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Viscous-slip, thermal-slip, and temperature-jump coefficients
as defined by the linearized Boltzmann equation
and the Cercignani–Lampis boundary condition

C. E. Siewert
Mathematics Department, North Carolina State University, Raleigh, North Carolina 27695-8205
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A polynomial expansion procedure and an analytical discrete-ordinates method are used to evaluate
the viscous-slip coefficient, the thermal-slip coefficient, and the temperature-jump coefficient as
defined by a rigorous version of the linearized Boltzmann equation for rigid-sphere interactions and
the Cercignani–Lampis boundary condition. ©2003 American Institute of Physics.
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I. INTRODUCTION

While essentially all of the definitive numerical work i
rarefied gas dynamics is based on the use of the clas
Maxwell gas-surface interaction law~characterized by a
single accommodation coefficient!, there are some recen
works1–5 that make use of two accommodation coefficie
a t andan and the Cercignani–Lampis6,7 gas-surface interac
tion law as an attempt to model better the effects of a bou
ing surface on the particle distribution function within th
gas. In contrast to the Maxwell boundary condition whi
has the unique accommodation coefficienta for all physical
properties, the Cercignani–Lampis~CL! condition6,7 allows
us to distinguish the accommodation of different properti
Physically, the quantitya t is the accommodation coefficien
of the tangential momentum, while the other quantityan

describes the accommodation of the kinetic energy co
sponding to the normal velocity. Since the CL boundary c
dition is based on the two mentioned accommodation co
ficients, the use of this boundary condition yields t
possibility of including better physics in the study of th
basic problems of rarefied gas dynamics. In this work
report numerical results for the viscous-slip coefficient,
thermal-slip coefficient, and the temperature-jump coe
cient as defined by the linearized Boltzmann equation
rigid-sphere interactions and the Cercignani–Lampis bou
ary condition.

In two recent works8,9 a recently introduced polynomia
expansion technique~relevant to the speed variable! and an
analytical discrete-ordinates method10 that has evolved from
Chandrasekhar’s work11 in radiative transfer were used t
solve the classical temperature-jump problem and a col
tion of basic flow problems all based on a rigorous form
the linearized Boltzmann equation for rigid-sphere inter
tions. While the two mentioned works defined~we believe!
an improved standard of computational work in rarefied
dynamics, the problems solved in those works were all ba
on the Maxwell gas-surface interaction law. And so here
report the additional work that is required to include the
boundary condition in our analysis for the three most ba
half-space problems in rarefied gas dynamics: Kram
1691070-6631/2003/15(6)/1696/6/$20.00
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problem, the half-space problem of thermal creep, and
temperature-jump problem. We note that all the previo
works1–5 that include the CL boundary condition are bas
on low-level model equations, and so here, for the first tim
we are able to include this boundary condition with a rigo
ous form of the linearized Boltzmann equation for rigi
sphere interactions.

II. GENERAL MATHEMATICAL FORMULATION

To start this work, we follow Pekeris12 and consider the
linearized Boltzmann equation written in terms ofh(t,c), a
perturbation to the velocity distribution function, for rigid
sphere collisions as

S~c!1cm
]

]t
h~t,c!5«L$h%~t,c!, ~1!

where

L$h%~t,c!52n~c!h~t,c!1E
0

`E
21

1 E
0

2p

e2c82
h~t,c8!

3K~c8:c!c82 dx8 dm8 dc8. ~2!

Here the scattering kernel is written in the expanded~Pek-
eris! form, viz.,

K~c8:c!5
1

4p (
n50

`

(
m50

n

~2n11!~22d0,m!Pn
m~m8!

3Pn
m~m!kn~c8,c!cosm~x82x!, ~3!

where thePn
m(x) are thenormalizedLegendre functions. In

addition,

«5s0
2n0p1/2l , ~4!

wherel is ~at this point! an unspecified mean-free path,n0 is
the density, ands0 is the scattering diameter of the gas pa
ticles. In this work, the spatial variablet is measured in units
of the mean-free pathl andc(2kT0 /m)1/2 is the magnitude
of the particle velocity. Also,k is the Boltzmann constant,m
is the mass of a gas particle andT0 is a reference tempera
ture. It should be noted that we have included in Eq.~1! an
6 © 2003 American Institute of Physics
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1697Phys. Fluids, Vol. 15, No. 6, June 2003 Coefficients as defined by the LBE
inhomogeneous driving termS(c) that we will specify, along
with an appropriate definition of the perturbationh(t,c), for
the half-space problem of thermal creep. We note that
functionskn(c8,c) in Eq. ~3! are the components in an ex
pansion of the scattering law~for rigid-sphere collisions! re-
ported by Pekeris12 and

n~c!5
2c211

c E
0

c

e2x2
dx1e2c2

~5!

is the collision frequency. We use spherical coordina
(c,arccosm,x) to define the~dimensionless! velocity vector
c.

Following Pekeris,12 Pekeris and Alterman13 discussed
the coefficients of viscosity and heat conduction and used
kernel functions k1(c8,c) and k2(c8,c) to define the
Chapman–Enskog integral equations for viscosity and h
conduction. We write these equations here as

n~c!B~c!2E
0

`

e2c82
B~c8!k2~c8,c!c82 dc85c2 ~6!

and

n~c!A~c!2E
0

`

e2c82
A~c8!k1~c8,c!c82 dc85c~c225/2! ~7a!

with

E
0

`

e2c2
A~c!c3 dc50. ~7b!

Now, as noted previously,13,14 if we wish to use a mean-fre
path based on the viscosity, i.e.,

l 5 l p5~m* /p0!~2kT0 /m!1/2, ~8!

where m* is the viscosity andp05n0kT0 is the pressure
then we should use in Eq.~1!

«5«p5
16

15p1/2E0

`

e2c2
B~c!c4 dc, ~9!

whereB(c) is defined by Eq.~6!. On the other hand, if we
wish to use a mean-free path based on heat conduction

l 5 l t5@4l* /~5n0k!#@m/~2kT0!#1/2, ~10!

wherel* is the heat-conduction coefficient, then in Eq.~1!
we should use13,15

«5« t5
16

15p1/2E0

`

e2c2
A~c!c5 dc, ~11!

whereA(c) is defined by Eq.~7!. While the component ker
nel functionskn(c8,c), for n51 and 2 only, are required fo
the Chapman–Enskog equations for viscosity and heat
duction, we intend to use more of these component kerne
a truncated version of Eqs.~3!. We note here that Pekeris an
co-workers16 have reported an ingenious set of expressi
and recursion formulas that they used~along with a computer
program! to obtain analytical results for the cases up to a
including k8(c8,c).

In this work we consider half-space problems, and so
supplement Eq.~1! with a boundary condition at the wa
Downloaded 06 May 2003 to 152.1.30.50. Redistribution subject to AI
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(t50). Since we are expressing the velocity vector
spherical coordinates, we note, in regard to Eq.~1!, that

h~t,c!⇔h~t,c,m,x!, ~12!

and so we express the boundary condition at the wall as

h~0,c,m,x!5E
0

`E
0

1E
0

2p

h~0,c8,2m8,x8!

3R~c8:c!c82 dx8 dm8 dc8 ~13!

for mP(0,1#, cP@0,̀ ) and all x. For the case of the
CL boundary condition we letr (x)5(12x2)1/2, consider
anP@0,1# with a tP@0,2#, and write

R~c8:c!5
4c8m8

aan
S~c8,m8:c,m!T~c8:c!E1~c8,m8:c,m!,

~14!

wherea5a t(22a t),

S~c8,m8:c,m!5 Î 0@2~12an!1/2cc8mm8/an#

3E2~c8,m8:c,m! ~15!

and

T~c8:c!5
1

2p
exp$22cc8r ~m!r ~m8!

3@ u12a tu2~12a t!cos~x82x!#/a%. ~16!

In addition

E1~c8,m8:c,m!5exp$2@ u12a tucr~m!2c8r ~m8!#2/a%
~17!

and

E2~c8,m8:c,m!5exp$2@~12an!1/2cm2c8m8#2/an%.
~18!

We find it convenient, from a computational point-of-view
to use in Eq.~15! and in general

Î n~x!5I n~x!e2x ~19!

in place of the modified Bessel functionsI n(x). We note that
we have arranged the components of the CL functions s
to avoid positive exponentials in our computation.

III. THE TEMPERATURE-JUMP PROBLEM

We have recently discussed8 the solution of the
temperature-jump problem as defined by the linearized B
zmann equation for rigid-sphere interactions and the M
well boundary condition, and so our discussion here can
brief since we need mention only the~not exactly insignifi-
cant! complications introduced by the use of the Cercignan
Lampis boundary condition. While our basic problems a
defined in terms of the velocity perturbation functionh(t,c),
the quantities of interest generally are expressed in term
integrals of this function. For example, here we seek
temperature perturbation
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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T~t!5
2

3p3/2E0

`E
21

1 E
0

2p

e2c2
~c223/2!

3h~t,c!c2 dx dm dc ~20!

which can be expressed as

T~t!5
4

3p1/2E0

`E
21

1

e2c2
~c223/2!f~t,c,m!c2 dm dc,

~21!

where

f~t,c,m!5
1

2pE0

2p

h~t,c! dx ~22!

is an azimuthal average. For the temperature-jump prob
we consider thath(t,c) represents a perturbation from a
absolute Maxwellian distribution, and so we express the
locity distribution function as

f ~t,c!5 f 0~c!@11h~t,c!#, ~23!

where

f 0~c!5n0@m/~2pkT0!#3/2e2c2
. ~24!

Our formulation of this problem does not have a driving te
in Eq. ~1!, and so we can integrate Eqs.~l! and~13! overx to
find

cm
]

]t
f~t,c,m!5«L0$f%~t,c,m!, ~25!

for t.0, mP@21,1# andcP@0,̀ ), and

f~0,c,m!5E
0

`E
0

1

f~0,c8,2m8!R0~c8,m8:c,m!

3c82 dm8 dc8, ~26!

for mP(0,1# and cP@0,̀ ). In regard to Eq.~25!, we note
that

L0$f%~t,c,m!52n~c!f~t,c,m!

1E
0

`E
21

1

e2c82
f~t,c8,m8!

3k0~c8,m8:c,m!c82 dm8 dc8, ~27!

where

k0~c8,m8:c,m!5E
0

2p

K~c8:c! dx ~28!

or

k0~c8,m8:c,m!5
1

2 (
n50

`

~2n11!Pn~m8!

3Pn~m!kn~c8,c!. ~29!

In addition,

R0~c8,m8:c,m!5E
0

2p

R~c8:c! dx. ~30!
Downloaded 06 May 2003 to 152.1.30.50. Redistribution subject to AI
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Using Eq.~14!, we deduce from Eq.~30! that

R0~c8,m8:c,m!5
4c8m8

aan
S~c8,m8:c,m!U0~c8,m8:c,m!,

~31!

where

U0~c8,m8:c,m!5 Î 0@2u12a tucc8r ~m!r ~m8!/a#

3E1~c8,m8:c,m!. ~32!

Since Eqs.~25! and~26! are homogeneous, we must spec
a driving term. We do this implicitly by requiring thath(t,c)
diverge ast tends to infinity. More specifically, we impos
the condition that the temperature perturbation satisfies
Welander condition,17 viz.,

lim
t→`

d

dt
T~t!5K, ~33!

whereK is considered specified. The form of the temperat
distribution here is the same as found before:8

T~t!5KF t1z1(
j 53

J

AjTje
2«t/n jG , ~34!

where the constantsJ, n j , andTj are as defined previously.8

Here the jump-coefficientz and the constants$Aj% differ
from those deduced before8 only because we now are usin
the CL boundary condition instead of the Maxwell bounda
condition. Later, we comment on the new work required
implement the CL boundary condition, and we report so
selected results for the jump coefficient.

IV. THE FLOW PROBLEMS

First of all, in regard to Kramers’ problem, we note th
again Eq.~1! does not require an inhomogeneous term, a
so the velocity distribution function is still given by Eq.~23!.
However, now the principal quantity of interest is the velo
ity profile:

u~t!5
1

p3/2E0

`E
21

1 E
0

2p

e2c2
h~t,c!

3c3~12m2!1/2cosx dx dm dc ~35!

or

u~t!5
1

p1/2E0

`E
21

1

e2c2
c~t,c,m!c3~12m2! dm dc,

~36!

where

c~t,c,m!5
1

p
~12m2!21/2E

0

2p

h~t,c!cosx dx. ~37!

At this point we can multiply Eqs.~1! and~13! by cosx and
integrate to find

cm
]

]t
c~t,c,m!5«L1$c%~t,c,m!, ~38!

for t.0, mP@21,1# andcP@0,̀ ), and
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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r ~m!c~0,c,m!5E
0

`E
0

1

r ~m8!c~0,c8,2m8!

3R1~c8,m8:c,m!c82 dm8 dc8, ~39!

for mP(0,1# and cP@0,̀ ). In regard to Eq.~38!, we note
that

L1$c%~t,c,m!52n~c!c~t,c,m!

1E
0

`E
21

1

e2c82
c~t,c8,m8!

3k1~c8,m8:c,m!c82 dm8 dc8, ~40!

where

k1~c8,m8:c,m!5~12m82! (
n51

`

Pn~m8!Pn~m!kn~c8,c!

~41!

with

Pn~m!5F 2n11

2n~n11!G
1/2 d

dm
Pn~m!, n>1. ~42!

In Eq. ~39! the wall scattering function we require is define
by

R1~c8,m8:c,m!cosx85E
0

2p

R~c8:c!cosx dx ~43!

from which we find

R1~c8,m8:c,m!5signum~12a t!
4c8m8

aan

3S~c8,m8:c,m!U1~c8,m8:c,m!, ~44!

where

U1~c8,m8:c,m!5 Î 1@2u12a tucc8r ~m!r ~m8!/a#

3E1~c8,m8:c,m!. ~45!

As with the temperature-jump problem, we see here t
Eqs.~38! and~39! have no driving terms, so again we requi
thath(t,c) diverge ast tends to infinity, but at the same tim
the bulk velocityu(t) should satisfy

lim
t→`

d

dt
u~t!5K, ~46!

where the normalizing constantK is considered specified. A
our solution of Kramers’ problem, as based on Eq.~1! and
the Maxwell boundary condition, was recently reported,9 we
can write the final form as

uP~t!5KF t1zP1(
j 52

J

AjNje
2«t/n jG , ~47!

where the constantsJ, n j , andNj are as defined previously.9

Now the viscous-slip coefficientzP and the constants$Aj%
differ from those deduced before9 only because we are usin
here the CL boundary condition instead of the Maxw
boundary condition.
Downloaded 06 May 2003 to 152.1.30.50. Redistribution subject to AI
at

l

For the case of thermal creep, the flow is caused b
constant temperature gradient in a direction parallel to
wall, and so it is helpful to linearize about a local Maxwe
ian rather than the absolute Maxwellian as was done
Eqs. ~23! and ~24!. We follow Williams18 and express the
velocity distribution function as

f ~t,h,c!5 f 0~c!$11@~c223/2!Kh1Rh#h1h~t,c!%,
~48!

wheref 0(c) is given by Eq.~24! and we have expressed th
imposed temperature and density variations as

T~h!5T0~11Khh! ~49!

and

n~h!5n0~11Rhh!. ~50!

We continue to useT0 andn0 as convenient reference value
of the temperature and density,h is used to define~in terms
of the mean-free pathl ) the direction of flow, andKh andRh

are the constant gradients~in dimensionless units! of the
temperature and density. For the problem of thermal cr
we takeKh52Rh , introducekT5Kh and consider, since
again we seek the bulk velocity profile, the balance equa

S1~c,m!1cm
]

]t
c~t,c,m!5«L1$c%~t,c,m!, ~51!

where the operatorL1 is defined by Eq.~40! and

S1~c,m!5c~c225/2!kT . ~52!

So here we seek a bounded~ast tends to infinity! solution of
Eq. ~51! that satisfies the boundary condition

r ~m!c~0,c,m!5E
0

`E
0

1

r ~m8!c~0,c8,2m8!

3R1~c8,m8:c,m!c82 dm8 dc8, ~53!

for mP(0,1# and cP@0,̀ ). Following our previous work9

we can express the bulk velocity profile as

uT~t!5kTF zT1(
j 52

J

AjNje
2«t/n jG , ~54!

wherezT is the thermal-slip coefficient we report here for th
case of the Cercignani–Lampis boundary condition.

Before proceeding to a discussion of our numerical
sults, we make note of several observations regarding
Cercignani–Lampis boundary condition as used here for
temperature-jump problem, the viscous-slip problem, and
thermal-slip problem as based on the linearized Boltzm
equation for a collection of rigid spheres. First of all w
note that if we write a t516x, for xP@0,1#, then
R0(c8,m8:c,m), as given by Eq.~31!, depends only onx and
an . It follows that for the temperature-jump problem w
need consider onlya tP@0,1#, with anP@0,1#. This simpli-
fication does not apply to the flow problems, and so for th
cases we considera tP@0,2#, with anP@0,1#.

We list here some special cases we have deduced f
the general functions used to define the CL boundary co
tion as used in this work:
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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lim
an→0

1

an
S~c8,m8:c,m!5

1

2cm
d~c8m82cm!, ~55!

lim
an→1

1

an
S~c8,m8:c,m!5exp$2c82m82%, ~56!

lim
a t→0

1

a
Un~c8,m8:c,m!5

1

2cr~m!
d@c8r ~m8!2cr~m!#,

~57!

lim
a t→1

1

a
Un~c8,m8:c,m!5exp$2c82~12m82!%d0,n , ~58!

lim
a t→2

1

a
Un~c8,m8:c,m!5

1

2cr~m!
d@c8r ~m8!2cr~m!#,

~59!

lim
a t→0

lim
an→0

R0~c8,m8:c,m!5
1

c2
d~m82m!d~c82c!, ~60!

lim
a t→2

lim
an→0

R0~c8,m8:c,m!5
1

c2
d~m82m!d~c82c!, ~61!

lim
a t→0

lim
an→0

R1~c8,m8:c,m!5
1

c2
d~m82m!d~c82c! ~62!

and

lim
a t→2

lim
an→0

R1~c8,m8:c,m!52
1

c2
d~m82m!d~c82c!.

~63!

As our basic analysis of the considered half-space probl
is complete, we discuss briefly the modifications to our p
vious work8,9 that are required to implement numerically th
CL boundary condition.

V. NUMERICAL RESULTS

In regard to implementing our solution of the three pro
lems considered in this work, we note that we have been
to use much of what we reported8,9 for the case of the Max-
well boundary condition~a mixture of specular and diffus
reflection!. That is to say, the use of our polynomial expa

TABLE I. Viscous-slip («5«p), thermal-slip («5« t) and temperature-
jump («5« t) coefficients for the Maxwell boundary condition.

a zP zT z

0.1 1.704 78~1! 2.657 65~21! 2.134 92~1!
0.2 8.172 48 2.744 50~21! 1.025 15~1!
0.3 5.205 63 2.829 00~21! 6.539 56
0.4 3.716 09 2.911 24~21! 4.674 50
0.5 2.817 61 2.991 33~21! 3.548 47
0.6 2.214 78 3.069 38~21! 2.792 19
0.7 1.780 98 3.145 47~21! 2.247 38
0.8 1.452 92 3.219 68~21! 1.834 90
0.9 1.195 40 3.292 10~21! 1.510 77
1 9.873 28~21! 3.362 80~21! 1.248 59
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sion technique~relative to the variablec) and our analytical
discrete-ordinates method were used as before.8,9 However to
include the effects of the Cercignani–Lampis boundary c
dition required additional numerical work and led to a s
nificantly more intensive computation. We see the compli
tion introduced by the use of the CL boundary condition
Eqs. ~26!, ~39!, and ~53! where repeated integrals must b
evaluated numerically in order to define the linear syst
basic to determining the arbitrary constants in our gene
solution. While it is true that some of the special cases
considered involved delta ‘‘functions’’ that could be used
evaluate one of the integrals analytically, we found the
cases also difficult and computer-time consuming since s
cial arguments of some of the basic functions were requir

In this work we have five parameters that can be use
describe our solution:L11 is the number of terms used i
the Pekeris expansion of the scattering law,K11 is the num-
ber of terms used in the polynomial expansion basic to thc
variable,N is the number of Gauss points used in our an
lytical discrete-ordinates method,M is the number of Gauss
points used to evaluate our input matrices, andI is the num-
ber of Gauss points used for evaluating integrals over
Cercignani–Lampis functions. The first four of these para
eters are described in more detail in our previous work8,9

While some choices of the accommodation coefficientsan

anda t led to calculations somewhat easier than others,
while some of the special cases proved more difficult th
others, we have some confidence in our results obtained f
the approximation space$8,200,30,30,200% defined as
$L,M ,K,N,I %.

Before reporting our results for the viscous-slip coef
cient, the thermal-slip coefficient, and the temperature-ju
coefficient as defined by the CL boundary condition, we

TABLE II. The viscous-slip («5«p) coefficient zP for the Cercignani–
Lampis boundary condition.

a t an50 an50.25 an50.5 an50.75 an51

0.25 6.3922 6.3645 6.3423 6.3232 6.3062
0.5 2.8161 2.7985 2.7841 2.7715 2.7602
0.75 1.6054 1.5970 1.5900 1.5838 1.5782
1 9.8733~21! 9.8733~21! 9.8733~21! 9.8733~21! 9.8733~21!
1.25 6.0684~21! 6.1452~21! 6.2118~21! 6.2721~21! 6.3278~21!
1.5 3.4532~21! 3.6006~21! 3.7305~21! 3.8497~21! 3.9609~21!
1.75 1.5164~21! 1.7290~21! 1.9195~21! 2.0964~21! 2.2630~21!
2 0 2.7335~22! 5.2245~22! 7.5624~22! 9.7838~22!

TABLE III. The thermal-slip («5« t) coefficient zT for the Cercignani–
Lampis boundary condition.

a t an50 an50.25 an50.5 an50.75 an51

0.25 2.6960~21! 2.9049~21! 3.1041~21! 3.2950~21! 3.4787~21!
0.5 2.8905~21! 3.0221~21! 3.1503~21! 3.2748~21! 3.3958~21!
0.75 3.1206~21! 3.1834~21! 3.2456~21! 3.3068~21! 3.3668~21!
1 3.3628~21! 3.3628~21! 3.3628~21! 3.3628~21! 3.3628~21!
1.25 3.5944~21! 3.5369~21! 3.4778~21! 3.4183~21! 3.3588~21!
1.5 3.7915~21! 3.6813~21! 3.5663~21! 3.4491~21! 3.3306~21!
1.75 3.9299~21! 3.7723~21! 3.6049~21! 3.4323~21! 3.2562~21!
2 3.9894~21! 3.7904~21! 3.5751~21! 3.3502~21! 3.1183~21!
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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in Table I our results8,9 as defined by the linearized Boltz
mann equation for rigid-sphere interactions and the Maxw
boundary condition. Note in Table I, and in subsequ
tables, that while we use the mean-free path based on vis
ity for the viscous-slip problem, we use the mean-free p
based on thermal conductivity for the thermal-creep prob
and the temperature-jump problem. The choice of a me
free path is arbitrary here and so we made choices that w
consistent with our previous work. In Tables II–IV we li
our results for the viscous-slip coefficient, the thermal-s
coefficient, and the temperature-jump problem for selec
values of the two CL accommodation coefficientsa t andan .

While we have no comparison results that are based
the linearized Boltzmann equation, we have used in
codes the relevant S-model approximations to the true s
tering kernels to find essentially perfect agreement w
S-model results for the slip coefficients3 and an S-mode
code rewritten explicitly for the temperature-jump proble
Good agreement with Sharipov’s S-model computations4 for
the slip and jump coefficients was also obtained. Having s
that, we note that the special casesan50 and/ora t50 were
the most difficult for which to find stability, and so it i
possible that our results for these special cases can be
only to four rather than five significant figures.

Finally we have concluded that to incorporate t
Cercignani–Lampis boundary into a computation based
the linearized Boltzmann equation has required signific
computational effort, but since the CL boundary conditi
offers the possibility of including better physics in the cla
of problems considered, the effort seems worthwhile.

TABLE IV. The temperature-jump («5« t) coefficientz for the Cercignani–
Lampis boundary condition.

a t an50 an50.25 an50.5 an50.75 an51

0 1.6568~1! 7.6649 4.6889 3.2028
0.25 1.0151~1! 5.7318 3.7707 2.6655 1.9609
0.5 5.9030 3.8696 2.7282 2.0010 1.501
0.75 4.7049 3.2245 2.3270 1.7284 1.305
1 4.4041 3.0524 2.2161 1.6514 1.2486
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