PHYSICS OF FLUIDS VOLUME 15, NUMBER 6 JUNE 2003

Viscous-slip, thermal-slip, and temperature-jump coefficients
as defined by the linearized Boltzmann equation
and the Cercignani—Lampis boundary condition
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A polynomial expansion procedure and an analytical discrete-ordinates method are used to evaluate
the viscous-slip coefficient, the thermal-slip coefficient, and the temperature-jump coefficient as
defined by a rigorous version of the linearized Boltzmann equation for rigid-sphere interactions and
the Cercignani—Lampis boundary condition. ZD03 American Institute of Physics.
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I. INTRODUCTION problem, the half-space problem of thermal creep, and the
temperature-jump problem. We note that all the previous

While essentially all of the definitive numerical work in works'~® that include the CL boundary condition are based
rarefied gas dynamics is based on the use of the classicgh low-level model equations, and so here, for the first time,
Maxwell gas-surface interaction laucharacterized by a we are able to include this boundary condition with a rigor-

single accommodation coefficigntthere are some recent ous form of the linearized Boltzmann equation for rigid-
works'~® that make use of two accommodation coefficientssphere interactions.

a; anda,, and the Cercignani—Lamgi§gas-surface interac-
tion law as an attempt to model better the effects of a boundy; " -\ Fp Al MATHEMATICAL FORMULATION
ing surface on the particle distribution function within the
gas. In contrast to the Maxwell boundary condition which  To start this work, we follow Pekeri&and consider the
has the unique accommodation coefficienfor all physical linearized Boltzmann equation written in termshdfr,c), a
properties, the Cercignani—Lampi€L) conditior?’ allows  perturbation to the velocity distribution function, for rigid-
us to distinguish the accommodation of different propertiessphere collisions as
Physically, the quantityy, is the accommodation coefficient J
of the tangential momentum, while the other quantity S(¢c)+cu—h(r,c)=eL{h}(7,c), (1)
describes the accommodation of the kinetic energy corre- ot
sponding to the normal velocity. Since the CL boundary conwhere
dition is based on the two mentioned accommodation coef- e 1 om
ficients, the use of this boundary condition yields the | fh}(7c)=— ,,(C)h(T,C)Jrf f f efc’zh(T,Cr)
possibility of including better physics in the study of the oJ-1Jo
basic problems of rarefied gas dynamics. In this work we T S
report numerical results for the viscous-slip coefficient, the xK(ceje™ dy” du' dc”. @
thermal-slip coefficient, and the temperature-jump coeffi-Here the scattering kernel is written in the expandedk-
cient as defined by the linearized Boltzmann equation foeris) form, viz.,
rigid-sphere interactions and the Cercignani—Lampis bound- 1 2"
ary condition. K(c:0=7— 2 X (2n+1)(2— 8omPR(1')

In two recent work®® a recently introduced polynomial 47 =0 m=0 '
expansion techniquéelevant to the speed variabland an
analytical discrete-ordinates mettiBdhat has evolved from
Chandrasekhar’s wotk in radiative transfer were used to where theP'(x) are thenormalizedLegendre functions. In
solve the classical temperature-jump problem and a collecaddition,
tion of basic flow problems all based on a rigorous form of 2 ap
the linearized Boltzmann equation for rigid-sphere interac- #=0ghom 1, @)
tions. While the two mentioned works definéde believe  wherel is (at this poin} an unspecified mean-free patt, is
an improved standard of computational work in rarefied gashe density, andr is the scattering diameter of the gas par-
dynamics, the problems solved in those works were all baseticles. In this work, the spatial variableis measured in units
on the Maxwell gas-surface interaction law. And so here weof the mean-free pathandc(2kT,/m)? is the magnitude
report the additional work that is required to include the CLof the particle velocity. Alsok is the Boltzmann constant)
boundary condition in our analysis for the three most basids the mass of a gas particle aifig is a reference tempera-
half-space problems in rarefied gas dynamics: Kramerdure. It should be noted that we have included in BEg.an

X PR (u)kn(c’,c)cosm(x’' —x), (3
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inhomogeneous driving ter®(c) that we will specify, along (7=0). Since we are expressing the velocity vector in
with an appropriate definition of the perturbatibfr,c), for ~ spherical coordinates, we note, in regard to &g, that

the half-space problem of thermal creep. We note that the

functionsk,(c’,c) in Eq. (3) are the components in an ex- h(m.0)=h(r.C.u.x), (12
pansion of the scattering latfor rigid-sphere collisionsre-  and so we express the boundary condition at the wall as
ported by Pekeri€ and

2c2+1fc

0

o (1 (27
2 2 h(OaCaMyX):f f f h(O,C’,_/»L,,X,)
e dxt+e ° (5) oJoJo

v(c)=
. . _ _ XR(c’:c)c’'? dy’ du' dc’ (13
is the collision frequency. We use spherical coordinates
(c,arccosu, x) to define thedimensionlessvelocity vector ~ for ne(0,1], ce[0) and all y. For the case of the
C. CL boundary condition we let(x)=(1—x%)?, consider
Following Pekeris? Pekeris and Altermdn discussed a@ne[0,1] with ;[0,2], and write
the coefficients of viscosity and heat conduction and used the ;o

kernel functions ky(c’,c) and k,(c’,c) to define the R(c':c)= S(c’,u'ic,u)T(c:0)Eq(C p" Cy ),
Chapman-Enskog integral equations for viscosity and heat n 14
conduction. We write these equations here as (14
o , wherea= a4(2— a),
v(c)B(c)—f e ¢ “B(c/)ko(c’,c)c’? dc’ =c? (6) .
0 S(c’,u':c,m)=1o[2(1~an)cc up'lay]
and X Ez(C,,,lLI:C,,LL) (15)
v(c)A(c)—je‘C'zA(c’)kl(c’,c)c’Zdc’=c(c2—5/2) (7 and
0
1
with T(c":0)= 5 exp{—2cc'r(p)r(u’)
J e “A(c)c® dc=0. (7b) X[|1=a| = (1—aycodx'—x))/a}. (16
0
. 14 , In addition
Now, as noted previousfh?*4if we wish to use a mean-free
path based on the viscosity, i.e., Ei(c’,u'ic,u)=exp{—[|1—aycr(pm)—c'r(u')]?/a}
1
1= 15= (a5 1Po) (2KTo/m) 2 ® (
where u, is the viscosity andpy=nykT, is the pressure, and
then we should use in Eql) Ex(c’,u’:c,pm)=exp{—[(1—an)Yeu—c' u' 1% ay}.
(18)
=&p= 1/zf e *’B(c)c? de, (9 We find it convenient, from a computational point-of-view,
157+<Jo : '
to use in Eq(15) and in general
whereB(c) is defined by Eq(6). On the other hand, if we R .
wish to use a mean-free path based on heat conduction, In(x)=1n(x)e (19)
I=1,=[4\, /(5nok) [m/(2kTg) 12, (10)  in place of the modified Bessel functiohgx). We note that

we have arranged the components of the CL functions so as

where, is the heat-conduction coefficient, then in Ef) ) o 0ig positive exponentials in our computation.

we should use*®

16 *® 2
— e — —C 5
_8t—15071/2fo e “A(c)c® dc, (1) lll. THE TEMPERATURE-JUMP PROBLEM
whereA(c) is defined by Eq(7). While the component ker- We have recently discussedthe solution of the

nel functionsk,(c’,c), forn=1 and 2 only, are required for temperature-jump problem as defined by the linearized Bolt-
the Chapman—Enskog equations for viscosity and heat corrmann equation for rigid-sphere interactions and the Max-
duction, we intend to use more of these component kernels iwell boundary condition, and so our discussion here can be
a truncated version of Eg&3). We note here that Pekeris and brief since we need mention only ttieot exactly insignifi-
co-workers® have reported an ingenious set of expressiongan complications introduced by the use of the Cercignani—
and recursion formulas that they usedbng with a computer Lampis boundary condition. While our basic problems are
program) to obtain analytical results for the cases up to anddefined in terms of the velocity perturbation functiofr,c),
including kg(c’,c). the quantities of interest generally are expressed in terms of

In this work we consider half-space problems, and so weéntegrals of this function. For example, here we seek the
supplement Eq(1) with a boundary condition at the wall temperature perturbation
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T(r) 2 fwfl fzw 7C2( 5 32
= e “(c*—
(7 3732)0 J_1Jo

X h(r,c)c? dy du dc (20

which can be expressed as

T(r)= 3:1,40 fjle’cz(cz—3/2)¢(r,c,,u)cz du dc,
(21
where
1 (2=
drcm)= 5= Thir0 dy 22

C. E. Siewert

Using Eq.(14), we deduce from Eq.30) that

! !

/5M,:C|M)UO(C,1M,:C|M)5
(3D

Ro(c’,p'ic,u)=

where
Uo(c’,p'ic,m)=1g[2]1= afcc'r(w)r (u')/a]
XEq(c",u'ic ). (32
Since Egs(25) and(26) are homogeneous, we must specify
a driving term. We do this implicitly by requiring tha( r,c)
diverge asr tends to infinity. More specifically, we impose

the condition that the temperature perturbation satisfies the
Welander conditiort! viz.,

is an azimuthal average. For the temperature-jump problem

we consider thah(r,c) represents a perturbation from an

lim d—TT(T)=/c, (33

absolute Maxwellian distribution, and so we express the ve- -«

locity distribution function as

f(7,0)=fo(c)[1+h(7,0)], (23)
where
fo(C)=no[m/(27kTy) 132 <", (24)

Our formulation of this problem does not have a driving term
in Eg. (1), and so we can integrate E@B.and(13) overy to

find
J
C}Lz_(ﬁ(T,C,M):8L0{¢}(T,C,M), (25)

for >0, ue[—1,1] andce[0), and

$(0c,pu)= f f $(0c’,—u")Ro(c’, u"1C 1)
xc'? du’ de’, (26)
for we(0,1] andce[0»). In regard to Eq(25), we note
that
Lo{d)}(T,C,,U,):_V(C)¢(T,C,M)
* (1 12
+J J e p(rc )
0J-1
XKo(C',p'":C,pw)C’ 2 du’ de’,  (27)
where
2
ko(c’,n’:c,u)=fo K(c’:c) dy (28)
or
! ! 1 . !
ko(e',':0,u)=5 2, (2n+1)Pp(p")
n=0
X Pp(p)kn(c’,c). (29)
In addition,
2
Ro(C',#'ZC,M)ZL R(c’:c) dy. (30

whereK is considered specified. The form of the temperature
distribution here is the same as found before:

J

T(r)=K| 7+ {+ >, AT e |, (34)
=3

where the constant} v;, andT; are as defined previously.
Here the jump-coefficient and the constant$A;} differ
from those deduced befdrenly because we now are using
the CL boundary condition instead of the Maxwell boundary
condition. Later, we comment on the new work required to
implement the CL boundary condition, and we report some
selected results for the jump coefficient.

IV. THE FLOW PROBLEMS

First of all, in regard to Kramers’ problem, we note that
again Eq.(1) does not require an inhomogeneous term, and
so the velocity distribution function is still given by E@®3).
However, now the principal quantity of interest is the veloc-
ity profile:

u(r) = wff fzw e h(r,0)

x c3(1— u?)Y?cos y dy du dc (35)
or

u(7)= 1/2f f e W(rc,m)cd(1—u?) du dc,
(36)
where

1 2w
¢(T,c,M)=—(1—M2)—1’2f h(r,c)cosy dy. (37
T 0

At this point we can multiply Eq91) and(13) by cosy and
integrate to find

d
Cp——(m,C,p) =eLa{y}(7,C,n), (38)

for >0, pue[—1,1] andce[0s°), and
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w (1
r(,u)ll/(O,C,,u)Zfo fof(ﬂ’)¢(0,c’,—u’)

(39

for ue(0,1] andce[0,%). In regard to Eq(38), we note
that

Ll{lp}(TvCuu‘): - V(C) lp( Tvcvlu‘)

+fxfl e y(rc u')
0J-1

XKkqy(c',mu':c,;m)c’? du’ dc’,

XRy(c',;':c,m)c’? du’ dc’,

(40)

where

kl<c',w:c,u>=<1—u'2>n§l I ()T m)Kn(C', )
(42)
with
1/2d

@Pn(ﬂ*); nBl-

2n+1

2n(n+1) (42

()=

In Eq. (39) the wall scattering function we require is defined

by

2
Rl(c’,,u’:c,u)cosX’=J R(c’:c)cos y dy (43
0

from which we find

4C,M,
aap,

Ri(c’,u’:c,u)=signum(l— a,)

XS(c',u" e, u)Us(c’ p'ic,pm), (44)
where
Us(c',m'ic,m)=11[2|1—acc'r(pm)r(n’)/al

XEq(c",u'"ic ). (45

As with the temperature-jump problem, we see here that
Egs.(38) and(39) have no driving terms, so again we require
thath(r,c) diverge asr tends to infinity, but at the same time

the bulk velocityu(r) should satisfy

inl:—Tu(T):/c, (46)

I
T—

where the normalizing constakitis considered specified. As

our solution of Kramers’ problem, as based on EL.and
the Maxwell boundary condition, was recently reporiede
can write the final form as

J

Up(7)=K| 7+ {p+ >, ANje "], (47)
=2

where the constant} v;, andN; are as defined previously.
Now the viscous-slip coefficientp and the constantgA;}

Coefficients as defined by the LBE 1699

For the case of thermal creep, the flow is caused by a
constant temperature gradient in a direction parallel to the
wall, and so it is helpful to linearize about a local Maxwell-
ian rather than the absolute Maxwellian as was done in
Egs. (23) and (24). We follow Williams'® and express the
velocity distribution function as

f(7,7,0)=fo(c){1+[(c*~3/2K,+R,]n+h(7,0)},
(48)

wheref(c) is given by Eq.(24) and we have expressed the
imposed temperature and density variations as

T(n)=To(1+K,7) (49

and

n(7)=no(1+R,7).

We continue to us@, andny as convenient reference values
of the temperature and density,is used to definéin terms

of the mean-free patf) the direction of flow, an& , andR,,

are the constant gradien{én dimensionless unijsof the
temperature and density. For the problem of thermal creep
we takeK,=—R,, introducek;=K, and consider, since
again we seek the bulk velocity profile, the balance equation

(50

J
S]_(C,,LL)+C,LLE_(//(T,C,,U,):8L1{I//}(T,C,,L,L), (51)
where the operatdr; is defined by Eq(40) and
S,(c,m)=c(c®—5/2)ky. (52)

So here we seek a bound@s 7 tends to infinity solution of
Eqg. (51) that satisfies the boundary condition

© (1
r(,u,)d/(O,C,,u,)= J'O fO r(ILL')IJI(O,C,,_/.L,)

(53

for we (0,1] andce[0%). Following our previous work
we can express the bulk velocity profile as

XRy(c’,u":c,;w)c’? du’ dc’,

ur(7)=ky (54)

J
§T+ jgg Aije_ST/VJ:| ,

where(+ is the thermal-slip coefficient we report here for the
case of the Cercignani—Lampis boundary condition.

Before proceeding to a discussion of our numerical re-
sults, we make note of several observations regarding the
Cercignani—Lampis boundary condition as used here for the
temperature-jump problem, the viscous-slip problem, and the
thermal-slip problem as based on the linearized Boltzmann
equation for a collection of rigid spheres. First of all we
note that if we write a;=1*x, for xe[0,1], then
Ro(c’,u':c,u), as given by Eq(31), depends only or and
a,. It follows that for the temperature-jump problem we
need consider only, €[0,1], with a,e[0,1]. This simpli-
fication does not apply to the flow problems, and so for these
cases we considet; [0,2], with a,e[0,1].

differ from those deduced befdrenly because we are using We list here some special cases we have deduced from
here the CL boundary condition instead of the Maxwellthe general functions used to define the CL boundary condi-
boundary condition. tion as used in this work:
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l lS(’ "ic,pm) 15(” ) (55)

im —S(c',u":c,u)=z—4d(c'u'"—cu),

o an HECm)= S mo—Ccu

1

lim —S(c¢’,u':c,w)=exp{—c'?u'?, (56)

angvl n

lim S Up(c” i’ sCop0) Jle'r(u)—cr(u)]

m_— c ) 'Cl = cr —Cr ,

o (GG =5 ) 2 2
(57)

H 1 2 2

lim-Up(c" u':c,u)=exp{—c'“(1—u'%)}bopn, (58

at—>l

l 1U(” ) 15[’(’) (r)]

im-U,(c",u":c,u)=——=9[c'r —cr ,

atﬂz n M M zcr(ﬂ) M M
(59

. . 1

lim lim Ro(c’,,u’:c,,u)z—25(,u’—,u)5(c’—c), (60)

C

a;—0ap—0

lim lim Ry(c

a;—2an—0

1
i) = O~ ) 8(E =), (6D

1
lim lim Ry(c’,p'ic,u)= = 8(u' —n)d(c’ —c) (62)
C

a;—0ap—0
and

lim lim Ry(c

ay—2ap—0

1
,,,U,/:C,/.L): - ?5(1“*,_#)6(0,_0)-
(63)

C. E. Siewert

TABLE Il. The viscous-slip ¢=¢,) coefficient{p for the Cercignani—
Lampis boundary condition.

a; a,=0 a,=0.25 ap=0.5 a,=0.75 a,=1
0.25 6.3922 6.3645 6.3423 6.3232 6.3062
0.5 28161 2.7985 2.7841 2.7715 2.7602
0.75 1.6054 1.5970 1.5900 1.5838 1.5782
1 9.8733—-1) 9.8733-1) 9.8733-1) 9.8733-1) 9.8733-1)
1.25 6.0684-1) 6.1452—-1) 6.2118-1) 6.2721—-1) 6.3278—1)
15 3.4532-1) 3.6006—1) 3.7308—1) 3.8497-1) 3.9609-1)
1.75 1.5164-1) 1.729G—1) 1.9195-1) 2.0964-1) 2.2630—1)
2 0 2.733%—2) 5.2245-2) 7.5624—2) 9.7838-2)

sion techniquérelative to the variable) and our analytical
discrete-ordinates method were used as béfdtéowever to
include the effects of the Cercignani—Lampis boundary con-
dition required additional numerical work and led to a sig-
nificantly more intensive computation. We see the complica-
tion introduced by the use of the CL boundary condition in
Egs. (26), (39), and (53) where repeated integrals must be
evaluated numerically in order to define the linear system
basic to determining the arbitrary constants in our general
solution. While it is true that some of the special cases we
considered involved delta “functions” that could be used to
evaluate one of the integrals analytically, we found these
cases also difficult and computer-time consuming since spe-
cial arguments of some of the basic functions were required.
In this work we have five parameters that can be used to
describe our solution. +1 is the number of terms used in
the Pekeris expansion of the scattering |6 1 is the num-
ber of terms used in the polynomial expansion basic tacthe
variable,N is the number of Gauss points used in our ana-

As our basic analysis of the considered half-space problenigtical discrete-ordinates methol is the number of Gauss
is complete, we discuss briefly the modifications to our pre{oints used to evaluate our input matrices, aiglthe num-

vious worl® that are required to implement numerically the
CL boundary condition.

V. NUMERICAL RESULTS

In regard to implementing our solution of the three prob-

ber of Gauss points used for evaluating integrals over the
Cercignani—Lampis functions. The first four of these param-
eters are described in more detail in our previous Vfork.
While some choices of the accommodation coefficients
and «, led to calculations somewhat easier than others, and
while some of the special cases proved more difficult than

lems considered in this work, we note that we have been ablethers, we have some confidence in our results obtained from

to use much of what we reportetifor the case of the Max-
well boundary conditionfa mixture of specular and diffuse
reflection. That is to say, the use of our polynomial expan-

TABLE . Viscous-slip E=¢;), thermal-slip ¢=g;) and temperature-
jump (e =¢,) coefficients for the Maxwell boundary condition.

a {p {r 4

0.1 1.704 781) 2.657 6%—1) 2.134921)
0.2 8.172 48 2.74456-1) 1.025 1%1)
0.3 5.205 63 2.82906-1) 6.539 56
0.4 3.716 09 2.911 241) 4.674 50
0.5 2.817 61 2.991 331 3.548 47
0.6 2.21478 3.069 38-1) 2.792 19
0.7 1.780 98 3.1454%1) 2.247 38
0.8 1.452 92 3.219 68 1) 1.834 90
0.9 1.195 40 3.29216-1) 1.51077
1 9.87328-1) 3.36280—-1) 1.248 59

the approximation space€8,200,30,30,200 defined as
{L,M,K,N,I}.

Before reporting our results for the viscous-slip coeffi-
cient, the thermal-slip coefficient, and the temperature-jump
coefficient as defined by the CL boundary condition, we list

TABLE IIl. The thermal-slip €=¢,) coefficient{; for the Cercignani—
Lampis boundary condition.

a an=0 a,=0.25 a,=0.5 a,=0.75 ap=1
0.25 2.6960-1) 2.9049-1) 3.1041-1) 3.295Qq—1) 3.4787—1)
0.5 2.8905-1) 3.0221—-1) 3.1503-1) 3.2748-1) 3.3958-1)
0.75 3.1206-1) 3.1834-1) 3.2456—1) 3.3068—1) 3.3668—1)
1 3.3628—1) 3.3628—1) 3.3628 1) 3.3628—1) 3.3628—1)
1.25 3.5944-1) 3.5369—1) 3.4778-1) 3.4183-1) 3.3588-1)
15 3.791%5-1) 3.6813-1) 3.5663—1) 3.4491-1) 3.3306—1)
1.75 3.9299-1) 3.7723-1) 3.6049-1) 3.4323-1) 3.2562-1)
2 3.9894-1) 3.7904-1) 3.5751—1) 3.3502—-1) 3.1183-1)
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