (as � tends to in8nity) solution of Eq. (23) that satis8es the boundary condition
listed as Eq. (30). While we are unable to 8nd this bounded solution exactly, we are able to establish
a concise and accurate approximate result that we can use to compute well the desired temperature
and density perturbations as given by Eqs. (32) and (33).

3. A polynomial representation

We seek a bounded (as � tends to in8nity) solution of

c�
@
@�

"∗(�; c; �) + �	(c)"∗(�; c; �) = �
∫ ∞

0

∫ 1

−1
e−c′2c′2k(c′; �′ : c; �)"∗(�; c′; �′) d�′ dc′ (34)

that satis8es the boundary condition

"∗(0; c; �)− (1−  )"∗(0; c;−�)− 4 
∫ ∞

0

∫ 1

0
e−c′2c′3"∗(0; c′;−�′)�′ d�′ dc′ =R(c; �); (35)

where

R(c; �) = (2−  )�A(c): (36)

Here the scattering kernel k(c′; �′ : c; �) is given by Eq. (26), but we now make our 8rst approxi-
mation: we truncate Eq. (26) and write

k(c′; �′ : c; �) =
1
2

L∑
l=0

(2l+ 1)Pl(�′)Pl(�)kl(c′; c): (37)

At this point we approximate the required solution by a representation in terms of Legendre poly-
nomials, viz.

"∗(�; c; �) =
K∑

k=0

Pk(2e−c − 1)gk(�; �); (38)
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where the functions gk(�; �) are to be determined. We now substitute Eq. (38) into Eq. (34), multiply
the resulting equation by

Wi(c) = c2e−c2Pi(2e−c − 1) (39)

and integrate over all c to obtain the coupled system

�
@
@�
AG(�; �) + �SG(�; �) = �

L∑
l=0

BlPl(�)
∫ 1

−1
Pl(�′)G(�; �′) d�′: (40)

Here the K + 1 vector-valued function G(�; �) has components gk(�; �) and the (K + 1)× (K + 1)
constants are given by

A=
∫ ∞

0
e−c2PT(c)P(c)c3 dc; (41)

S =
∫ ∞

0
e−c2PT(c)P(c)	(c)c2 dc (42)

and

Bl =
2l+ 1
2

∫ ∞

0

∫ ∞

0
e−c′2e−c2kl(c′; c)PT(c′)P(c)c′

2c2 dc′ dc; (43)

where the superscript T is used to denote the transpose operation, and where

P(c) = [P0(2e−c − 1); P1(2e−c − 1); : : : ; PK(2e−c − 1)]: (44)

We note, since kl(c′; c)=kl(c; c′), that the matrices Bl are symmetric. We note also that a computation
of the matrices listed as Eq. (43) will require some care to do well; however, an evaluation of all
the input matrices A, S and Bl can be done once only and stored for later use. Some details of
these initially required computations will be given in a subsequent section of this work.
Now in regard to the boundary condition subject to which we must solve Eq. (40), we use

Eq. (38) in Eq. (35) and then multiply the resulting equation by Wi(c) and integrate over all c to
obtain

F[G(0; �)− (1−  )G(0;−�)]− 4 J
∫ ∞

0
G(0;−�′)�′ d�′ = (2−  )�T (45)

for �∈ (0; 1]. Here the additional input constants are
F =

∫ ∞

0
e−c2PT(c)P(c)c2 dc; (46)

J = PT0P1 (47)

and

T =
∫ ∞

0
e−c2PT(c)A(c)c2 dc; (48)

where, in general,

Pn =
∫ ∞

0
e−c2P(c)cn+2 dc: (49)
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And so, we now must solve Eq. (40) subject to the boundary condition given as Eq. (45); however,
in order to make use of a previously reported [20] ADO solution of a multigroup neutron transport
problem, we multiply Eq. (40) by A−1 and Eq. (45) by F−1 to obtain the 8nal forms we solve, viz.

�
@
@�
G(�; �) + �
G(�; �) = �

L∑
l=0

ClPl(�)
∫ 1

−1
Pl(�′)G(�; �′) d�′ (50)

and

G(0; �)− (1−  )G(0;−�)− 4 D
∫ ∞

0
G(0;−�′)�′ d�′ = (2−  )�Q (51)

for �∈ (0; 1]. Here

= A−1S ; (52a)

Cl = A−1Bl; (52b)

D = F−1J (52c)

and

Q = F−1T : (52d)

And so now we continue by developing our analytical discrete-ordinates solution of the transport
problem de8ned by Eqs. (50) and (51).

4. An analytical discrete-ordinates solution

Since our discrete-ordinates solution of Eqs. (50) and (51) follows closely work previously re-
ported [20] in the context of fully-coupled multigroup neutron transport theory, our presentation here
can be brief. We begin by using a “half-range” quadrature scheme to approximate the integral term
in Eq. (50), and so we write

�
@
@�
G(�; �) + �
G(�; �) = �

L∑
l=0

Pl(�)Cl

N∑
n=1

wnGl;n(�); (53)

where to compact our notation we have introduced

Gl;n(�) = Pl(�n)[G(�; �n) + (−1)lG(�;−�n)]: (54)

Here the N quadrature points {�n} and the N weights {wn} are de8ned for use on the integration
interval [0; 1]. Eq. (53) clearly has separable exponential solutions, so we use 	 as a separation
constant and substitute

G(�; �) =�(	; �)e−��=	 (55)

into that equation to 8nd

[
− (�=	)I ]�(	; �) =
L∑

l=0

Pl(�)Cl

N∑
n=1

wn�l;n(	); (56)



C.E. Siewert / Journal of Quantitative Spectroscopy & Radiative Transfer 77 (2003) 417–432 425

where I is the identity matrix and

�l;n(	) = Pl(�n)[�(	; �n) + (−1)l�(	;−�n)]: (57)

If we now evaluate Eq. (56) at � =±�i, for i = 1; 2; : : : ; N , then we can obtain

[D − (1=	)M ]�+(	) =
L∑

l=0

�lClGl(	) (58a)

and

[D + (1=	)M ]�−(	) =
L∑

l=0

(−1)l�lClGl(	); (58b)

where

�+(	) = [�T(	; �1);�T(	; �2); : : : ;�T(	; �N )]T (59a)

and

�−(	) = [�T(	;−�1);�T(	;−�2); : : : ;�T(	;−�N )]T: (59b)

In addition, we have used the J × J matrices

M = diag{�1I ; �2I ; : : : ; �N I} (60a)

and

D = diag{
;
; : : : ;
} (60b)

along with

Gl(	) =�T
lW [�+(	) + (−1)l�−(	)]: (61)

Note that we have introduced the composite dimension J = N (K + 1) and that here the matrix

W = diag{w1I ; w2I ; : : : ; wN I} (62a)

is also J × J , while the matrices

�l = [Pl(�1)I ; Pl(�2)I ; : : : ; Pl(�N )I ]T (62b)

are J × (K + 1). We now let

U =�+(	) +�−(	) (63a)

and

V =�+(	)−�−(	); (63b)

so that we can take the sum and the di<erence of Eqs. (58) to obtain

EX =
1
	
Y (64a)

and

HY =
1
	
X ; (64b)
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where

E =

{
D −

L∑
l=0

�lCl[1 + (−1)l]�T
lW

}
M−1; (65a)

H =

{
D −

L∑
l=0

�lCl[1− (−1)l]�T
lW

}
M−1; (65b)

X =MU (66a)

and

Y =MV : (66b)

We can eliminate between Eqs. (64) to obtain the eigenvalue problems

(HE)X = �X (67a)

and

(EH)Y = �Y ; (67b)

where � = 1=	2. We note that the required separation constants {	j} are readily available once we
8nd the eigenvalues {�j} de8ned by either of Eqs. 67. We choose to express our results in terms
of the eigenvalues and eigenvectors de8ned by Eq. (67a). Continuing, we let �j and X(�j), for
j = 1; 2; : : : ; J , denote the collection of eigenvalues and eigenvectors of Eq. (67a). The separation
constants we require clearly occur in plus–minus pairs, and so letting 	j, for j = 1; 2; : : : ; J , denote
the reciprocal of the positive square root of �j, we can use Eqs. (63), (64) and (66) to obtain

�+(	j) = 1
2M

−1(I + 	jE)X(�j) (68a)

and

�−(	j) = 1
2M

−1(I − 	jE)X(�j) (68b)

for j = 1; 2; : : : ; J . We note that I in Eqs. (68) is the J × J identity matrix and that

�+(−	j) =�−(	j) (69)

and so at this point we have available all we require for de8ning our discrete-ordinates solution to
Eq. (53). We therefore write

G(�;±�i) =
J∑

j=1

[Aj�(	j;±�i)e−��=	j + Bj�(	j;∓�i)e��=	j ] (70)

for i=1; 2; : : : ; N . Here the arbitrary constants {Aj} and {Bj} are to be determined by the boundary
conditions of any given problem, and to be clear we note that the quantities �(	j; �i) and �(	j;−�i)
are to be taken from the components of �±(	j) that are available from Eqs. 68.
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For the considered temperature-jump problem, we seek a bounded (as � tends to in8nity) solution,
"∗(�; c; �), and so we neglect the terms with positive exponentials in Eq. (70) and write

G(�;±�i) =
J∑

j=1

Aj�(	j;±�i)e−��=	j (71)

for i = 1; 2; : : : ; N . Now, as was anticipated, we have observed in our numerical work that two of
the separation constants, say 	1 and 	2 tend to in8nity as the order J of the eigenvalue system is
increased. And so our procedure is to ignore these two constants in Eq. (71) and to use instead two
of the bounded exact solutions from Eq. (28). This means that we now write a discrete-ordinates
version of Eq. (38) as

"∗(�; c;±�i) =±A1c�i + A2(c2 − 5=2) + P(c)
J∑

j=3

Aj�(	j;±�i)e−��=	j ; (72)

where P(c) is given by Eq. (44). While Eq. (30) and (subsequently) Eq. (51) are the boundary
conditions relative to "∗(�; c; �) and G(�; �), we use a discrete-ordinates version of the boundary
condition to determine the constants {Aj} we require to complete our solution. And so we rewrite
Eq. (30) as

"∗(0; c; �i)− (1−  )"∗(0; c;−�i)− 4 
N∑
n=1

wn�n

∫ ∞

0
e−c′2c′3"∗(0; c′;−�n) dc′ =R(c; �i) (73)

for i = 1; 2; : : : ; N . To 8nd a linear system to de8ne the required constants, we substitute Eq. (72)
into Eq. (73), multiply by PT(c)e−c2c2 and integrate over all c to 8nd

A1V1 + A2V2 +
J∑

j=3

AjV(	j) = (2−  )R (74)

where

V1 = (2−  )[�1ET1 ; �2E
T
1 ; : : : ; �NE

T
1 ]
T + ( =2)
1=2[ET0 ;E

T
0 ; : : : ;E

T
0 ]
T; (75a)

V2 =  [ET2 ;E
T
2 ; : : : ;E

T
2 ]
T + ( =2)[ET0 ;E

T
0 ; : : : ;E

T
0 ]
T (75b)

and, for j = 3; 4; : : : ; J ,

V(	j) = [�T1 (	j);�
T
2 (	j); : : : ;�

T
N (	j)]

T: (76)

Here

�i(	j) =�(	j; �i)− (1−  )�(	j;−�i)− 4 
N∑
n=1

wn�n�(	j;−�n) (77)

and

R= [�1QT; �2QT; : : : ; �NQT]T; (78)
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where Q is given by Eqs. (52d) and (48). In addition,

E0 = F−1PT0 ; (79a)

E1 = F−1PT1 (79b)

and

E2 = F−1[PT2 − (5=2)PT0 ]; (79c)

where we have used the de8nitions given in Eq. (49). Finally, we note that while we have used the
de8ned quadrature scheme to compute the component in V(	j) that results from di<use reGection,
we have used exact integration to compute this component in V1 and V2.
Once we have solved the J × J system of linear equations listed as Eq. (74), we can compute

our 8nal results by using Eq. (72) in Eqs. (32) and (33) to 8nd

N (�) =K


−�− -+

J∑
j=3

AjNje−��=	j


 (80)

and

T (�) =K


�+ -+

J∑
j=3

AjTje−��=	j


 ; (81)

where

Nj = (2=�)
−1=2P0N (	j) (82)

and

Tj = [4=(3�)]
−1=2[P2 − (3=2)P0]N (	j): (83)

Again we have used Eq. (49), and we have introduced

N (	j) =
N∑
n=1

wn[�(	j; �n) +�(	j;−�n)]: (84)

To conclude this section we note that the temperature-jump coe5cient is given by

-= A2=�: (85)

5. Numerical results

Our solution to the temperature-jump problem as based on the linearized Boltzmann equation
for rigid-sphere interactions involves various analytical and numerical approximations which must
be mentioned. First of all, the in8nite series in Eq. (26) has been truncated after L + 1 terms
so as to yield the representation given by Eq. (37). To date, we have used at most nine terms
(L = 8) in the expansion. The Maple software package was used to obtain analytical expressions
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for the component kernels; however, because we observed some loss of accuracy when using these
analytical expressions, we have included in our computation some asymptotic expansions for small
values of c′, when c′¡c. Our next approximation is illustrated by Eq. (38) where K + 1 terms in
a polynomial expansion were used to model the speed dependence (the c variable) of our solution.
Then after a projection against the functions listed in Eq. (39), we obtained the coupled system of
transport equations and boundary conditions listed as Eqs. (50) and (51). At this point we have
introduced our analytical discrete-ordinates method by approximating the integral term in Eq. (50)
by an N -point half-range quadrature scheme, viz. a standard Gauss-Legendre scheme mapped onto
the interval [0,1]. Finally we have evaluated all the input parameters, for example Eqs. (41)–(43),
by mapping an M -point Gauss–Legendre quadrature scheme onto the positive real axis. And so in
this work we have four approximation parameters: {L;M; K; N}. In regard to linear algebra, we have
used the driver program RG from the EISPACK collection [21] to solve our eigenvalue/eigenvector
problem and packages from the LINPACK collection [22] to solve our linear system. We note, in
regard to Eq. (67a) and the fact that 	=1=�1=2, that we have not encountered any complex separation
constants (	j, for j = 3; 4; : : : ; J ) for the solution parameters used to date.
We list in Tables 1–3 our results for some typical cases using [8,14]

�= �t = 0:679630049 : : : (86)

to de8ne a mean-free path based on thermal conductivity. While we believe our results to be correct
to within one unit in last digit given, we have no proof of the accuracy of our results. However,
we have found our solution to be stable with regard to changes in the approximation parameters
{L;M; K; N}. Although we have made no special e<ort to 8nd the minimum values of {L;M; K; N}
to achieve a given accuracy, we have typically used the values {8; 200; 40; 30}. In addition to the
fact that our solution appears to be stable with respect to the approximation parameters, we have
looked at the special cases of (i) the BGK model and (ii) the CES model. Results for these two
models were obtained simply by replacing the true component kernels (and the collision frequency
for the case of the BGK model) by relevant model kernel functions (L= 1 for BGK and L= 2 for
CES). In this way, we were able to con8rm, to seven 8gures of accuracy for the temperature-jump
coe5cient and to six 8gures of accuracy for the temperature and density perturbations, the results
reported in Ref. [3].

Table 1
The temperature-jump coe5cient -

 BGK CES [10] LBE

0.1 21.45012 21.32099 21.349 21.349
0.2 10.34747 10.22670 10.252 10.251
0.3 6.630514 6.517910 6.5398 6.5396
0.4 4.760333 4.655697 4.6747 4.6745
0.5 3.629125 3.532264 3.5708 3.5485
0.6 2.867615 2.778342 2.7924 2.7922
0.7 2.317534 2.235669 2.2476 2.2474
0.8 1.899741 1.825107 1.8350 1.8349
0.9 1.570264 1.502689 1.5109 1.5108
1.0 1.302716 1.242033 1.2486 1.2486
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Table 2
The temperature and density perturbations for  = 0:8

T (�) −N (�)

� BGK CES [10] LBE BGK CES [10] LBE

0.00 1.349 1.382 1.360 1.3597 1.472 1.531 1.502 1.5033
0.25 1.811 1.909 1.860 1.8594 1.900 1.980 1.930 1.9292
0.50 2.147 2.235 2.190 2.1896 2.216 2.278 2.233 2.2327
0.75 2.451 2.523 2.485 2.4846 2.506 2.549 2.513 2.5127
1.00 2.739 2.793 2.763 2.7631 2.784 2.810 2.782 2.7819
1.50 3.290 3.312 3.296 3.2958 3.320 3.320 3.305 3.3045
2.00 3.821 3.820 3.813 3.8125 3.843 3.823 3.817 3.8167

Table 3
The temperature and density perturbations

 = 0:3  = 0:5  = 0:9

� T (�) −N (�) T (�) −N (�) T (�) −N (�)

0.0 5.8088 6.0336 2.9250 3.1153 1.0819 1.2111
0.1 6.1567 6.3099 3.2342 3.3647 1.3228 1.4123
0.2 6.3617 6.4811 3.4238 3.5257 1.4843 1.5545
0.3 6.5312 6.6274 3.5831 3.6654 1.6253 1.6821
0.4 6.6820 6.7611 3.7268 3.7944 1.7556 1.8024
0.5 6.8213 6.8870 3.8605 3.9167 1.8790 1.9180
0.6 6.9527 7.0077 3.9874 4.0345 1.9978 2.0305
0.7 7.0782 7.1246 4.1093 4.1491 2.1131 2.1407
0.8 7.1994 7.2387 4.2275 4.2612 2.2258 2.2493
0.9 7.3171 7.3505 4.3428 4.3715 2.3365 2.3565
1.0 7.4322 7.4607 4.4558 4.4802 2.4456 2.4626
2.0 8.5062 8.5125 5.5196 5.5251 3.4904 3.4942

To compare with other works, we have included in Tables 1 and 2, the values obtained by
Loyalka [10] from a numerical solution of the linearized Boltzmann equation. With the exception of
the temperature-jump coe5cient for the case  = 0:5 where we suspect Loyalka [10] has a printing
error, the agreement between the two sets of results is very good, though not perfect. We have also
recomputed the temperature-jump coe5cient and other data from Refs. [11,12] using

�= 21=2=4: (87)

Since our solution is continuous in the spatial variable we were able to compute the temperature
and density defects listed by Sone, Ohwada and Aoki [11] and Ohwada and Sone [12] exactly at
the grid points listed in those works. First of all, in regard to Ref. [11] that has only the case  =1,
we found reasonable agreement for the temperature-jump coe5cient (Ref. [11] has -=2:3993 in the
notation used there, whereas we found -= 2:4001), however, we are of the opinion that the results
listed in Table II of Ref. [11] are correct, in general, to no more than three signi8cant 8gures. In a
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more recent work, Ohwada and Sone [12] reported better results and also include a combination of
specular and di<use reGection at the wall. For example, Ref. [12] reports 6.8210, 3.8981 and 2.4001
for the temperature-jump coe5cient for the cases of  = 0.5, 0.75 and 1, while we have for the
same cases 6.8212, 3.8982 and 2.4001. We have also found that we agree signi8cantly better (three
to 8ve 8gures of agreement) with Table III of Ref. [12] than with Table II of Ref [11].
While we have some con8dence in our numerical results, there can be some doubt: the use of a

maximum value of L= 8 could be a source of error. We can emphasize (again) that computing the
component kernels kn(c′; c) accurately is no simple task especially as n increases. This too could be
a source of error in our 8nal results. On the other hand the approximations used in Eq. (38), the
projections de8ned by Eq. (39) and the analytical discrete-ordinates are all considered exceptionally
good procedures for the considered problem.
To conclude this section we give some idea about the computation time required for our FOR-

TRAN implementation of this solution. It should be noted that no special e<ort was made to “tune”
the code for speed and that no optimization options were used. We found that the use of the ap-
proximating parameters {8; 200; 20; 10} required 20 s of CPU time on a 1:2 GHz mobile Pentium
III, without using any stored data, to 8nd the temperature-jump coe5cient and the temperature and
density perturbations for 10 values of the accommodation coe5cient. Using stored input data, we
found the code required less than 2 s on the same machine. We found from this timing example
what we believe to be 8ve 8gures of accuracy for the jump coe5cient and the temperature and
density perturbations for the cases listed in our tables.

6. Concluding comments

We have used a new polynomial expansion technique and the Pekeris [13] expanded form of the
scattering kernel basic to the linearized Boltzmann equation for rigid-sphere collisions to de8ne a
system of coupled transport problems that has been solved e5ciently and accurately with a modern
version [4] of the discrete-ordinates method usually associated with Chandrasekhar [23] and the
8eld of radiative transfer. While there exist four basic works [9–12] that report numerical results
for the temperature-jump problem solved in this work, we are of the opinion that our (nearly)
analytical solution is more e5cient in regard to accuracy and computer-time requirements than the
older, strictly numerical solutions. The approach developed in this work can be used to solve all the
classical Gow problems based on the linearized Boltzmann equation, and to include more realistic
boundary conditions such as the Cercignani–Lampis boundary condition very recently implemented
[24–26] for some model equations should require only minor modi8cations to the techniques reported
in this work. Finally, we are of the opinion that to solve the temperature-jump problem well and to
develop a FORTRAN implementation that yields 8ve signi8cant 8gures of accuracy in less than 2 s
seems a good contribution to the general 8eld of rare8ed gas dynamics.
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