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Abstract

An expansion and projection technique based on Legendre polynomials is used to solve, in an e7cient
and accurate way, the Chapman-Enskog equations for viscosity and heat transfer and to compute the Burnett
functions required, for example, for Poiseuille-8ow problems based on rigid-sphere collisions and the linearized
Boltzmann equation.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Within the context of the linearized Boltzmann equation for rigid-sphere collisions, the Chapman-
Enskog functions for viscosity and heat transfer, as well as the Burnett functions, have been computed
and the results reported [1–4]. However, since these functions are especially important in regard
to analytical and computational solutions of the linearized Boltzmann equation, we report here an
additional calculation that can be used as an alternative to the previously reported [1,4] computations
that were based on the use of spline functions. While we consider the algorithm, based on Hermite
cubic splines and a collocation procedure, that was used in Ref. [4] to be a good one, we wish here
to report a computation that leads to the same numerical results, without any of the concerns that
collocation methods can sometimes provoke. Since much of the introductory material we require in
this work can be found in Ref. [4], we can be brief here.
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The general class of problems we consider can be written as

Ln{f}(c) = r(c); c∈ [0;∞); (1)

with r(c) given, and with

Ln{f}(c) = �(c)f(c)−
∫ ∞

0
e−c

′2
f(c′)kn(c′; c)c′

2 dc′: (2)

Here

�(c) =
2c2 + 1
c

∫ c

0
e−x

2
dx + e−c

2
(3)

is the “collision frequency” and the functions kn(c′; c) are components in the Pekeris-Alterman
“rigid-sphere” scattering kernel [2] written as

K(c′; c) =
1
4�

∞∑
n=0

n∑
m=0

(2n+ 1)(2− 0;m)Pmn (�′)Pmn (�)kn(c′; c) cosm(�′ − �): (4)

The normalized Legendre functions

Pmn (�) =
[
(n− m)!
(n+ m)!

]1=2
(1− �2)m=2 dm

d�m
Pn(�); n¿m; (5)

where Pn(�) denotes the usual Legendre polynomial, are such that∫ 1

−1
Pmn (�)P

m
n′(�) d� =

(
2

2n+ 1

)
n;n′ : (6)

In this work we use the component functions kn(c′; c) only for n = 0; 1; 2 and 3. Since these basic
functions were listed explicitly in Ref. [4], we feel no need to re-list them here.

We note [5] that as a result of the fact that the collisional invariants (corresponding to conservation
of mass, energy and momentum) are solutions of the homogeneous linearized Boltzmann equation,
there are three basic identities, viz.

�(c) =
∫ ∞

0
e−c

′2
k0(c′; c)c′

2 dc′; (7a)

�(c)c =
∫ ∞

0
e−c

′2
k1(c′; c)c′

3 dc′ (7b)

and

�(c)c2 =
∫ ∞

0
e−c

′2
k0(c′; c)c′

4 dc′ (7c)

that are relevant to Eq. (1). Since Eqs. (7) show that the homogeneous versions of Eq. (1) have
solutions for n= 0 and 1, we can list solvabilitly conditions∫ ∞

0
e−c

2

[
1

c2

]
r(c)c2 dc = 0; n= 0; (8a)
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and ∫ ∞

0
e−c

2
r(c)c3 dc = 0; n= 1; (8b)

that must be satis;ed for these two cases. While the numerical approach we use is general, the
speci;c cases considered here are the Chapman-Enskog equation for viscosity,

L2{B}(c) = c2; (9)

the Chapman-Enskog equation for heat transfer,

L1{A}(c) = c(c2 − 5=2); (10a)

with the normalization condition∫ ∞

0
e−c

2
A(c)c3 dc = 0; (10b)

and the two Burnett equations [1]

L1{D}(c) = 2cB(c)− 5c�p; (11a)

with the normalization [1]∫ ∞

0
e−c

2
D(c)c3 dc = 0; (11b)

and

L3{E}(c) = 2cB(c): (12)

Here

�p =
16
15
�−1=2

∫ ∞

0
e−c

2
B(c)c4 dc: (13)

We note that while not referred to as Burnett equations, terminology taken from Ref. [1], Eqs. (11)
and (12) have also been discussed, for example, by Simons [6] and Williams [7].

2. The algorithm

We start by expressing the desired (approximate) solution of Eq. (1) as

f(c) =
K∑
k=0

akPk(2e−c − 1) (14)

where the constant {ak} are to be determined. To keep our notation simple, we (sometimes) omit
the subscript n used in Eqs. (1) and (2) to denote a speci;c kernel function kn(c′; c). We note that
an expansion of the form of Eq. (14) was used in Refs. [8] and [9] to solve many of the classical
problems in rare;ed gas dynamics based on the linearized Boltzmann equation and the rigid-sphere
interaction law. However, in Refs. [8] and [9] the quantities of interest were expressed in terms of
moments (integrals over the velocity) of the particle velocity distribution function, while here we
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seek to compute the function f(c) itself. To ;nd the coe7cients {ak} required in Eq. (14), we
substitute Eq. (14) into Eq. (1), multiply the resulting equation by

W (c) = PT(c)c2e−c
2
; (15)

where

P(c) = [P0(2e−c − 1); P1(2e−c − 1); : : : ; PK(2e−c − 1)]; (16)

and integrate over all c to obtain the system of linear algebraic equations

(S − Bn)A= R: (17)

Here we use the superscript T to denote the transpose operation, the vector A contains the desired
constants {ak},

S =
∫ ∞

0
e−c

2
PT(c)P(c)�(c)c2 dc; (18)

R=
∫ ∞

0
e−c

2
PT(c)r(c)c2 dc (19)

and

Bn =
∫ ∞

0

∫ ∞

0
e−c

2
e−c

′2
PT(c)P(c′)kn(c′; c)c2c′

2 dc′ dc: (20)

Since the kernel functions are such that kn(c′; c)=kn(c; c′), we see that the matrices Bn are symmetric
(a fact that can be used to reduce the numerical work required to evaluate these matrices). However,
as mentioned in Refs. [8] and [9], some care must be exercised in evaluating the kernel functions
kn(c′; c).

After we solve the linear system given as Eq. (17) our ;rst solution is given by Eq. (14); however
an alternative “post-processed” result can be obtained by using Eq. (14) in Eq. (1) to ;nd

f(c) =
[
r(c) +

K∑
k=0

akFk(c)
]/

�(c) (21)

where

Fk(c) =
∫ ∞

0
e−c

′2
Pk(2e−c

′ − 1)kn(c′; c)c′
2 dc′: (22)

Our results for the functions B(c) and E(c) are given by either Eq. (14) or Eq. (21); however, since
Eq. (7b) shows that a function h(c) = c is a solution of the homogeneous versions of Eqs. (10a)
and (11a), we can write

A(c) = A0(c)− �c (23)

and

D(c) = D0(c)− �c (24)
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where A0(c) and D0(c) are given by either of Eqs. (14) and (21). It follows that we can use the
normalization conditions listed as Eqs. (10b) and (11b) to de;ne the constants � and �. And so we
substitute Eq. (23) into Eq. (10b) and Eq. (24) into Eq. (11b) to ;nd

� =
8

3�1=2

∫ ∞

0
e−c

2
A0(c)c3 dc (25)

and

�=
8

3�1=2

∫ ∞

0
e−c

2
D0(c)c3 dc: (26)

To be clear, we note again that while either of Eqs. (14) and (21) can be used to de;ne A0(c) and
D0(c), our ;nal results for A(c) and D(c) are given by Eqs. (23) and (24) with the constants � and
� given by Eqs. (25) and (26).

3. Numerical results

In evaluating our numerical solutions for the two Chapman-Enskog functions A(c) and B(c) and the
two Burnett functions D(c) and E(c), we consider, as have others [1–4], that the domain of signi;cant
interest is the subset c∈ [0; 5] of the complete domain [0;∞). As the use of these functions typically
involves a multiplication by exp(−c2) the chosen domain of interest seems suitable for various
applications that require these functions. Since the numerical results we obtained here are essentially
in perfect agreement with our previous work, we need not list these results again. However, some
general comments on the implementation of the developed algorithms can be given. In our work
here we have two basic approximation parameters: K + 1 is the number of basis functions used
in Eq. (14) and M is the number of Gauss points used to evaluate the input matrices de;ned by
Eqs. (18)–(20) and (22). While we have not attempted a de;nitive study to ;nd the minimum values
of K and M to obtain a given degree of accuracy, we did ;nd that we could recover the seven-digit
results listed in Ref. [4] with K =100 and M =200. More importantly we found, for c∈ [0; 5], that
we had to use the post-processed result listed as Eq. (21) only for, say, c¡ 0:2 and c¿ 4:2. And
so, since we found the desired results mostly from the simple result listed as Eq. (14), our ;nal
algorithm was especially e7cient.

Since we intend to use these basic Chapman-Enskog and Burnett functions in conjunction with
general computations in rare;ed gas dynamics, our goal here was to produce (FORTRAN) sub-
routines that would yield these functions quickly and accurately. In order not to have to compute
the input matrices more that once, we simply “hard-wired” the constants {ak}, for each of the four
functions, into our subroutines. In this way, we were able to reproduce the table of results listed with
seven digits of accuracy in Ref. [4] in less than 0.2s on a 1:2 Ghz mobile Pentium III processor.
And so we conclude that the algorithms developed here provide a very convenient alternative to
those based on Hermite cubic splines and collocation [1,4].
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