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Abstract. A polynomial expansion procedure and an analytical discrete-ordinates method are
used to solve a collection of basic flow problems based on a rigorous version of the linearized Boltz-
mann equation for rigid-sphere interactions. In particular, two half-space problems, Kramers and
thermal creep, and three problems defined by flow in a plane-parallel channel, Poiseuille, thermal-
creep and Couette flow, are solved (essentially) analytically in terms of a modern version of the
discrete-ordinates method. The developed algorithms are implemented for general values of the
accommodation coefficient to yield numerical results that can be considered a new standard of
reference.
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1. Introduction

As one of several steps in evaluating the effectiveness of a new computational
method it is considered important to study two basic half-space problems known
as Kramers’ problem and the thermal-creep problem and three problems, Poiseuille
flow, thermal-creep flow and Couette flow, defined by flow in a finite plane-parallel
channel. In addition to the important limiting cases (half-space problems), the
three problems defined for finite channels allow us to study the flow of a rarefied
gas that is driven by (i) movement parallel to the channel by one or both of the
two confining walls, (ii) a pressure gradient or (iii) a temperature gradient in a
direction parallel to the boundaries that enclose the gas. A new book by Cercignani
[1] includes discussions of these basic flow problems and provides a guide to many
works that have contributed to our understanding of all of these often-studied
problems. In addition to Ref. [1], we have found a review article by Sharipov
and Seleznev [2] to be of fundamental importance to our work here. As well as
providing a comprehensive list of important references relative to basic problems
in rarefied gas dynamics, Sharipov and Seleznev [2] have reported many good
comparisons of numerical results derived from the linearized Boltzmann equation
and various kinetic models and based on a diverse collection of computational
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algorithms.
In a recent work [3] a newly introduced polynomial expansion technique (rel-

evant to the speed variable) and an analytical discrete-ordinates method [4] that
has evolved from Chandrasekhar’s work [5] in radiative transfer were used to solve
the classical temperature-jump problem based on a rigorous form of the linearized
Boltzmann equation for rigid-sphere interactions. And so now we show that the
methods of Ref. [3] can be used also to solve well the collection of flow problems
considered in this work.

2. Mathematical formulation

To start this work, we follow Pekeris [6], who quotes Boltzmann [7], Hilbert [8]
and Chapman and Cowling [9], and consider the linearized Boltzmann equation
written in terms of h(τ, c) , a perturbation to the velocity distribution function,
for rigid-sphere collisions as

S(c) + cµ
∂

∂τ
h(τ, c) = εL{h}(τ, c) (1)

where

L{h}(τ, c) = −ν(c)h(τ, c) +
∫ ∞

0

∫ 1

−1

∫ 2π

0

e−c′2h(τ, c′)K(c′, c)c′2 dχ′ dµ′ dc′. (2)

Here the scattering kernel is written in the expanded (Pekeris) form [6], viz.

K(c′, c) =
1
4π

∞∑
n=0

n∑
m=0

(2n + 1)(2− δ0,m)Pm
n (µ′)Pm

n (µ)kn(c′, c) cos m(χ′ − χ) (3)

where the normalized Legendre functions are given (in terms of the Legendre poly-
nomials) by

Pm
n (µ) =

[
(n−m) !
(n + m) !

]1/2

(1− µ2)
m/2 dm

dµm
Pn(µ), n ≥ m. (4)

In addition,
ε = σ2

0n0π
1/2l (5)

where l is (at this point) an unspecified mean-free path, n0 is the density and σ0

is the scattering diameter of the gas particles. In this work, the spatial variable τ
is measured in units of the mean-free path l and c(2kT0/m)1/2 is the magnitude
of the particle velocity. Also, k is the Boltzmann constant, m is the mass of a
gas particle and T0 is a reference temperature. It should be noted that we have
included in Eq. (1) an inhomogeneous driving term S(c) that we will specify,
along with an appropriate definition of the perturbation h(τ, c) , for the three
general types of flow (Couette, Poiseuille and thermal creep) we consider in this
work. We note that the functions kn(c′, c) in Eq. (3) are the components in an
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expansion of the scattering law (for rigid-sphere collisions) reported by Pekeris [6],
and

ν(c) =
2c2 + 1

c

∫ c

0

e−x2
dx + e−c2

(6)

is the collision frequency. And finally, we use spherical coordinates ( c′, arccos µ′, χ′ )
and ( c, arccos µ, χ ) to define the (dimensionless) velocity vectors c′ and c .

Since the component kernels kn(c′, c) used in Eq. (3) are essential to our work
here, we restate some basic results developed and reported by Pekeris [6], Pekeris
and Alterman [10] and Pekeris, Alterman, Finkelstein and Frankowski [11]. First
of all, Pekeris [6] gives (in our notation) the expression

kn(c′, c) = 2
∫ π

0

[
(2/R)eω2 −R

]
Pn(cos θ) sin θ dθ (7)

where
R = |c′ − c| and ω = (1/R)c′c sin θ (8a,b)

and where θ is the angle between c′ and c . In Ref. [10] Pekeris and Alterman
discussed the coefficients of viscosity and heat conduction and used the kernel
functions k1(c′, c) and k2(c′, c) to define the Chapman-Enskog integral equations
for viscosity and heat conduction. We write these equations here as

ν(c)c2b(c)−
∫ ∞

0

e−c′2b(c′)k2(c′, c)c′
4 dc′ = c2 (9)

and
ν(c)ca(c)−

∫ ∞

0

e−c′2a(c′)k1(c′, c)c′
3 dc′ = c(c2 − 5/2) (10a)

with ∫ ∞

0

e−c2
a(c)c4 dc = 0. (10b)

Now, as discussed (for example) in Refs. [10,12], if we wish to use a mean-free path
based on the viscosity, i.e.

l = lp = (µ∗/p0)(2kT0/m)1/2 (11)

where µ∗ is the viscosity and p0 = n0kT0 is the pressure, then we should use in
Eq. (1)

ε = εp =
16

15π1/2

∫ ∞

0

e−c2
b(c)c6 dc (12)

where b(c) is defined by Eq. (9). On the other hand, if we wish to use a mean-free
path based on heat conduction,

l = lt = [4λ∗/(5n0k)][m/(2kT0)]1/2, (13)

where λ∗ is the heat-conduction coefficient, then in Eq. (1) we should use [10,13]

ε = εt =
16

15π1/2

∫ ∞

0

e−c2
a(c)c6 dc (14)
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where a(c) is defined by Eqs. (10). While the component kernel functions kn(c′, c) ,
for n = 1, 2 and 3, are required for the Chapman-Enskog equations for viscosity
and heat conduction and the so-called Burnett integral equations [12], we intend
to use more of these component kernels in a truncated version of Eq. (3). We note
here that in Ref. [11], Pekeris and co-workers have reported an ingenious set of ex-
pressions and recursion formulas that they used (along with a computer program)
to evaluate analytically the expression listed here as Eq. (7). Pekeris et al. [11]
also give explicit results for the cases up to and including k8(c′, c) , but we believe
there is at least one misprint in those (extensive) results. As will be discussed
in more detail later in this work, we have used the MAPLE software package to
evaluate Eq. (7) analytically for essentially any value of n , but we have actually
used the kernel functions (so far) only up to n = 8 .

In regard to boundary conditions that supplement Eq. (1) we will be more
explicit when considering the specific problems, but, in general, for half-space
problems we consider Eq. (1) either with no driving term, but with a condition
imposed on a diverging solution as τ tends of infinity (Kramers’ problem), or with
a specified driving term and a particular solution of the inhomogeneous equation.
For both of these half-space problems we use a boundary condition at the wall
( τ = 0 ) of the form

h(0, c, µ, χ)− (1− α)h(0, c,−µ, χ)− αI{h}(0) = 0 (15)

for µ ∈ (0, 1] , c ∈ [0,∞) and all χ . Here, in general,

I{h}(τ) =
2
π

∫ ∞

0

∫ 1

0

∫ 2π

0

e−c2
h(τ, c,−µ, χ)c3µdχdµdc, (16)

α ∈ (0, 1] is the accommodation coefficient and

h(τ, c) ⇔ h(τ, c, µ, χ). (17)

For the problems defined for flow in a channel, we consider that the walls are
located at ±a and supplement Eq. (1) with the boundary condition

h(−a, c, µ, χ)− (1− α)h(−a, c,−µ, χ)− αI{h}(−a) = F (c), (18)

for µ ∈ (0, 1] , all χ and all c , and a symmetry condition that relates the pertur-
bation distribution function h(τ, c, µ, χ) to h(−τ, c,−µ, χ) . Here F (c) is taken
to be specified.

3. Quantities of interest

In two previous works [14,15] the five flow problems we solve here were solved in
terms of the CES model of the linearized Boltzmann equation, and so we now
make use of those parts of Refs. [14,15] that are relevant here for the Boltzmann
equation. In our notation cµ is the component of the (dimensionless) velocity
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vector in the positive τ direction, and so if we let

cη = c(1− µ2)1/2 cos χ (19)

denote the component of velocity in the direction of the flow, then we can express
the bulk velocity and heat-flow profiles we intend to compute as

u(τ) =
1

π3/2

∫ ∞

0

∫ 1

−1

∫ 2π

0

e−c2
h(τ, c)c3(1− µ2)

1/2
cos χdχdµdc (20)

and

q(τ) =
1

π3/2

∫ ∞

0

∫ 1

−1

∫ 2π

0

e−c2
h(τ, c)(c2 − 5/2)c3(1− µ2)

1/2
cos χdχdµdc. (21)

For the problem of Couette flow we also intend to compute a component of the
pressure tensor which we write as

Pxy =
1

π3/2

∫ ∞

0

∫ 1

−1

∫ 2π

0

e−c2
h(τ, c)c4µ(1− µ2)

1/2
cos χdχdµdc (22)

where x and y are the spatial variables (measured in cm) that correspond re-
spectively to η and τ .

It is clear from Eqs. (20–22) that the information we seek is expressed in terms
of certain moments of h(τ, c) , and so we can make a convenient simplification in
our formulation. Considering the form of the scattering kernel given by Eq. (3),
we introduce

ψ(τ, c, µ) =
1
π

(1− µ2)
−1/2

∫ 2π

0

h(τ, c) cos χdχ (23)

and rewrite Eqs. (20–22) as

u(τ) =
1

π1/2

∫ ∞

0

∫ 1

−1

e−c2
ψ(τ, c, µ)c3(1− µ2) dµdc, (24)

q(τ) =
1

π1/2

∫ ∞

0

∫ 1

−1

e−c2
ψ(τ, c, µ)(c2 − 5/2)c3(1− µ2) dµdc (25)

and

Pxy =
1

π1/2

∫ ∞

0

∫ 1

−1

e−c2
ψ(τ, c, µ)c4µ(1− µ2) dµdc. (26)

We can multiply Eq. (1) by cosχ and integrate to find, after noting Eq. (3), that
ψ(τ, c, µ) must satisfy the balance equation

S∗(c, µ) + cµ
∂

∂τ
ψ(τ, c, µ) = εL∗{ψ}(τ, c, µ) (27)

where

S∗(c, µ) =
1
π

(1− µ2)
−1/2

∫ 2π

0

S(c) cos χdχ (28)
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and

L∗{ψ}(τ, c, µ) = −ν(c)ψ(τ, c, µ) +
∫ ∞

0

∫ 1

−1

e−c′2ψ(τ, c′µ′)k(c′, µ′ : c, µ)c′2 dµ′ dc′.

(29)
Here

k(c′, µ′ : c, µ) = (1− µ′2)
∞∑

n=1

Πn(µ′)Πn(µ)kn(c′, c) (30)

with

Πn(µ) =
[ 2n + 1
2n(n + 1)

]1/2 d
dµ

Pn(µ), n ≥ 1. (31)

Note that ∫ 1

−1

(1− µ2)Πn(µ)Πn′(µ) dµ = δn,n′ . (32)

For the two considered half-space problems, Eq. (15) yields

ψ(0, c, µ)− (1− α)ψ(0, c,−µ) = 0 (33)

for µ ∈ (0, 1] and all c . For the problems defined for finite channels, we note
that in addition to a symmetry relation (to be defined) between ψ(τ, c, µ) and
ψ(−τ, c,−µ) , we find from Eq. (18) that ψ(τ, c, µ) must satisfy the boundary
condition

ψ(−a, c, µ)− (1− α)ψ(−a, c,−µ) = F ∗(c, µ) (34)

for µ ∈ (0, 1] and all c . Here

F ∗(c, µ) =
1
π

(1− µ2)
−1/2

∫ 2π

0

F (c) cos χdχ. (35)

Having given a general introduction to the class of flow problems we intend to
solve here, we can continue with more specific formulations.

4. The problems

While the problems we solve here have much in common, there are naturally some
differences, and so we now can be more specific in our mathematical statements
of the problems.

4.1 Kramers’ problem

For Kramers’ problem we consider that h(τ, c) represents a perturbation from
an absolute Maxwellian distribution, and so we express the velocity distribution
function as

f(τ, c) = f0(c)[1 + h(τ, c)] (36)
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where
f0(c) = n0

[
m/(2πkT0)

]3/2e−c2
. (37)

Our formulation of this problem does not have a driving term in Eq. (1), and so
we seek a solution of

cµ
∂

∂τ
ψ(τ, c, µ) = εL∗{ψ}(τ, c, µ) (38)

that satisfies the boundary condition

ψ(0, c, µ)− (1− α)ψ(0, c,−µ) = 0, (39)

for µ ∈ (0, 1] and all c . Since Eqs. (38) and (39) are both homogeneous, there
can be no flow unless we require ψ(τ, c, µ) to diverge as τ tends to infinity. In
Ref. [16] some solutions to Eq. (1) that are linear in τ were listed. We can use
one of those solutions in order to write

ψ(τ, c, µ) = K{ψ∗(τ, c, µ) +
2
ε
[cετ − µB(c)]} (40)

where B(c) = c2b(c) is defined as a solution of Eq. (9), K is a normalizing
constant and ψ∗(τ, c, µ) is a bounded (as τ tends to infinity) solution of Eq. (38).
Substituting Eq. (40) into Eq. (39), we find the boundary condition to be satisfied
by ψ∗(τ, c, µ) , viz.

ψ∗(0, c, µ)− (1− α)ψ∗(0, c,−µ) =
2
ε
(2− α)µB(c), (41)

for µ ∈ (0, 1] and all c . Once we have found ψ∗(τ, c, µ) we can compute the
desired bulk velocity and heat-flow profiles from

u(τ) = K{
τ +

1
π1/2

∫ ∞

0

∫ 1

−1

e−c2
ψ∗(τ, c, µ)c3(1− µ2) dµdc

}
(42)

and

q(τ) = K{ 1
π1/2

∫ ∞

0

∫ 1

−1

e−c2
ψ∗(τ, c, µ)c3(c2 − 5/2)(1− µ2) dµdc

}
. (43)

4.2 The half-space thermal-creep problem

For the case of thermal creep, the flow is caused by a constant temperature gradient
in a direction parallel to the wall, and so it is helpful to linearize about a local
Maxwellian rather than the absolute Maxwellian as was done in Eqs. (36) and
(37). We follow Williams [17] and express the velocity distribution function as

f(τ, η, c) = f0(c){1 + [(c2 − 3/2)Kη + Rη]η + h(τ, c)} (44)

where f0(c) is given by Eq. (37) and we have expressed the imposed temperature
and density variations as

T (η) = T0(1 + Kηη) (45)
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and

n(η) = n0(1 + Rηη). (46)

We continue to use T0 and n0 as convenient reference values of the temperature
and density, η is used to define (in terms of the mean-free path l ) the direction
of flow and Kη and Rη are the constant gradients (in dimensionless units) of the
temperature and density. For the problem of thermal creep we take Kη = −Rη ,
introduce kT = Kη and consider the balance equation

S∗(c, µ) + cµ
∂

∂τ
ψ(τ, c, µ) = εL∗{ψ}(τ, c, µ) (47)

where the operator L∗ is defined by Eq. (29) and where

S∗(c, µ) = c(c2 − 5/2)kT. (48)

For the case of a mixture of specular and diffuse reflection at the wall, the solution
of Eq. (47) that we seek should satisfy the boundary condition

ψ(0, c, µ)− (1− α)ψ(0, c,−µ) = 0, (49)

for µ ∈ (0, 1] and all c . Continuing, we now impose the normalization kT = 1
and write

ψ(τ, c, µ) = ψ∗(τ, c, µ) + ψps(τ, c, µ) (50)

where

ψps(τ, c, µ) = −A(c)/ε (51)

is a particular solution of Eq. (47), where A(c) = ca(c) is a solution of Eqs. (10)
and where ψ∗(τ, c, µ) is a bounded (as τ tends to infinity) solution of the ho-
mogeneous version of Eq. (47). Substituting Eq. (50) into Eq. (49), we find the
boundary condition

ψ∗(0, c, µ)− (1− α)ψ∗(0, c,−µ) = αA(c)/ε, (52)

for µ ∈ (0, 1] and c ∈ [0,∞) . The velocity profile and the heat-flow profile can,
after we note Eq. (10b), now be expressed as

u(τ) =
1

π1/2

∫ ∞

0

∫ 1

−1

e−c2
ψ∗(τ, c, µ)c3(1− µ2) dµdc (53)

and

q(τ) = −5εt

4ε
+

1
π1/2

∫ ∞

0

∫ 1

−1

e−c2
ψ∗(τ, c, µ)c3(c2 − 5/2)(1− µ2) dµdc (54)

where εt is available from Eq.(14).
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4.3 Couette flow

For the Couette-flow problem we continue to follow Ref. [17] and consider that
h(τ, c) represents the perturbation from an absolute Maxwellian, and so we again
express the distribution function as

f(τ, c) = f0(c)[1 + h(τ, c)] (55)

where
f0(c) = n0

[
m/(2πkT0)

]3/2e−c2
. (56)

For this problem there is no driving term in Eq. (1), and so

S∗(c, µ) = 0. (57)

In addition, we consider that the two plates (walls) are given velocities ±up , and
so the known term in the boundary condition listed as Eq. (35) takes the form [17]

F ∗(c, µ) = 2αcup. (58)

As a result of the wall velocities, we can make use of the (anti) symmetry condition

ψ(−τ, c,−µ) = −ψ(τ, c, µ) (59)

for all τ, c and µ . For the problem of Couette flow we intend to compute, in
addition to the quantities listed by Eqs. (24–26), the half-channel mass and heat-
flow rates defined as

U =
1

2a2

∫ a

0

u(τ) dτ (60)

and

Q =
1

2a2

∫ a

0

q(τ) dτ. (61)

4.4. Poiseuille and thermal-creep flow in a channel

The problems of Poiseuille flow and thermal-creep flow in a plane channel have
much in common, and so we find it convenient to consider the two problems formu-
lated together. Here the flow is caused by a constant pressure gradient (Poiseuille
flow) and a constant temperature gradient (thermal-creep flow) in a direction par-
allel to the walls, and so it is helpful to linearize about a local Maxwellian rather
than the absolute Maxwellian as was done in Eqs. (36) and (37). We express the
distribution function as [17]

f(τ, η, c) = f0(c){1 + [(c2 − 3/2)Kη + Rη]η + h(τ, c)} (62)

where f0(c) is given by Eq. (37) and we have expressed the imposed temperature
and density variations as

T (η) = T0(1 + Kηη) (63a)
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and
n(η) = n0(1 + Rηη). (63b)

We continue to use T0 and n0 as convenient reference values of the temperature
and density, η is used to define (in terms of the mean-free path l ) the direction
of flow and Kη and Rη are the constant gradients (in dimensionless units) of
the temperature and density. Now, as noted by Williams [17], the problem of
Poiseuille flow has Kη = 0 and Rη arbitrary, while thermal-creep flow is defined
by Kη = −Rη , with Rη arbitrary. To distinguish the two problems we use
subscript labels P and T, and so we consider that the defining equation for h(τ, c)
is the inhomogeneous form given by Eq. (1) with

S(c) = c(1− µ2)
1/2

cos χ[(c2 − 5/2)kT + kP], (64)

where kT = Kη and kP = Rη + Kη . In this work Poiseuille flow is defined by
kP = 1 and kT = 0 , while kT = 1 and kP = 0 defines the case of thermal-creep
flow. Making use again of the definition introduced in Eq. (23), we find that here
we must solve

S∗(c, µ) + cµ
∂

∂τ
ψ(τ, c, µ) = εL∗{ψ}(τ, c, µ) (65)

where the operator L∗ is defined by Eq. (29) and where

S∗(c, µ) = c[(c2 − 5/2)kT + kP]. (66)

For the Poiseuille and thermal-creep problems the wall velocity up is zero, and so
we seek a solution of Eq. (65) that satisfies the symmetry condition

ψ(−τ, c,−µ) = ψ(τ, c, µ), (67)

for all τ , c and µ , and the boundary condition

ψ(−a, c, µ)− (1− α)ψ(−a, c,−µ) = 0, (68)

for µ ∈ (0, 1] and all c . For the two flow problems defined in this section, we
compute the velocity and heat-flow profiles

u(τ) =
1

π1/2

∫ ∞

0

∫ 1

−1

e−c2
ψ(τ, c, µ)c3(1− µ2) dµdc (69)

and

q(τ) =
1

π1/2

∫ ∞

0

∫ 1

−1

e−c2
ψ(τ, c, µ)(c2 − 5/2)c3(1− µ2) dµdc. (70)

We also seek the full-channel mass and heat-flow rates defined as

U =
1

2a2

∫ a

−a

u(τ) dτ (71)

and

Q =
1

2a2

∫ a

−a

q(τ) dτ. (72)
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Now, since we wish to base our ADO solution on the homogeneous form of Eq. (65),
we write

ψ(τ, c, µ) = ψ∗(τ, c, µ) + ψps(τ, c, µ) (73)

where ψps(τ, c, µ) is a particular solution (that has the correct symmetry) of
Eq. (65) and ψ∗(τ, c, µ) is a solution of the homogeneous version of Eq. (65) that
has the symmetry property

ψ∗(−τ, c,−µ) = ψ∗(τ, c, µ), (74)

for all τ , c and µ , and that satisfies the boundary condition

ψ∗(−a, c, µ)− (1− α)ψ∗(−a, c,−µ) = R(c, µ), (75)

for µ ∈ (0, 1] and all c . Considering that we have found the required particular
solution, we can write the known term in Eq. (75) as

R(c, µ) = (1− α)ψps(−a, c,−µ)− ψps(−a, c, µ). (76)

In regard to particular solutions, we note that for the thermal-creep problem the
particular solution given by Eq. (51) can also be used here. On the other hand,
we quote from Refs. [12,15,16] and express a particular solution for Poiseuille flow
as

ψps(τ, c, µ) = {c(ετ)2−c(εa)2−2B(c)ετµ+D(c)/5+E(c)(5µ2−1)/5}/(εεp). (77)

Here A(c) and B(c) are the solutions of the Chapman-Enskog equations for heat
conduction and viscosity and D(c) and E(c) are solutions of the so-called [12,18]
Burnett equations. More specifically D(c) is a solution of

ν(c)D(c)−
∫ ∞

0

e−c′2D(c′)k1(c′, c)c′
2 dc′ = 2cB(c)− 5cεp (78a)

subject to the normalization condition∫ ∞

0

e−c2
D(c)c3 dc = 0, (78b)

and E(c) is a solution of

ν(c)E(c)−
∫ ∞

0

e−c′2E(c′)k3(c′, c)c′
2 dc′ = 2cB(c). (79)

Here, as with Eqs. (9) and (10), k1(c′, c) and k3(c′, c) are component kernel
functions from the Pekeris theory [6,10,11].

Taking note of Eq. (73) and adding the subscripts P and T, respectively, we
find we can express the desired bulk velocity and heat-flow profiles in terms of the
final unknown ψ∗(τ, c, µ) ; first for Poiseuille flow we can write

uP(τ) =
ε

2εp
(τ2 − a2) +

1
π1/2

∫ ∞

0

∫ 1

−1

e−c2
ψ∗(τ, c, µ)c3(1− µ2) dµdc (80)
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and

qP(τ) =
4d5

15εεp
+

1
π1/2

∫ ∞

0

∫ 1

−1

e−c2
ψ∗(τ, c, µ)(c2 − 5/2)c3(1− µ2) dµdc. (81)

Here
d5 =

1
π1/2

∫ ∞

0

e−c2
D(c)c5 dc. (82)

The equivalent results for thermal-creep flow in a plane channel are

uT(τ) =
1

π1/2

∫ ∞

0

∫ 1

−1

e−c2
ψ∗(τ, c, µ)c3(1− µ2) dµdc (83)

and

qT(τ) = −5εt

4ε
+

1
π1/2

∫ ∞

0

∫ 1

−1

e−c2
ψ∗(τ, c, µ)(c2 − 5/2)c3(1− µ2) dµdc. (84)

Once the velocity and heat-flow profiles are established we can compute the flow
rates from

UP =
1

2a2

∫ a

−a

uP(τ) dτ and QP =
1

2a2

∫ a

−a

qP(τ) dτ, (85a,b)

for Poiseuille flow, and

UT =
1

2a2

∫ a

−a

uT(τ) dτ and QT =
1

2a2

∫ a

−a

qT(τ) dτ (86a,b)

for thermal-creep flow in a channel.

5. A polynomial representation

In Ref. [3] a polynomial expansion technique and an ADO (analytical discrete-
ordinates) method [4] were used to solve a version of the temperature-jump prob-
lem that was based on the linearized Boltzmann equation. Here, in regard to flow
problems, we must solve a balance equation that results from a projection of the
original Boltzmann equation that differs from that used for the temperature-jump
problem; however much of what was done in Ref. [3] can be used in this work.
And so we seek a solution of

[cµ
∂

∂τ
+ εν(c)]ψ∗(τ, c, µ) = ε

∫ ∞

0

∫ 1

−1

e−c′2ψ∗(τ, c′, µ′)k(c′, µ′ : c, µ)c′2 dµ′ dc′

(87)
that satisfies the boundary condition

ψ∗(τ∗, c, µ)− (1− α)ψ∗(τ∗, c,−µ) = R(c, µ) (88)

for µ ∈ (0, 1] and all c . Here R(c, µ) is considered a known quantity. To compact
our presentation we use τ∗ = 0 for half-space problems, whereas of flow in finite
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channels we take τ∗ = −a . In addition to a symmetry condition such as given in
Eqs. (59) and (67) for channel flow, we will require for half-space problems that
the solution ψ∗(τ, c, µ) be bounded as τ tends to infinity. The scattering kernel
k(c′, µ′ : c, µ) is given by Eq. (30), but we now make our first approximation: we
truncate Eq. (30) and write

k(c′, µ′ : c, µ) = (1− µ′2)
L∑

l=1

Πl(µ′)Πl(µ)kl(c′, c) (89)

where the polynomials Πl(µ) are defined by Eq. (31) and the component functions
kl(c′, c) are those of Pekeris [6]. At this point we approximate the required solution
by a representation in terms of Legendre polynomials, viz.

ψ∗(τ, c, µ) =
K∑

k=0

Pk(2e−c − 1)gk(τ, µ) (90)

where the functions gk(τ, µ) are to be determined. We now substitute Eq. (90)
into Eq. (87), multiply the resulting equation by

Wi(c) = c2e−c2
Pi(2e−c − 1), i = 0, 1, 2, ...,K, (91)

and integrate over all c to obtain the coupled system

µ
∂

∂τ
AG(τ, µ) + εSG(τ, µ) = ε

L∑
l=1

BlΠl(µ)
∫ 1

−1

(1− µ′2)Πl(µ′)G(τ, µ′) dµ′. (92)

Here the K +1 vector-valued function G(τ, µ) has components gk(τ, µ) and the
(K + 1)× (K + 1) constants are given by

A =
∫ ∞

0

e−c2
P T(c)P (c)c3 dc, (93)

S =
∫ ∞

0

e−c2
P T(c)P (c)ν(c)c2 dc (94)

and

Bl =
∫ ∞

0

∫ ∞

0

e−c′2e−c2
kl(c′, c)P T(c′)P (c)c′2c2 dc′ dc (95)

where the superscript T is used to denote the transpose operation, and where

P (c) =
[
P0(2e−c − 1), P1(2e−c − 1), · · · , PK(2e−c − 1)

]
. (96)

We note, since kl(c′, c) = kl(c, c′) , that the matrices Bl are symmetric. We note
also that a computation of the matrices listed as Eq. (95) will require some care
to do well; however, an evaluation of all the input matrices A , S and Bl can
be done once only and stored for later use. Some details of these initially required
computations will be given in a subsequent section of this work.
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Now in regard to the boundary condition subject to which we must solve
Eq. (92), we use Eq. (90) in Eq. (88) and then multiply the resulting equation
by Wi(c) and integrate over all c to obtain

F [G(τ∗, µ)− (1− α)G(τ∗,−µ)] = T (µ) (97)

for µ ∈ (0, 1] . Here the additional input constants are

F =
∫ ∞

0

e−c2
P T(c)P (c)c2 dc (98)

and
T (µ) =

∫ ∞

0

e−c2
P T(c)R(c, µ)c2 dc. (99)

And so, we now must solve Eq. (92) subject to the boundary condition given
as Eq. (97); however, in order to make use of a previously reported [19] ADO
solution of a multigroup neutron transport problem, we multiply Eq. (92) by A−1

and Eq. (97) by F−1 to obtain the final forms we solve, viz.

µ
∂

∂τ
G(τ, µ) + εΣG(τ, µ) = ε

L∑
l=1

ClΠl(µ)
∫ 1

−1

(1− µ′2)Πl(µ′)G(τ, µ′) dµ′ (100)

and
G(τ∗, µ)− (1− α)G(τ∗,−µ) = Q(µ) (101)

for µ ∈ (0, 1] . Here

Σ = A−1S, Cl = A−1Bl and Q(µ) = F−1T (µ). (102a,b,c)

And so now we continue by developing our analytical discrete-ordinates solution
of the transport problem defined by Eqs. (100) and (101).

6. An analytical discrete-ordinates solution

Since our discrete-ordinates solution of Eqs. (100) and (101) follows closely work
previously reported [3,19], we can be brief here. We begin by using a “half-range”
quadrature scheme to approximate the integral term in Eq. (100), and so we write

µ
∂

∂τ
G(τ, µ) + εΣG(τ, µ) = ε

L∑
l=1

Πl(µ)Cl

N∑
n=1

(1− µ2
n)wnGl,n(τ) (103)

where to compact our notation we have introduced

Gl,n(τ) = Πl(µn)[G(τ, µn) + (−1)lG(τ,−µn)] . (104)

Here the N quadrature points {µn} and the N weights {wn} are defined for
use on the integration interval [0, 1] . Equation (103) has separable exponential
solutions, so we use ν as a separation constant and substitute

G(τ, µ) = Φ(ν, µ)e−ετ/ν (105)
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into that equation to find

[
Σ− (µ/ν)I

]
Φ(ν, µ) =

L∑
l=1

Πl(µ)Cl

N∑
n=1

wn(1− µ2
n)Φl,n(ν) (106)

where I is the identity matrix and

Φl,n(ν) = Πl(µn)[Φ(ν, µn) + (−1)lΦ(ν,−µn)]. (107)

If we now evaluate Eq. (106) at µ = ±µi , for i = 1, 2, ..., N , then we can obtain

[
D − (1/ν)M

]
Φ+(ν) =

L∑
l=1

ΠlClGl(ν) (108)

and
[
D + (1/ν)M

]
Φ−(ν) =

L∑
l=1

(−1)lΠlClGl(ν) (109)

where
Φ+(ν) =

[
ΦT(ν, µ1), ΦT(ν, µ2), · · · , ΦT(ν, µN )

]T (110a)

and
Φ−(ν) =

[
ΦT(ν,−µ1), ΦT(ν,−µ2), · · · , ΦT(ν,−µN )

]T
. (110b)

In addition, we have used the J × J matrices

M = diag
{
µ1I, µ2I, ..., µNI

}
(111a)

and
D = diag

{
Σ,Σ, ...,Σ

}
(111b)

along with
Gl(ν) = ΠT

l W [Φ+(ν) + (−1)lΦ−(ν)]. (112)

Note that we have introduced the composite dimension J = N(K + 1) and that
here the matrix

W = diag
{
w1(1− µ2

1)I, w2(1− µ2
2)I, ..., wN (1− µ2

N )I
}

(113a)

is also J × J , while the matrices

Πl =
[
Πl(µ1)I, Πl(µ2)I, · · · ,Πl(µN )I

]T (113b)

are J × (K + 1) . We now let

U = Φ+(ν) + Φ−(ν) and V = Φ+(ν)−Φ−(ν) (114a,b)

so that we can take the sum and the difference of Eqs. (108) and (109) to obtain

EX =
1
ν

Y and HY =
1
ν

X (115a,b)
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where

E =
{
D −

L∑
l=1

ΠlCl[1 + (−1)l]ΠT
l W

}
M−1 , (116a)

H =
{
D −

L∑
l=1

ΠlCl[1− (−1)l]ΠT
l W

}
M−1 , (116b)

X = MU and Y = MV . (117a,b)

We can eliminate between Eqs. (117) to obtain the eigenvalue problems(
HE

)
X = λX and

(
EH

)
Y = λY (118a,b)

where λ = 1/ν2 . We note that the required separation constants {νj} are readily
available once we find the eigenvalues {λj} defined by either of Eqs. (118). We
choose to express our results in terms of the eigenvalues and eigenvectors defined
by Eq. (118a). Continuing, we let λj and X(λj) , for j = 1, 2, . . . , J , denote
the collection of eigenvalues and eigenvectors of Eq. (118a). The separation con-
stants we require clearly occur in plus-minus pairs, and so letting νj , for the
j = 1, 2, . . . , J , denote the reciprocal of the positive square root of λj , we can use
Eqs. (114), (115) and (117) to obtain

Φ+(νj) = (1/2)M−1
(
I + νjE

)
X(λj) (119a)

and
Φ−(νj) = (1/2)M−1

(
I − νjE

)
X(λj) (119b)

for j = 1, 2, . . . , J . We note that I in Eqs. (119) is the J × J identity matrix
and that

Φ+(−νj) = Φ−(νj) , (120)

and so at this point we have available all we require for defining our discrete-
ordinates solution to Eq. (100). We therefore write

G(τ,±µi) =
J∑

j=1

[
AjΦ(νj ,±µi)e−ε(τ−τ∗)/νj + BjΦ(νj ,∓µi)eε(τ+τ∗)/νj

]
, (121)

for i = 1, 2, ..., N . Here the arbitrary constants {Aj} and {Bj} are to be
determined by a boundary condition and (when appropriate) a symmetry condition
for a given problem, and to be clear we note that the quantities Φ(νj , µi) and
Φ(νj ,−µi) are to be taken from the components of Φ±(νj) that are available
from Eqs. (119).

Now, as was anticipated, we have observed in our numerical work that one of
the separation constants, say ν1 , tends to infinity as the order J of the eigenvalue
system is increased. And so our procedure is to ignore this separation constant
in Eq. (121) and to use instead two of the exact solutions available from, say,
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Ref. [16]. This means that we now write our discrete-ordinates version of Eq. (90)
as

ψ∗(τ, c,±µi) = A1c + B1[cετ ∓ µiB(c)] + P (c)G∗(τ,±µi) (122)

where P (c) is given by Eq. (96) and where

G∗(τ,±µi) =
J∑

j=2

[
AjΦ(νj ,±µi)e−ε(τ−τ∗)/νj + BjΦ(νj ,∓µi)eε(τ+τ∗)/νj

]
. (123)

To complete our solution we must determine the constants {Aj} and {Bj} from
a boundary condition and, when appropriate, a symmetry condition relevant to a
specific problem.

7. Solutions to the problems

Having developed our polynomial expansion technique and the analytical discrete-
ordinates method, we are now ready to solve the problems explicitly defined in
Section 4 of this work.

7.1. Kramers’ problem

Since we have a half-space problem, we must, in Eqs. (122) and (123), use τ∗ = 0
and set the coefficients {Bj} equal to zero. And so noting Eqs. (41) and (88), we
can write

R(c, µ) = (2/ε)(2− α)µB(c), (124)

and therefore we can determine the constants {Aj} from a system of linear alge-
braic equations we find from a form of Eq. (122) that has been modified to take
into account the fact that one of the exact solutions used in Eq. (122) remains in
our solution here. We write this linear system as

A1V 1 +
J∑

j=2

AjV (νj) = R (125)

where
V 1 = α

[
ET

1 ,ET
1 , ...,ET

1

]T (126)

and, for j = 2, 4, ...J ,

V (νj) =
[
ΓT

1 (νj),ΓT
2 (νj), ...,ΓT

N (νj)
]T

. (127)

Here
Γi(νj) = Φ(νj , µi)− (1− α)Φ(νj ,−µi) (128)

and
R =

[
QT(µ1),QT(µ2), ...,QT(µN )

]T (129)
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where Q(µ) is given by Eqs. (99), (102c) and (124). In addition

E1 = F−1P T
1 (130)

where, in general,

P n =
∫ ∞

0

e−c2
P (c)cn+2 dc. (131)

Once we have solved the linear system given as Eq. (125) we can use Eq. (122) in
Eqs. (42) and (43) to obtain the bulk velocity and heat-flow profiles for Kramers’
problem; we find, after adding the subscript P and introducing the normalization
K = 1 ,

uP(τ) = τ + ζP +
J∑

j=2

AjNje−ετ/νj (132)

and

qP(τ) =
J∑

j=2

AjMje−ετ/νj (133)

where
Nj = π−1/2P 1N(νj) (134a)

and
Mj = π−1/2[P 3 − (5/2)P 1]N(νj). (134b)

Here

N(νj) =
N∑

n=1

wn(1− µ2
n)[Φ(νj , µn) + Φ(νj ,−µn)]. (135)

To complete our discussion of Kramers’ problem, we note that

ζP = A1/2 (136)

is the viscous-slip coefficient.

7.2. The half-space thermal-creep problem

As for Kramers’ problem we must, in Eqs. (122) and (123), use τ∗ = 0 and set
the coefficients {Bj} equal to zero. And so, noting that for this problem (with
the normalization kT = 1 )

R(c, µ) = (α/ε)A(c), (137)

we can determine the constants {Aj} by solving a linear system that uses Eq. (137)
instead of Eq. (124) to define the right-hand side of Eq. (125). Once we have solved
the linear system we can use Eq. (122) in Eqs. (53) and (54) to obtain the bulk
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velocity and heat-flow profiles for the half-space thermal-creep problem; we find,
after adding the subscript T,

uT(τ) = ζT +
J∑

j=2

AjNje−ετ/νj (138)

and

qT(τ) = −5εt

4ε
+

J∑
j=2

AjMje−ετ/νj (139)

where we continue to make use of Eqs. (134) and (135). Here

ζT = A1/2 (140)

is the thermal-slip coefficient.

7.3. Couette flow

For this problem the flow is not driven by a inhomogeneous driving term in Eq. (1),
and so we can construct our solution directly from Eqs. (122) and (123). Noting the
(anti) symmetry condition listed as Eq. (59) and the fact the channel is defined by
τ ∈ [−a, a] , we see that, in regard to Eqs. (122) and (123), we can take τ∗ = −a ,
A1 = 0 , and Aj = −Bj for j = 2, 3, ..., J . And so we express the solution we
seek as

ψ(τ, c,±µi) = B1[cετ ∓ µiB(c)] + P (c)G∗(τ,±µi) (141)

where now

G∗(τ,±µi) =
J∑

j=2

Bj

[
Φ(νj ,∓µi)e−ε(a−τ)/νj −Φ(νj ,±µi)e−ε(a+τ)/νj

]
. (142)

We have seen that ψ(τ, c, µ) should satisfy the boundary condition

ψ(−a, c, µ)− (1− α)ψ(−a, c,−µ) = 2αcup (143)

for µ ∈ (0, 1] and all c , and so we can substitute Eqs. (141) and (142) into
Eq. (143) to find, after a projection against the functions listed in Eq. (91),

B1V 1 +
J∑

j=2

BjV (νj) = R (144)

where now, instead of Eq. (126), we

V 1 = −εaα
[
ET

1 ,ET
1 , ...,ET

1

]T − (2− α)
[
µ1B

T, µ2B
T, ..., µNBT

]T
, (145)

and, instead of Eq. (128), we have

Γi(νj) = [1− α + e−2εa/νj ]Φ(νj ,−µi)− [1 + (1− α)e−2εa/νj ]Φ(νj , µi). (146)
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In addition we also have replaced Eq. (129) with

R = 2αup

[
ET

1 ,ET
1 , ...,ET

1

]T
, (147)

and finally

B = F−1

∫ ∞

0

e−c2
P T(c)B(c)c2 dc. (148)

Once we have solved the linear system listed as Eq. (144) to obtain the constants
{Bj} , we can evaluate the desired quantities from Eqs. (24–26) and Eqs. (60) and
(61). In this way we find

u(τ) =
ετ

2
B1 +

J∑
j=2

BjNj [e−ε(a−τ)/νj − e−ε(a+τ)/νj ], (149)

q(τ) =
J∑

j=2

BjMj [e−ε(a−τ)/νj − e−ε(a+τ)/νj ], (150)

Pxy = −(1/4)εpB1, (151)

U =
ε

8
B1 +

1
2εa2

J∑
j=2

BjνjNj(1− e−εa/νj )2 (152)

and

Q =
1

2εa2

J∑
j=2

BjνjMj(1− e−εa/νj )2 (153)

where we continue to make use of Eqs. (134) and (135).

7.4. Poiseuille and thermal-creep flow in a channel

For these two problems the flow is driven by an inhomogeneous driving term in
Eq. (1), and so, as already discussed, we require a particular solution as well
as ψ∗(τ, c, µ) , which we can construct from Eqs. (122) and (123). Noting the
symmetry condition listed as Eq. (67) and the fact the channel is defined by
τ ∈ [−a, a] , we see that, in regard to Eqs. (122) and (123), we can take τ∗ = −a ,
B1 = 0 , and Bj = Aj for j = 2, 3, ..., J . And so we write

ψ∗(τ, c,±µi) = A1c + P (c)G∗(τ,±µi) (154)

where now

G∗(τ,±µi) =
J∑

j=2

Aj

[
Φ(νj ,±µi)e−ε(a+τ)/νj + Φ(νj ,∓µi)e−ε(a−τ)/νj

]
. (155)
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From Eqs. (75) and (76) we see that ψ∗(τ, c, µ) should satisfy the boundary con-
dition listed as Eq. (88) where

R(c, µ) = −[2a(2− α)/εp]µB(c)− α[D(c) + E(c)(5µ2 − 1)]/(5εεp) (156a)

for Poiseuille flow ( kP = 1 and kT = 0 ) and

R(c, µ) = (α/ε)A(c) (156b)

for thermal-creep flow ( kP = 0 and kT = 1 ). To find the constants {Aj} , we
substitute Eqs. (154) and (155) into Eq. (88) to find, after a projection against
the functions listed in Eq. (91),

A1V 1 +
J∑

j=2

AjV (νj) = R (157)

where (again)
V 1 = α

[
ET

1 ,ET
1 , ...,ET

1

]T (158)

and, for j = 2, 4, ...J ,

V (νj) =
[
ΓT

1 (νj),ΓT
2 (νj), ...,ΓT

N (νj)
]T

. (159)

Now, instead of Eq. (128) or Eq. (146), we find

Γi(νj) = [1− (1− α)e−2εa/νj ]Φ(νj , µi)− [1− α− e−2εa/νj ]Φ(νj ,−µi). (160)

Finally,
R =

[
QT(µ1),QT(µ2), ...,QT(µN )

]T (161)

where Q(µ) is defined, for the two problems, by using each of Eqs. (156) in
Eqs. (99) and (102c).

Once we have solved the linear system given as Eq. (157) we can use Eq. (154)
in Eqs. (80), (81)and (85) to obtain the desired results for the case of Poiseuille
flow, viz.

uP(τ) =
ε

2εp
(τ2 − a2) +

1
2
A1 +

J∑
j=2

AjNj [e−ε(a+τ)/νj + e−ε(a−τ)/νj ], (162)

qP(τ) =
4d5

15εεp
+

J∑
j=2

AjMj [e−ε(a+τ)/νj + e−ε(a−τ)/νj ], (163)

UP(τ) = − aε

3εp
+

1
2a

A1 +
1

εa2

J∑
j=2

AjνjNj(1− e−2εa/νj ) (164)

and

QP(τ) =
4d5

15aεεp
+

1
εa2

J∑
j=2

AjνjMj(1− e−2εa/νj ) (165)
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where d5 , Nj and Mj are as given by Eqs. (82), (134) and (135). The equivalent
results for thermal-creep flow in a channel are

uT(τ) =
1
2
A1 +

J∑
j=2

AjNj [e−ε(a+τ)/νj + e−ε(a−τ)/νj ], (166)

qT(τ) = −5εt

4ε
+

J∑
j=2

AjMj [e−ε(a+τ)/νj + e−ε(a−τ)/νj ], (167)

UT(τ) =
1
2a

A1 +
1

εa2

J∑
j=2

AjνjNj(1− e−2εa/νj ) (168)

and

QT(τ) = − 5εt

4aε
+

1
εa2

J∑
j=2

AjνjMj(1− e−2εa/νj ). (169)

As our solutions for the five considered flow problems, all based on the linearized
Boltzmann equation for rigid-sphere interactions, are established, we are ready to
evaluate them for some data cases of interest.

8. Numerical results

Our solutions of the five flow problems, Kramers, half-space thermal creep, Cou-
ette, Poiseuille and thermal-creep flow in a finite channel, as based on the linearized
Boltzmann equation for rigid-sphere interactions, involve various analytical and
numerical approximations which must be mentioned. First of all, the infinite se-
ries in Eq. (30) has been truncated terms so as to yield the representation given by
Eq. (89). To date, we have used at most L = 8 in the expansion. The Maple soft-
ware package was used to obtain analytical expressions for the component kernels;
however, because we observed some loss of accuracy when using these analytical
expressions, we have included in our computation some asymptotic expansions
for small values of c′ , when c′ < c . Our next approximation is illustrated by
Eq. (90) where K + 1 terms in a polynomial expansion was used to model the
speed dependence (the c variable) of our solution. Then after a projection against
the functions listed in Eq. (91), we obtained the coupled system of transport equa-
tions and boundary conditions listed as Eqs. (100) and (101). At this point we
have introduced our analytical discrete-ordinates method by approximating the
integral term in Eq. (100) by an N -point half-range quadrature scheme, viz. a
standard Gauss-Legendre scheme mapped onto the interval [0,1]. Finally we have
evaluated all the input parameters, for example Eqs. (93–95), by mapping an M -
point Gauss-Legendre quadrature scheme onto the positive real axis. And so in
this work we have four approximation parameters: {L,M,K,N} . In regard to
linear algebra, we have used the driver program RG from the EISPACK collection
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Table 1. Viscous-slip ( ε = εp ) and thermal-slip ( ε = εt ) coefficients

ζP ζT

α CES LBE CES LBE

0.1 1.704462(1) 1.70478(1) 2.671726(–1) 2.65765(–1)
0.2 8.169615 8.17248 2.770231(–1) 2.74450(–1)
0.3 5.203049 5.20563 2.864184(–1) 2.82900(–1)
0.4 3.713778 3.71609 2.953902(–1) 2.91124(–1)
0.5 2.815562 2.81761 3.039673(–1) 2.99133(–1)
0.6 2.212984 2.21478 3.121761(–1) 3.06938(–1)
0.7 1.779429 1.78098 3.200405(–1) 3.14547(–1)
0.8 1.451586 1.45292 3.275826(–1) 3.21968(–1)
0.9 1.194279 1.19540 3.348226(–1) 3.29210(–1)
1.0 9.864009(–1) 9.87328(–1) 3.417790(–1) 3.36280(–1)

Table 2. The velocity profile uP(τ) for Kramers’ problem ( ε = εp )

τ α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9 α = 1

0.0 1.6472(1) 4.7032 2.3851 1.4150 8.9295(–1) 7.1553(–1)
0.1 1.6771(1) 4.9753 2.6322 1.6386 1.0943 9.0630(–1)
0.2 1.6956(1) 5.1494 2.7960 1.7925 1.2389 1.0463
0.3 1.7111(1) 5.2982 2.9380 1.9282 1.3684 1.1729
0.4 1.7252(1) 5.4336 3.0686 2.0541 1.4899 1.2922
0.5 1.7383(1) 5.5606 3.1920 2.1740 1.6064 1.4071
0.6 1.7507(1) 5.6821 3.3105 2.2898 1.7195 1.5189
0.7 1.7627(1) 5.7994 3.4255 2.4025 1.8301 1.6284
0.8 1.7743(1) 5.9137 3.5379 2.5130 1.9388 1.7363
0.9 1.7857(1) 6.0256 3.6482 2.6218 2.0461 1.8429
1.0 1.7968(1) 6.1356 3.7568 2.7292 2.1523 1.9484
2.0 1.9023(1) 7.1839 4.7987 3.7649 3.1820 2.9752

[20] to solve our eigenvalue/eigenvector problem and packages from the LINPACK
collection [21] to solve our linear systems. We note, in regard to Eq. (118a) and
the fact that ν = 1/λ1/2 , that we have not encountered any complex separation
constants ( νj , j = 2, 4, ..., J ) for the solution parameters used to date.

We list in Tables 1–5 our results for some typical half-space cases using

ε = εp = 0.449027806... (170a)

for Kramers’ problem, and

ε = εt = 0.679630049... (170b)

for the half-space thermal-creep problem, to define mean-free paths based, respec-
tively, on viscosity and on thermal conductivity. In Tables 6–9 we report our
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Table 3. The heat-flow profile qP(τ) for Kramers’ problem ( ε = εp )

τ α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9 α = 1

0.0 2.3959(–1) 2.0559(–1) 1.7417(–1) 1.4509(–1) 1.1813(–1) 1.0538(–1)
0.1 1.9023(–1) 1.6449(–1) 1.4042(–1) 1.1786(–1) 9.6680(–2) 8.6568(–2)
0.2 1.6365(–1) 1.4191(–1) 1.2148(–1) 1.0225(–1) 8.4101(–2) 7.5405(–2)
0.3 1.4360(–1) 1.2475(–1) 1.0699(–1) 9.0207(–2) 7.4326(–2) 6.6698(–2)
0.4 1.2735(–1) 1.1079(–1) 9.5136(–2) 8.0318(–2) 6.6261(–2) 5.9497(–2)
0.5 1.1373(–1) 9.9035(–2) 8.5131(–2) 7.1943(–2) 5.9409(–2) 5.3370(–2)
0.6 1.0206(–1) 8.8948(–2) 7.6523(–2) 6.4720(–2) 5.3487(–2) 4.8068(–2)
0.7 9.1923(–2) 8.0173(–2) 6.9021(–2) 5.8415(–2) 4.8307(–2) 4.3427(–2)
0.8 8.3039(–2) 7.2468(–2) 6.2424(–2) 5.2862(–2) 4.3739(–2) 3.9331(–2)
0.9 7.5193(–2) 6.5655(–2) 5.6584(–2) 4.7939(–2) 3.9685(–2) 3.5694(–2)
1.0 6.8224(–2) 5.9596(–2) 5.1385(–2) 4.3553(–2) 3.6069(–2) 3.2448(–2)
2.0 2.7542(–2) 2.4123(–2) 2.0852(–2) 1.7718(–2) 1.4709(–2) 1.3248(–2)

Table 4. The velocity profile uT(τ) for the half-space thermal-creep problem ( ε = εt )

τ α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9 α = 1

0.0 2.3877(–1) 2.0477(–1) 1.7337(–1) 1.4432(–1) 1.1741(–1) 1.0469(–1)
0.1 2.4634(–1) 2.2627(–1) 2.0732(–1) 1.8938(–1) 1.7238(–1) 1.6421(–1)
0.2 2.5011(–1) 2.3715(–1) 2.2478(–1) 2.1296(–1) 2.0163(–1) 1.9614(–1)
0.3 2.5279(–1) 2.4491(–1) 2.3731(–1) 2.2996(–1) 2.2283(–1) 2.1935(–1)
0.4 2.5484(–1) 2.5089(–1) 2.4699(–1) 2.4313(–1) 2.3931(–1) 2.3742(–1)
0.5 2.5648(–1) 2.5567(–1) 2.5474(–1) 2.5369(–1) 2.5256(–1) 2.5196(–1)
0.6 2.5782(–1) 2.5957(–1) 2.6108(–1) 2.6236(–1) 2.6344(–1) 2.6391(–1)
0.7 2.5892(–1) 2.6282(–1) 2.6636(–1) 2.6958(–1) 2.7250(–1) 2.7387(–1)
0.8 2.5985(–1) 2.6554(–1) 2.7079(–1) 2.7564(–1) 2.8013(–1) 2.8225(–1)
0.9 2.6064(–1) 2.6784(–1) 2.7454(–1) 2.8078(–1) 2.8660(–1) 2.8937(–1)
1.0 2.6131(–1) 2.6981(–1) 2.7774(–1) 2.8516(–1) 2.9212(–1) 2.9544(–1)
2.0 2.6456(–1) 2.7935(–1) 2.9333(–1) 3.0657(–1) 3.1912(–1) 3.2517(–1)

results, all based on using ε = εp , for Couette flow, and Tables 10–14 are devoted
to Poiseuille flow and thermal-creep flow in a plane channel. Note that here we
use ε = εp for both Poiseuille flow and thermal-creep flow. While we believe
our results to be correct to within one unit in last digit given, we have no proof
of the accuracy. However, we have found our solution to be stable with regard
to changes in the approximation parameters {L,M,K,N} . Although we have
made no special effort to find the minimum values of {L,M,K,N} to achieve a
given accuracy, we have typically used the values {8, 200, 40, 30} . In addition to
the fact that our solution appears to be stable with respect to the approximation
parameters, we have looked at the special cases of (i) the BGK model and (ii)
the CES model. Results for these two models were obtained simply by replacing
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Table 5. The heat-flow profile −qT(τ) for the half-space thermal-creep problem
( ε = εt )

τ α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9 α = 1

0.0 1.1662 1.0071 8.5846(–1) 7.1946(–1) 5.8921(–1) 5.2713(–1)
0.1 1.1930 1.0838 9.8034(–1) 8.8227(–1) 7.8910(–1) 7.4422(–1)
0.2 1.2056 1.1202 1.0390 9.6162(–1) 8.8780(–1) 8.5212(–1)
0.3 1.2141 1.1450 1.0791 1.0162 9.5599(–1) 9.2683(–1)
0.4 1.2205 1.1635 1.1090 1.0569 1.0070 9.8276(–1)
0.5 1.2254 1.1778 1.1322 1.0886 1.0467 1.0264
0.6 1.2293 1.1891 1.1507 1.1139 1.0784 1.0612
0.7 1.2324 1.1984 1.1657 1.1344 1.1042 1.0896
0.8 1.2350 1.2059 1.1781 1.1513 1.1255 1.1129
0.9 1.2371 1.2122 1.1883 1.1653 1.1432 1.1324
1.0 1.2389 1.2175 1.1969 1.1771 1.1580 1.1487
2.0 1.2472 1.2418 1.2365 1.2315 1.2266 1.2242

Table 6. Couette flow with up = 1 : a component Pxy of the reduced pressure tensor
( ε = εp )

α = 0.1 α = 1.0

2a CES LBE CES LBE

1.0(–7) 2.96942(–2) 2.96942(–2) 5.64190(–1) 5.64190(–1)
1.0(–3) 2.96926(–2) 2.96927(–2) 5.63636(–1) 5.63647(–1)
1.0(–1) 2.95505(–2) 2.95533(–2) 5.20156(–1) 5.20868(–1)
1.0 2.85847(–2) 2.85927(–2) 3.39977(–1) 3.40502(–1)
1.0(1) 2.26813(–2) 2.26781(–2) 8.35227(–2) 8.35098(–2)
1.0(3) 9.67035(–4) 9.67029(–4) 9.98031(–4) 9.98029(–4)
1.0(7) 9.99997(–8) 9.99997(–8) 1.00000(–7) 1.00000(–7)

the true component kernels (and the collision frequency for the case of the BGK
model) by relevant model kernel functions ( L =1 for BGK and L =2 for CES). In
this way we were able to confirm to many figures of accuracy previously reported
[14,15,22,23] results.

Continuing, we note that Wakabayashi, Ohwada and Golse [24] have reported
the viscous and thermal-slip coefficients as deduced from a strictly numerical so-
lution of the linearized Boltzmann equation for rigid-sphere collisions. As is not
unusual in the field of rarefied gas dynamics, some care must be taken in com-
paring results from different works; Ref. [24], for example, uses a mean-free path
based on

ε = 21/2/4 (171)

while we use either ε = εp or ε = εt . However, after a change of mean-free
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Table 7. Couette flow ( ε = εp ) with up = 1 : the flow rate −U

α = 0.1 α = 1.0

2a CES LBE CES LBE

0.10 5.4108(–2) 5.3191(–2) 7.4199(–1) 7.2929(–1)
1.00 2.3125(–2) 2.3115(–2) 2.2678(–1) 2.2737(–1)
10.0 1.1556(–2) 1.1584(–2) 4.2142(–2) 4.2192(–2)

Table 8. Couette flow ( ε = εp ) with up = 1 : the heat-flow rate Q

α = 0.1 α = 1.0

2a CES LBE CES LBE

0.10 1.1294(–2) 9.3667(–3) 1.4479(–1) 1.1892(–1)
1.00 4.3490(–3) 3.2993(–3) 2.6986(–2) 2.2451(–2)
10.0 1.7913(–4) 1.7731(–4) 2.8598(–4) 3.0697(–4)

paths, we find that we have good, though not perfect, agreement with Ref. [24].
For example, Wakabayashi, Ohwada and Golse report from 4 to 6 figures of data
in their tabulations of the slip coefficients, and we agree to four significant figures.
We also agree well with the velocity and heat-flow profiles available in Ref. [24].
We also have seen that we agree well with the results reported by Sone, Takata
and Ohwada [25] for the problem of Couette flow. Again, since a different mean-
free path and (slightly) different definitions are used by by Sone et al., some care

Table 9. Couette flow ( ε = εp ) with up = 1 : velocity and heat-flow profiles for the
case 2a = 1

α = 0.1 α = 1.0

τ/a −u(τ) q(τ) −u(τ) q(τ)

0.0 0.0 0.0 0.0 0.0
0.1 4.2247(–3) 5.7604(–4) 4.3188(–2) 4.0656(–3)
0.2 8.4806(–3) 1.1590(–3) 8.6559(–2) 8.1681(–3)
0.3 1.2802(–2) 1.7563(–3) 1.3031(–1) 1.2347(–2)
0.4 1.7229(–2) 2.3767(–3) 1.7469(–1) 1.6648(–2)
0.5 2.1814(–2) 3.0311(–3) 2.1998(–1) 2.1125(–2)
0.6 2.6632(–2) 3.7347(–3) 2.6662(–1) 2.5855(–2)
0.7 3.1799(–2) 4.5105(–3) 3.1525(–1) 3.0946(–2)
0.8 3.7525(–2) 5.3996(–3) 3.6704(–1) 3.6587(–2)
0.9 4.4293(–2) 6.4950(–3) 4.2461(–1) 4.3192(–2)
1.0 5.4771(–2) 8.3205(–3) 5.0206(–1) 5.2963(–2)



Vol. 54 (2003) The linearized Boltzmann equation 299

Table 10. Poiseuille and thermal creep ( ε = εp ): comparison results for the case
α = 0.1

−UP QP = UT −QT

2a CES LBE CES LBE CES LBE

0.10 1.9984(1) 2.0243(1) 4.1416 4.1701 2.0437(1) 2.0650(1)
1.00 1.7522(1) 1.7564(1) 7.1489(–1) 7.1258(–1) 3.4555 3.4557
10.0 1.8737(1) 1.8743(1) 7.9621(–2) 7.9140(–2) 3.7492(–1) 3.7488(–1)

Table 11. Poiseuille and thermal creep ( ε = εp ): comparison results for the case
α = 0.5

−UP QP = UT −QT

2a CES LBE CES LBE CES LBE

0.10 4.3156 4.3868 1.5426 1.5680 7.6317 7.7797
1.00 3.2959 3.3264 5.3760(–1) 5.2876(–1) 2.5170 2.5138
10.0 4.5285 4.5346 8.6266(–2) 8.4299(–2) 3.6251(–1) 3.6167(–1)

must be exercised in comparing the results of Ref.[25] with the results given in
this work.

In regard to Poiseuille flow and thermal-creep flow in a plane channel, we have
found two references to be especially helpful: the first [26] by Ohwada, Sone and
Aoki considers only the case of diffuse reflection ( α = 1 ), while Loyalka and Hickey
[27] allow in their analysis general values of the accommodation coefficient. We
find it easier to compare our numerical results with those of Ref. [27] since Loyalka
and Hickey use the same definitions and units as used in this work; however, we
find numerical agreement with Ref. [27] that at best is four significant figures, but
for some results we have only two figures of agreement. Our comparisons with
Ref. [26] seem better. While we have not evaluated all of the results reported by
Ohwada, Sone and Aoki [26], we typically find three to four figures of agreement
with their tabulations and qualitative agreement with the results reported [26] in
graphical form.

Table 12. Poiseuille and thermal creep ( ε = εp ): comparison results for the case α = 1

−UP QP = UT −QT

2a CES LBE CES LBE CES LBE

0.10 1.9259 1.9499 7.9087(–1) 7.9928(–1) 3.8509 3.9037
1.00 1.4863 1.5067 4.0456(–1) 3.8908(–1) 1.8018 1.7830
10.0 2.7220 2.7296 9.3046(–2) 8.9950(–2) 3.4964(–1) 3.4674(–1)
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Table 13. Poiseuille flow ( ε = εp ): velocity and heat-flow profiles for the case 2a = 1

α = 0.1 α = 0.5 α = 1.0

τ/a −uP(τ) qP(τ) −uP(τ) qP(τ) −uP(τ) qP(τ)

0.0 8.8693 3.7272(–1) 1.7574 2.8922(–1) 8.5378(–1) 2.2669(–1)
0.1 8.8671 3.7231(–1) 1.7549 2.8860(–1) 8.5117(–1) 2.2590(–1)
0.2 8.8602 3.7106(–1) 1.7475 2.8673(–1) 8.4327(–1) 2.2348(–1)
0.3 8.8486 3.6895(–1) 1.7350 2.8355(–1) 8.2994(–1) 2.1938(–1)
0.4 8.8320 3.6592(–1) 1.7172 2.7899(–1) 8.1090(–1) 2.1348(–1)
0.5 8.8101 3.6188(–1) 1.6936 2.7288(–1) 7.8568(–1) 2.0559(–1)
0.6 8.7822 3.5667(–1) 1.6635 2.6501(–1) 7.5357(–1) 1.9539(–1)
0.7 8.7473 3.5006(–1) 1.6258 2.5499(–1) 7.1335(–1) 1.8239(–1)
0.8 8.7035 3.4160(–1) 1.5785 2.4212(–1) 6.6281(–1) 1.6567(–1)
0.9 8.6461 3.3022(–1) 1.5167 2.2482(–1) 5.9696(–1) 1.4322(–1)
1.0 8.5499 3.1004(–1) 1.4143 1.9460(–1) 4.8979(–1) 1.0463(–1)

Table 14. Thermal-creep flow ( ε = εp ): velocity and heat-flow profiles for the case
2a = 1

α = 0.1 α = 0.5 α = 1.0

τ/a uT(τ) −qT(τ) uT(τ) −qT(τ) uT(τ) −qT(τ)

0.0 3.6061(–1) 1.7429 2.8169(–1) 1.3193 2.2268(–1) 9.9636(–1)
0.1 3.6050(–1) 1.7425 2.8126(–1) 1.3178 2.2199(–1) 9.9383(–1)
0.2 3.6018(–1) 1.7414 2.7996(–1) 1.3132 2.1987(–1) 9.8616(–1)
0.3 3.5963(–1) 1.7395 2.7775(–1) 1.3054 2.1629(–1) 9.7312(–1)
0.4 3.5883(–1) 1.7368 2.7457(–1) 1.2942 2.1113(–1) 9.5425(–1)
0.5 3.5777(–1) 1.7332 2.7032(–1) 1.2790 2.0422(–1) 9.2884(–1)
0.6 3.5640(–1) 1.7284 2.6484(–1) 1.2593 1.9530(–1) 8.9575(–1)
0.7 3.5466(–1) 1.7223 2.5785(–1) 1.2340 1.8391(–1) 8.5313(–1)
0.8 3.5242(–1) 1.7144 2.4886(–1) 1.2011 1.6927(–1) 7.9763(–1)
0.9 3.4941(–1) 1.7036 2.3677(–1) 1.1561 1.4960(–1) 7.2182(–1)
1.0 3.4411(–1) 1.6844 2.1573(–1) 1.0763 1.1581(–1) 5.8837(–1)

While we have some confidence in our numerical results, there can be some
doubt: the use of a maximum value of L = 8 could be a source of error. We
can emphasize (again) that computing the component kernels kn(c′, c) accurately
is no simple task especially as n increases. This too could be a source of error
in our final results. On the other hand the approximations used in Eq. (90),
the projections defined by Eq. (91) and the analytical discrete-ordinates are all
considered exceptionally good procedures for the considered problems.

To conclude this section we give some idea about the computation time required
for our FORTRAN implementations of our solutions. It should be noted that no
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special effort was made to “tune” the codes for speed and that no optimization
options were used. While some problems are numerically more difficult than others,
we note that our implementation (that uses our subroutines for the Chapman-
Enskog and Burnett functions) of the solution of the Poiseuille-flow problem for
the case 2a = 1 required 26 seconds of CPU time on a 1.2 GHz mobile Pentium
III, without using any stored data and based on the approximating parameters
{8, 200, 20, 10} , to find the velocity and heat-flow profiles and the flow rates for
10 values of the accommodation coefficient. Using stored input data, we found,
for this case, that the code required less than 2 seconds on the same machine. We
found from this timing example results that agree to within one or two units in
the last place of the five figures reported in our tables.

9. Concluding comments

We have used a new polynomial expansion technique and the Pekeris [6] expanded
form of the scattering kernel basic to the linearized Boltzmann equation for rigid-
sphere collisions to define a system of coupled transport problems that has been
solved efficiently and accurately with a modern version [4] of the discrete-ordinates
method usually associated with Chandrasekhar [5] and the field of radiative trans-
fer. While there exist other basic works [24-27] that report numerical results for
the five flow problems solved is this work, we are of the opinion that our (nearly)
analytical solutions are more efficient in regard to accuracy and computer-time re-
quirements than the older, strictly numerical solutions. In addition, we note that
only a modest effort should be required to extend the work reported here so as to
include the Cercignani-Lampis boundary condition recently implemented [23,28–
30] for some model equations. Finally, we are of the opinion that to solve the
considered flow problems and to have a FORTRAN implementation that yields
four or five significant figures of accuracy in less than 2 seconds seems a good
contribution to the general field of rarefied gas dynamics.
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