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ABSTRACT

An expansion and projection technique based on Legendre polynomials is used to solve, in an efficient and accurate
way, the Chapman-Enskog equations for viscosity and heat transfer and to compute the Burnett functions required,
for example, for Poiseuille-flow problems based on rigid-sphere collisions and the linearized Boltzmann equation.

1. INTRODUCTION

Within the context of the linearized Boltzmann equation for rigid-sphere collisions, the Chapman-
Enskog functions for viscosity and heat transfer, as well as the Burnett functions, have been
computed and the results reported [1–4]. However, since these functions are especially impor-
tant in regard to analytical and computational solutions of the linearized Boltzmann equation,
we report here an additional calculation that can be used as an alternative to the previously re-
ported [1,4] computations that were based on the use of spline functions. While we consider the
algorithm, based on Hermite cubic splines and a collocation procedure, that was used in Ref. [4]
to be a good one, we wish here to report a computation that leads to the same numerical results,
without any of the concerns that collocation methods can sometimes provoke.

The general class of problems we consider can be written as

Ln{f}(c) = r(c), c ∈ [0,∞), (1)

with r(c) given, and with

Ln{f}(c) = ν(c)f(c)−
∫ ∞

0

e−c
′2
f(c′)kn(c′, c)c′

2 dc′. (2)

Here

ν(c) =
2c2 + 1

c

∫ c

0

e−x
2

dx+ e−c
2

(3)
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is the “collision frequency” and the functionskn(c′, c) are components in the Pekeris-Alterman
“rigid-sphere” scattering kernel [2] written as

K(c′, c) =
1

4π

∞∑
n=0

n∑
m=0

(2n+ 1)(2− δ0,m)Pm
n (µ′)Pm

n (µ)kn(c′, c) cosm(χ′ − χ). (4)

ThenormalizedLegendre functions

Pm
n (µ) =

[
(n−m) !

(n+m) !

]1/2

(1− µ2)
m/2 dm

dµm
Pn(µ), n ≥ m, (5)

wherePn(µ) denotes the usual Legendre polynomial, are such that∫ 1

−1

Pm
n (µ)Pm

n′ (µ) dµ =
( 2

2n+ 1

)
δn,n′ . (6)

In this work we use the component functionskn(c′, c) only for n = 1, 2, and 3. Since these
basic functions were listed explicitly in Ref. [4], we do not re-list them here.

While the numerical approach we propose is general, the specific cases considered here are the
Chapman-Enskog equation for viscosity,

L2{B}(c) = c2, (7)

the Chapman-Enskog equation for heat transfer,

L1{A}(c) = c(c2 − 5/2), (8a)

with the normalization condition ∫ ∞
0

e−c
2

A(c)c3 dc = 0, (8b)

and the two Burnett equations [1]

L1{D}(c) = 2cB(c)− 5cεp, (9a)

with the normalization [1] ∫ ∞
0

e−c
2

D(c)c3 dc = 0, (9b)

and

L3{E}(c) = 2cB(c), (10)

where

εp =
16

15
π−1/2

∫ ∞
0

e−c
2

B(c)c4 dc. (11)

18 ICTT, Rio de Janeiro, RJ, Brazil.



Deterministic numerical transport methods

2. THE DEVELOPMENT

We start by expressing the desired (approximate) solution of Eq. (1) as

f(c) =
K∑
k=0

akPk(2e−c − 1) (12)

where the constants{ak} are to be determined. To find the coefficients{ak} required in Eq. (12),
we substitute Eq. (12) into Eq. (1), multiply the resulting equation by

W (c) = P T(c)c2e−c
2

, (13)

where the superscript T denotes the transpose operation and

P (c) =
[
P0(2e−c − 1), P1(2e−c − 1), ..., PK(2e−c − 1)

]
, (14)

and integrate over allc to obtain a system of linear algebraic equations for the desired coeffi-
cients{ak}. Since the kernel functions are such thatkn(c′, c) = kn(c, c′), we are able to use
symmetry features of matrices involved in the procedure to reduce the numerical work required
to evaluate these matrices. However, as mentioned in Refs. [6] and [7], some care must be
exercised in evaluating the kernel functionskn(c′, c).

After we solve the linear system that defines the coefficients{ak}, our first solution is given by
Eq. (12); however an alternative “post-processed” result can be obtained by using Eq. (12) in
Eq. (1) to find

f(c) = [r(c) +
K∑
k=0

akFk(c)]/ν(c) (15)

where

Fk(c) =

∫ ∞
0

e−c
′2
Pk(2e−c

′ − 1)kn(c′, c)c′
2 dc′. (16)

3. NUMERICAL RESULTS AND CONCLUSIONS

In evaluating our numerical solutions for the two Chapman-Enskog functionsA(c) andB(c) and
the two Burnett functionsD(c) andE(c), we consider, as have others [1-4], that the domain
of significant interest is the subsetc ∈ [0, 5] of the complete domain[0,∞). As the use of
these functions typically involves a multiplication by exp(−c2) the chosen domain of interest
seems suitable for various applications that require these functions. The numerical results we
obtained here are essentially in perfect agreement with previous work [4]. However, some
general comments on the implementation of the developed algorithms can be given. So, in our
work here we have two basic approximation parameters:K+1 is the number of basis functions
used in Eq. (12) andM is the number of Gauss points used to evaluate the input matrices which
define the linear system for the constants{ak}. While we have not attempted a definitive study
to find the minimum values ofK andM to obtain a given degree of accuracy, we did find
that we could recover the seven-digit results listed in Ref. [4] withK = 100 andM = 200.
More importantly we found, forc ∈ [0, 5], that we had to use the post-processed result listed as
Eq. (15) only for, say,c < 0.2 andc > 4.2. And so, since we found the desired results mostly
from the simple result listed as Eq. (12), our final algorithm was especially efficient.
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