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Abstract

A polynomial expansion procedure and an analytical discrete-ordinates method are used to solve four basic problems,
all based on the linearized Boltzmann equation for rigid-sphere interactions, that describe heat transfer and/or evaporation—
condensation between two parallel surfaces or for the case of a semi-infinite half space. Relevant to the case of two surfaces,
the basic problem of heat transfer driven by a temperature difference at two confining walls described by a general Maxwell
gas—surface interaction law (a mixture of specular and diffuse reflection) is solved for the case where different accommodation
coefficients can be used for each of the two bounding surfaces. In addition, the classical problem of “reverse temperature
gradient” in the theory of evaporation and condensation is also solved for the case of two parallel liquid—vapor interfaces kept at
different temperatures. In regard to half-space applications, an evaporation/condensation problem based on a presumed known
interface condition and a heat-conduction problem (with no net flow) driven by energy flow from a bounding surface with know
properties are each solved with what is considered a high degree of accuracy.
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1. Introduction

In two recent works [1,2] a newly introduced polynomial expansion technique (relevant to the speed variable) and an
analytical discrete-ordinates method [3] that has evolved from Chandrasekhar’s work [4] in radiative transfer were used, in
regard to a rigorous form of the linearized Boltzmann equation for rigid-sphere interactions, to solve the classical temperature-
jump problem and a collection of basic flow problems (Couette flow, Poiseuille flow and thermal-creep flow) relevant to finite
plane-parallel channels and to semi-infinite half spaces. While the first set of problems [1,2] was defined in terms of a general
Maxwell boundary condition (a combination of specular and diffuse reflection and characterized by a single accommodation
coefficienta), the mentioned solution procedure was extended in a following work [5] in order to make use of the Cercignani—
Lampis [6] boundary condition that is characterized by two accommodation coeffigigrtisd«;. Continuing to investigate
the basic problems in rarefied gas dynamics that can be described by the linearized Boltzmann equation for the case of rigid-
sphere scattering, we now discuss our solutions of four heat-transfer and/or evaporation—condensation problems defined either
for a gas maintained between two parallel surfaces or for the case of a semi-infinite half space bounded by a plane surface.

In regard to the four basic problems we consider here, we note that there already exist solutions, mostly based on highly
numerical approaches (finite differences methods, numerical quadrature schemes, spline expansions and collocation techniques,
for example) with accuracy sufficient for most physical applications. In this regard, there also has been considerable discussion
about the mathematical formulation of these applications in the theory of rarefied gas dynamics. And so to be clear about this
work, we can say that our goal is to provide essentially analytical solutions (to the considered problems) that define what we
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consider to be a high standard of accuracy. In addition to defining good numerical results, the new analytical solutions can be
implemented at a computational cost much less, we believe, than the cost of evaluating basic quantities of interest with strictly
numerical solutions. While most existing works deal with these problems one or two at a time, we consider these problems to
have much in common (mathematically speaking), and so it seems especially efficient to consider all four of these problems in
this single presentation.

To start this work, we consider the homogeneous and linearized Boltzmann equation written for rigid-sphere collisions
as [7,8]

c,u%h(r,c):sL{h}(r,c), Q)
where
oo 1 27
L{h}(z,¢) = —v(c)h(t,c) + / / / e_c/zh(r, HK( : c)c’2 dy/ du/ dc’. 2
0-10
Here the scattering kernel is written in the expanded form
1 oo n
K(:o)= ZO ZO<2n + Q2= 80.m) Py (W) Py (Wkn (¢, €) cosm(x” — x). ®
n=um=

where thenormalizedLegendre functions are given (in terms of the Legendre polynomials) by

(n—m)! 1/2 o0m/2 d”
PM(p) = 1- P, >m. 4
(1) [(n+m)!] (1—u9) a W), n>=m 4
In addition,
&= agnorrl/zl, 5)

wherel is (at this point) an unspecified mean-free pathis the density andy is the scattering diameter of the gas particles.

In this work, the spatial variable is measured in units of the mean-free patiand c(2kT0/m)1/2 is the magnitude of the
particle velocity. Alsok is the Boltzmann constant; is the mass of a gas particle afiglis a reference temperature. The basic
unknownh(z, ¢) in Eq. (1) is a perturbation from an absolute Maxwellian distribution. Continuing, we note that the functions
kn(c’, ¢) in Eq. (3) are the components in an expansion of the scattering law (for rigid-sphere collisions) reported by Pekeris,
Alterman, Finkelstein and Frankowski [9], and

c

/ e dy 4 e (6)
0

v(c) =

22 +1

is the collision frequency. And finally, we use spherical coordinatear¢cosu, x) to define the (dimensionless) velocity
vectore.

2. Theproblems
2.1. A heat-transfer problem for the case of two parallel surfaces

For this problem, due to the presence of the walls located=atra, we must supplement Eq. (1) with appropriate boundary
conditions. Noting that

h(z,¢) & h(r,c, 1, X), Q)
we follow Williams [10] and express the two required boundary conditions as

h(=a, ¢, i, 1) = L= aph(=a,c, =, x) — 17— {h}(—a) = a181(c* - 2) (8a)
and

h(a, ¢, —p, x) — (L—ap)h(a, ¢, jt, x) — azTi {h}(a) = apdp(c? — 2) (8b)
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for u € (0, 1], c € [0, 00) and all . Here
2 oo 127
_ 2
L@ == [ [ [ e heeruonddrduc, ©)
000

andaq € (0,1] andao € (0, 1] are the accommodation coefficients associated with each of the two walls that are allowed to
have different scattering properties. In addition, the two constarasds, are measures of the temperatures of the two walls.
In a previous work [11] that reported an accurate solution of the heat-transfer problem in a plane channel as described by the
BGK model [12], it was noted that Eq. (1) and the boundary conditions listed as Eqgs. (8) do not define a unique/galutjon
And so we will, once we have introduced more notation, supplement Egs. (8) with another (normalization) condition.

Following the discussion from [10], we see that, while our problem is defined in terms of the unkriew, we require
only two elementary integrals @f(z, ¢) in order to establish the density and temperature perturbations defined by

1 oo 127
N(T)ZT/// efczh(t, c)czdx dude (10)
73/2
0-10
and
2 oo 127
_ —c2 2 2 .
T(T)_snS/Z//_/ € " (c® — 3/2)h(r, ¢)c* dx du de, (11)
0-10
or
5 oo 1
N(t) = T// e ¢ (z, ¢, w2 dude (12)
xl/2
0 -1
and
4 oo 1
_ —c2, 2 L2
T(T)—m// e (c“—3/2¢(z, ¢, e dude, (13)
0-1
where
1 2
¢(t,c,pu) = 2—/h(r, c)dx (14)
T
0
is an azimuthal average. We can integrate Eqgs. (1) and (8),ot@find
9 oo 1
/2
cugqb(r,c,u)+SV(0)¢(r,c,u)=8// e (e, ukc, 1) e, wyc A du de (15)
0-1
for t € (—a,a), n € [—1, 1] andc € [0, c0), and
¢(—a.c.p) — (1—enp(—a.c, —p) — 41 D = a181(c? - 2) (16a)
and
pla.c.—p) — (L—ap)p(a. c, 1) — AapDp = ap8p(c — 2). (16b)
for u € (0, 1] andc € [0, o0). Here
27
k(d,u ie,pn) = / K(c :¢c)dy (17)
0
or
/ / 1 ad / /
K ey =53 @+ D P Pa(kn (€ 0). (18)

n=0
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In addition,
oo 1
=// ef"2¢(—a,c, — e dude (19a)
00
and
_ / / o(a. c. wyucddu de. (19b)

We will see later in this work that Egs. (16) are not sufficient to define a unique solution of Eq. (15), and so we will follow what
was done in [11] and make use of the additional (normalizing) condition

/ N(r)dr =0. (20)

Since the equations required to define the (Pekeris) component fungtiarisc) are available in other works, see, for
example, [1,7-9], we do not list them here. However we do list the three identities

o
v(c):/ eﬁc/zko(c/,c)c/zdc/, (21a)
0
o0
v(e)e = / ek, o) 3ac (21b)
0
and
o
U(C)C2=/ e_c/zko(c/,c)c/‘ldc/ (21c)
0

that are available [13] from Eq. (1) and the conditions of conservation of mass, energy and momentum.
Now, multiplying Eq. (15) bye? exp(—c?), for 8 = 2 and 4, and integrating over alland . we find, after noting Egs. (21a)
and (21c) and using, (¢, ¢) =k, (c, ¢'), that

v _4 (22a)
dr
and
4o _ (22b)
dr
where
oo 1
o [ [ e duae (23)
0-1

is a measure of the net flow and
oo 1
/ / d)(r, c, |) (C2 — 5/2)/,LC3 dude (24)
0 -1

is the non-dimensional heat flux. Using the fact thiais a constant, we can use either of Egs. (16) to concludd.tka0. And

so in regard to this problem we intend to compute the density and temperature perturbations as listed by Egs. (12) and (13) and
the non-dimensional heat flux as defined by Eq. (24). In order to compare with results available in other works, we also report
values of the normalized heat flux defined as
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where Q r,, is the non-dimensional heat flux for “free-molecular” conditions. The required resufd fg can be obtained
by neglecting all terms in Eq. (15) that are proportionat tgolving the resulting equation subject to Egs. (16) and (20) and
evaluating Eq. (24). In this way we find

a1ap(81 — )
= . 26
Ofm (@1 + ap — vqap)w /2 (20)
2.2. The problem of a reverse temperature gradient

In a paper published in 1971, Pao [14] pointed out that the slope of the temperature profile in a saturated vapor between two
parallel evaporating and condensing surfaces kept at different temperatures could, for special values of a certain parameter
be in opposition to the imposed overall temperature gradient. We investigate this problem here. Following a paper by Thomas,
Chang and Siewert [15], we consider that the vapor is confined between two parallel interfaces, one locatedaatnd
kept at temperatur&y — AT, while the other surface is located at=a and kept at temperaturgy + AT. The results of
[14,15] were based on the BGK kinetic model, and so here we consider that within the vapor the perturbation Agnation
can be described by Eq. (1), the linearized Boltzmann equation for rigid-sphere interactions. At each of the two inter-phase
surfaces, we assume that the vapor molecules striking the surface are absorbed and re-emitted with a Maxwellian distribution
of velocities characterized by the temperature at the respective surface, and so we continue to follow [14,15] and express the
required boundary conditions as

h(—a,c,pc,)()=—AN—(02—3/2)AT (27a)
and
h(a,c, —M,X)zAN+(02—3/2)AT (27b)

for 1 € (0, 1] and allc and x. Here the density perturbatioRN that corresponds to the temperature perturbati@his taken
[14,15] to be given by

AN = BAT, (28)
where the constartt is considered to be known. Using Eq. (28), we rewrite Egs. (27) as

h(—a,c,,u,x)=—(ﬁ+02—3/2)AT (29a)
and

h(a,c, —M,X)z(ﬁ+cz—3/2)AT (29b)

for u € (0, 1] and allc and x . Here, as for the previously defined problem, we seek the density and temperature perturbations,
so we integrate Egs. (1) and (29) to obtain the balance equation

o]

1
0 _c? /2 ro 12 41
cua—r¢(f,c,u)+EV(6)¢(f,c,u)=8//e o, pHk(c’, pw' e, w)’du’ de’, (30)
0

-1
for t € (—a,a), n € [—1,1] and allc, and the boundary conditions

d(—a,c, 1) = —(B+c2—3/2)AT (31a)
and

dla,c, —p) = (B +c? — 3/2) AT, (31b)

for 1 € (0, 1] and allc. We note that the scattering kernel in Eq. (30) is still given by Eq. (18). @riegec, w) is available, we
intend to compute, for a given value gf the density and temperature profiles

1
2 i —c? 2
N(r):W// e ¢ ¢(t,c, u)c“dude (32)
d 0-1

and
1

o0

4 .

0= 117 / / e (2= 3/2)p (7, c, e dp de (33)
0 -1
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as well as the flow rat& and the heat-flow rat@ as defined by Egs. (23) and (24). We also seektliigal valuespr andgg

defined (for a given vapor thickne8s= 2a) so that for8 > g1 the temperature perturbatidh(z) will have atr = 0 a gradient

in opposition to the overall temperature gradient anddfor 8 the heat flowQ will be in the direction opposite to the mass

and energy flow. Finally, in order to have the solution developed here also establish the solution to a similar problem, discussed
by Sone, Ohwada and Aoki [16] and defined by a generalized version of the boundary condition listed as Egs. (29), we make
available the “outward” flow

oo 1
2
U"':T// e_02d>(a,c, e du de. (34)
nl/2
00

2.3. Evaporation/condensation in a semi-infinite half space

Our discussion of evaporation/condensation in a semi-infinite half space is based on early papers by Pao [17] and Siewert and
Thomas [18]. Both of these papers are based on the BGK kinetic model, while here we continue to define our analysis in terms
of Eq. (1), the linearized Boltzmann equation for rigid-sphere interactions. If we consider that the furietionin Eq. (1)
defines a perturbation from an absolute Maxwellian distribution written in terms of the interface deyeaitgt temperatur@
then we seek here a solution of Eq. (1) that is boundedtaads to infinity and that satisfiesat= 0 the interface condition

h(©O,c,u, x)=0 (35)

for € (0, 1], ¢ € [0, c0) and allx . For this problem we intend to compute the temperature and density profiles, and so again
we can integrate Eq. (1) overand seek a bounded (agends to infinity) solution of

oo 1
2 _¢? ro oo, 12 41
cua—r¢(f,c, W) +ev(e)g(t,c,u) =¢ e ¢(r,c, uHk(c, ' e, pyc’ " du' dc’, (36)
0 -1
for t > 0, u € [—1, 1] and allc, subject to the the boundary condition
#@0,c, 1) =0, (37)

for u € (0,1] and allc. We note that the distinction between condensation and evaporation is made here by the sign of the
specified value of the flow

9 oo 1
U=—7 // e_czd)(t, c, /,L)[/LCS dude. (38)
/2
0-1
In this work we normalize our solution by imposing the conditiér= 1, so that the computed density and temperature profiles
5 oo 1
N(r) = T// e ¢ (z, ¢, e dude (39)
/2
0-1
and
4 oo 1
_ —c? (.2 2
T(r) = 31 // e ¢ (c — 3/2)¢(t,c,u)c dude (40)
0-1

can (after multiplication by a given value of) be used for both condensation and evaporation.
2.4. Heat transfer in a semi-infinite half space

The heat transfer problem solved in [17] and [18] for the case of a semi-infinite half space is defined so that the temperature
and density perturbations are required to diverge gnd to infinity, but at the same time the conditions

Nim d—iT(t) =1 (41a)
and

lim iN(r):—l (41b)

=00 dr
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are imposed. And since agadirz, ¢) is taken to be a perturbation from a Maxwellian distribution with surface paramsjers
and Ty, we follow [17] and [18] and use the boundary condition

h(0,c,u, x) =0 (42)
for 1 € (0,1], c € [0, 00) and allx. As we seek the temperature and density profiles we can use

2 oo 1
N(r)=T// e (r, e, e dpude (43)
71/2
0 -1
and
4 oo 1
_ —c2( 2 . 2 .
T(T)_Srrl/z.// e ¢ (c —3/2)¢(t,c,u)c du de (44)
0-1
along with
oo 1
a9 _ _ o2 o oo, 12 47
cua—r¢(f,c,u)+EV(C)¢(f,c,u)—8 e ¢(r,c, uHk(c, pw' e, wyc’“du’ dc’, (45)
0-1
for t > 0, u € [—1, 1] and allc, and the boundary condition
¢, c,u) =0, (46)

for 1 € (0, 1] and allc. For this problem there is no flow, and so we also impose the condition

oo 1
// e_02d>(t,c,u),ucs dudc =0. 47
0-1

We note that this heat-transfer problem is very similar to the classical temperature-jump problem as defined, for example, by
Welander [19]. In fact, while the density profile here differs by an additive constant from the density profile defined [1] by the
temperature-jump problem (for the case of diffuse reflection), the temperature perturbation is same as for the temperature-jump
problem.

3. A polynomial representation and the ADO method

As noted in the previous section of this work, all four of the considered problems are based on the balance equation

) oo 1

/2
cno—$(T, 0, 1) +v()$ (. 0, ) =8// e g (r, k(! W s e e P i e (48)
T
0-1

where the kernel function is given by Eq. (18), and various boundary or other conditions that are different for each of the
problems. And so now we follow our previous work with the temperature-jump problem [1] and approximate the solution of
Eq. (48) by making use of the polynomial representation

K
p(re.p) =Y P(2e € —1)gi(z. ), (49)
k=0
where the Legendre polynomials are denoted’pgx) and where the functiong, (z, 1) are to be determined. We now truncate
the kernel function listed as Eq. (18) after+ 1 terms, substitute Eq. (49) into the resulting form of Eq. (48), multiply that
equation by

W; (c)= C2 e_cz P; (2 e ‘- l), (50)
fori =0,1,..., K, and integrate over afl to obtain a coupled system of “multigroup” equations which we write as

L 1
d
P AG(E ) +eSG(E. 10 =6 Y BIPIGY / PG (x. iy (51)
1=0 o
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Here theK + 1 vector-valued functioiz (z, «) has componentg; (z, 1) and the(K + 1) x (K + 1) constants are given by

o
A=/ e_CzPT(c)P(c)c3 de, (52)
0
(o)
S=/ e_CzPT(c)P(c)v(c)c2 de (53)
0
and
o0 0
Bi= ?/ / e ey OPT()Pe)c PP de! de, (54)
00

where the superscript T is used to denote the transpose operation, and where
P(c)=[Pp(2e ¢ —1), P(2e € —1),..., Pk (2e € —1)]. (55)

We note, sincé; (¢, ¢) = k;(c, ¢’), that the matrice®; are symmetric. We note also that a computation of the matrices listed
as Eq. (54) will require some care to do well; however as discussed in [1], an evaluation of all the input rgtScasd B,
can be done once only and stored for later use.

We find it convenient to multiply Eq. (51) by ~1 and then to consider

1
a L I / /
oG +eXG@m =6y CPG | PG, i1)ydu', (56)
=0 e
where
r=4a"1s (57a)
and
C,=A"1B,. (57b)

At this point we introduce our [3] analytical discrete-ordinates method (ADO method) and use a “half-range” quadrature scheme
to approximate Eq. (56) by writing

L N
]
oG +eXG(T my =6y PGOCI Y waGpa(D), (58)
1=0 n=1
where to compact our notation we have introduced
Gin(1) = Pi(un)[G (T, i) + (=1 G (x, )] (59)

Here theN quadrature pointéu, } and theN weights{w, } are defined for use on the integration intefi@l1]. Eq. (58) clearly
has separable exponential solutions, so wewag a separation constant and substitute

G(t,p)=® (v, u)e et/ (60)

into that equation to find

L N
[Z = u/mI@0, 1) =) PG)C; Y wadyu(v), (61)
=0 n=1
wherel is the identity matrix and
D), () = P () [@ (v, ) + (D' D (v, —p)]. (62)

If we now evaluate Eq. (61) at = +pu;,fori = 1,2, ..., N, then we can obtain an eigenvalue problem we can solve numerically
to establish a collection of elementary solutions of a discrete version of Eqg. (61). Omitting the details of this approach, all of
which were reported explicitly in [1], we express our first result as
J
Gt tpu) =) [Aj® ) £u) € /Y + Bid (v, 7)) €7/7], (63)
j=1
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fori=1,2,..., N. Here the arbitrary constantd ;} and{B;} are to be determined by the boundary and other conditions of
a given problem, the separation constantg and the elementary solutioms(v;, £u;) are, at this point, considered known
(from the numerical solution of the mentioned eigenvalue problemYaadV (K + 1).
We found in [1] that four of the separation constants tended to infinity as the dr@éiour quadrature scheme increased,
and so we neglect these separation constants in Eq. (63) and use instead four known exact solutions of Eq. (48). We also redefine
the arbitrary constants in Eq. (63) and write our general (approximate) solution to Eq. (48) in the form

J
¢(z.c. ) = a(T.c. k1) + P(c) Y [A;j@(vj, ;) e * @D/ 4 Bid (v, Fu) e @D, (64)
j=3
where
$a (T, ¢, ) = £A1cp; + Ag(c? = 5/2) + B+ Ba[(c? = 5/2) et F i A(©)], (65)

and whereA (¢) is the Chapman—Enskog function related to thermal conductivity [20,21]. Having established Egs. (64) and (65),
we are ready to use these results to solve the four problems considered in this work.

4. Thesolutions
4.1. A heat-transfer problem for the case of two parallel surfaces

In regard to this problem, we intend to use the boundary conditions listed as Eqgs. (16); withands, = —1, and the
condition listed as Eq. (20) to determine the arbitrary constants in the solution defined by Eqgs. (64) and (65). In order to construct
a linear system from which to determine these constants, we multiply Eqgs. (16) by

Wie) =2 P26 — 1), (66)

fori =0,1,..., K, integrate over alt and then evaluate the resulting equations aiMrgaiadrature point§uy }. This procedure
leads to a “square” linear system from which to determine the required constants; however, we note that a constant is a solution
of Egs. (48) that also satisfies the homogeneous version of Eqgs. (16), and so the d®pstend). (65) cannot be determined
from the linear system. It is for this reason that we use, after finding all of the other arbitrary constants, the condition listed as
Eq. (20) to determing;. It is clear that without the use of Eq. (20) this heat-transfer problem does not have a unique solution.
And so to start we omit the constaBt in Eq. (65) and focus our attention on the other constants. This procedure leads to a
“non-square” linear system, and so we elected to obtain a square system by adding one of the equations to another and then
omitting one of these two equations. In this way we were able to use a standard routine to solve the resulting square system
of linear algebraic equations. Once the constants in Egs. (64) and (65) were determined so as to ¢établigh, we can
evaluate the quantities of interest.

In regard to our basic results, we should make note of an important aspect (not mentioned before) of our solution that results
from the fact that the expansion given by Eq. (49) and the ADO method are approximations. While the quartiiee® as
defined by exact theory must be constants, this is not necessarily so after the Legendre expansion and the use of the discrete-
ordinates method. However, we have seen that as the order of the expansion and the order of the ADO method increase we can
expectU and Q to approach constant values. And so, in computing the heagfluse have ignored the exponential terms and
the coefficientd; in Egs. (64) and (65) to obtain

5
Q=-7eBy, (67)
where
16 i
—c2 4 N5,
& = Te172 / e “A(c)c’de (68)
0
or
& = 0.679630049. . (69)
We also find
J
N(z)=—Ap— Boet + By + Y [A;e¢@D/vi 4 p;e~¢@ /vy, (70)

j=3
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and
J
T(r)=Az+ Boer + ) [Aje @tD/Vi 4 p; e e@ D/, (71)
j=3
where
Nj=21"Y2pPoN()), (72)
Tj = 4/3~Y2[Py — (3/2Po]N(v)), (73)
N
NWj) =Y wa[®j. ptn) + SV, —1n)] (74)
n=1
and
o0
P, = / e’ P(e)c"2 de. (75)
0

In the next section of this work we discuss some computational aspects of the solution developed here, and we report some
relevant numerical results.

4.2. The problem of a reverse temperature gradient

Looking back to Egs. (31), we see that for this problem we must define the constants in Egs. (64) and (65) so that the solution
will satisfy the conditions

d(—a,c, 1) = —(B+c2 —3/2)AT (76a)
and

dla,c, —p) = (B +c? — 3/2) AT, (76b)
for 1 € (0, 1] and allc. We find it convenient to express the desired solution as

P (t, ¢, 1) =[(B—3/D¢1(z, ¢, 1) + $2(t, ¢, W]AT, (77)

whereg1 (7, ¢, u) andegs(z, ¢, u) can each be expressed in the form given by Egs. (64) and (65). However, the first of these two
special solutions must satisfy the boundary conditions

$1(=a,c,p) =-1 (782)
and

$1(a,c,—u) =1, (78b)
for 1 € (0, 1] and allc, while the second solution must satisfy the boundary conditions

$a(—a,c, ) = = (79a)
and

b2, ¢, —p) = c?, (79b)

for 1 € (0, 1] and allc. Entering Eqgs. (64) and (65) into Egs. (78) and (79), “projecting” agdinst) and evaluating the
resulting equations at the quadrature poipts}, we obtain square linear systems that can be solved to establish the arbitrary
constants required to complete the two special soluiaris, c, 1) and¢ga(z, ¢, ). Once these special solutions are available,
the required results can, for any valueffbe obtained from

N(t)=[(8 —3/2)N1(r) + Na(v)|AT, (80a)
T(1) =[(B —3/2Ti(r) + To(1) |AT, (80b)
U=[(B—3/2U1+ Us]AT, (80c¢)

0=[(B—3/201+ Q2]AT (80d)
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and
Ut =[(B —3/2U14 + Up4 |AT. (80e)

If we use label& =1 and 2 with Eqgs. (64) and (65) to identify the two special problems, we can express the quantities required
in Egs. (80) as

5
Qr=—7¢ BS, (81a)
J
Np(r) = —Bset + Y AkN;[e7c@tD/v) — gmelaD/vj], (81b)
j=3
J
Ti(r) = Byt + ) ART [ (@F D/ — gme@mn/vy] (81c)
j=3
and
Uy = AS /2. (81d)

In addition to the general results given by Egs. (80) we can use the special solutions to obtain the criticghvahg,, .
For a given value of the vapor thickness- 24, we can differentiate (with respect 19 Eq. (80b), set the resulting equation
(evaluated at = 0) equal to zero and solve f@gr= Br. In this way we find

Br =3/2—T3(0)/T{(0). (82)

In a similar way we can obtain from Eq. (80d) the critical vajie- 8 for which the heat flow at = 0 changes sign. We
find

Bo =3/2— 02(0)/01(0). (83)
While we intend to computé/y, Up, U1+ andU», independently, we can use Egs. (78b) and (79b) to conclude that

Upy = Up +1/(22%?) (84a)
and

Upy = Up + 1/m1/? (84b)

which can be used as low-level checks on our computations. In addition, we note that Sharipov [22] has communicated the
expression

5
Uy~ §U1= 01 (85)

which also can be used as low-level check on our computations. Eq. (85) follows from the reciprocity arguments of Onsager
[23,24] and Sharipov [25,26] and can be obtained here in the following way: we first write the defining balance equations for

¢1(7, ¢, w) andgo(t, ¢, —u) as

d
CMa—T¢1(f, ¢, ) = La{g}(z, ¢, w) (86a)
and
0
—Chgopa(T.C. —p) = La{d2} (T, c, —p), (86b)
where
oo 1
_ 2 o o 12 4
L1000 = —ev@p(me ) e [ [ & b ke i o (87)
0-1

and wherek(¢’, ' : ¢, p) is given by Eq. (18). We can now multiply Egs. (86a) and (86b), respectively, by

_ 2
e po(, c, —pu)c?
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and

_ 2
e 1z, ¢, p)c?,

integrate over alt and, and subtract the resulting two equations, one from the other, to obtain an equation we can integrate
overt from —a to a to find

oo 1
//eiLz[d’l(a,C,M)cz_d’Z(a,C, M)]C?’/Ld/LdC:O (88)
00

In obtaining Eq. (88), we have we made use of Egs. (78) and (79) and the fact that

Ga(t,c, 1) = = (—7,¢, —p1) (89)
for « =1 and 2. Finally, we can use Egs. (84) in Eqg. (88), along with the basic definitions given by Egs. (24) and (34), to find
the desired result, viz.

5
Us — EUl: 01. (90)

4.3. Evaporation/condensation in a semi-infinite half space

For this half-space problem we conclude from Egs. (64) and (65) that we car=9@tand express the desired solution as

J
ST, e, Ep) = pa(T.c,Ep1) + P(O) Y Aj @), ) €T/, (91)
j=3

where, recalling that we have normalized this problem by taking 1, we now have
ba(T, ¢, £1;) = +2cu; + Ap(c? —5/2) + By. (92)

Entering Egs. (91) and (92) into Eq. (37), “projecting” agaifgic) and evaluating the resulting equation at the quadrature
points{u;}, we obtain a square linear systems that can be solved to establish the arbitrary constants required to complete the
solutiong (z, ¢, ). In this way we find the final results for the density and temperature profiles can be written as

J
N(r):—A2+Bl+ZAij e eV (93a)
j=3
and
J
T(r)=Az+ Y A;Tje /%, (93b)
j=3

whereN; andT; are given by Egs. (72) and (73). To be clear, we note again that Egs. (93) are the density and temperature
perturbations for the (evaporation) cdge= 1. To have results for another value@frequires only that we multiply Egs. (93)
by a given value otU.

4.4. Heat transfer in a semi-infinite half space
Here the solutio (z, ¢, 1) is required to diverge astends to infinity, but at the same time we must also satisfy Eqgs. (41).

And so we express our solution from Egs. (64) and (65) as

J
¢(t.c. ) = a(T.c. 2p) + Pc) Y Aj®(vj, ;) e /Y, (94)
j=3

where we now have

ba(t, ¢, 1) = Ap(c? = 5/2) + By + (1/e)[(c? — 5/2) et T i A(0)]. (95)



C.E. Siewert / European Journal of Mechanics B/Fluids 22 (2003) 391-408 403

Now, we substitute Egs. (94) and (95) into Eq. (46), “project” agdinist) and evaluate the resulting equation at the quadrature
points {u;} to obtain a square linear systems that can be solved to establish the arbitrary constants required to complete the
solutiong (z, ¢, ). In this way we find the final results for the density and temperature profiles can be written as

J
N()=—Az+Bi—7+ ) AjNje /Y (96a)
j=3
and
J
T(r)=Ag+7+ ) A;Tje "/, (96b)
j=3

where (still)N; andT; are given by Egs. (72) and (73).

5. Numerical results

Because of the importance given to the problem of heat transfer in a plane-parallel medium, there exits a large body of work
devoted to the subject. While we can mention the early works by Wang Chang and Uhlenbeck [27], Gross and Ziering [28],
Willis [29], Frankowski, Alterman and Pekeris [30], we refer to Cercignani’s recent book [31] for a vast list of related works. As
far as our specific interest here, we have made use of two works by Bassanini, Cercignani and Pagani [32,33], as well as papers
by Thomas, Chang, and Siewert [34], Valougeorgis and Thomas [35], Ohwada, Aoki and Sone [36] and Siewert [11]. In regard to
the mentioned works [11,27-36], only the paper by Ohwada Aoki and Sone [36] bases the analysis on the linearized Boltzmann
equation, and so this work is the one most relevant to us here. The papers by Bassanini, Cercignani and Pagani [32,33] are
based on the use of variational and numerical methods and the classical BGK model. Thomas, Chang and Siewert [34] reported
the first definitive results for the BGK model and Valougeorgis and Thomas [35] used the so-galeetifod and the BGK
model to solve the heat transfer problem for flow between two walls that are characterized by two independent accommodation
constants. Our work here thus can be seen as incorporating the generality of the Valougeorgis and Thomas paper [35] with the
more definitive model (the linearized Boltzmann equation) used by Ohwada, Aoki and Sone [36].

In regard to our numerical work, we have typically used the approximation paranketer30 andN = 30 in obtaining the
results we listin Tables 1-4. However, to establish some confidence in our numerical results we found convergence (to the digits
listed in the tables) by increasing (and decreasing) these two approximation parameters. In Tables 1 and 2 we list the density
and temperature perturbations for two selected cases. In Table 3 we report our values of the normalized heat flux. In all of our
computations, we have made use of the mean-free path based on thermal conductivity, i.e., we have used

£=¢;. (97)

It can be seen from Tables 1 and 2 that the BGK model yields reasonable results (essentially two significant figures of accuracy)
when compared to the linearized Boltzmann equation for hard-sphere interactions.

Table 1
Temperature and density profiles for the case 1, «; = 0.7 andap = 0.3
T(—a+ 2na) N(—a + 2na)

n BGK LBE BGK LBE
0.0 67458 —1) 6.7606—1) —2.6459-1) —2.5368—1)
0.1 596371—1) 5.9100—1) —1.9310—-1) —1.8265-1)
0.2 53999 -1) 5.3593-1) —-1.4119-1) —1.3342-1)
0.3 48860 —1) 4.8692—-1) —9.3472-2) —8.8300—2)
0.4 43929-1) 4.4033-1) —4.7442-2) —4.4787—-2)
0.5 39063 -1) 3.9450-1) —1.9405-3) —1.7756—3)
0.6 34155-1) 3.4824-1) 4.3875-2) 4.1504—2)
0.7 29093-1) 3.0025-1) 9.0919-2) 8.5893-2)
0.8 23700-1) 2.4843-1) 1.4064-1) 1.3279-1)
0.9 17585-1) 1.8785-1) 1.9639—1) 1.8556—1)

1.0 84067—2) 8.4272-2) 2.7976-1) 2.6933-1)
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Table 2
Temperature and density profiles for the case 2.5, #; = 1.0 andap = 0.5
T (—a + 2na) N(—a + 2na)

n BGK LBE BGK LBE
0.0 82673 -1) 8.2333-1) —5.7874-1) —5.6834-1)
0.1 67574-1) 6.6684—1) —4.3714-1) —4.2825-1)
0.2 55806—1) 5.5223-1) —3.2388-1) —-3.1770-1)
0.3 44682—1) 4.4421(-1) —2.1553-1) —2.1140-1)
0.4 33803-1) 3.3853-1) —1.0898-1) —1.0661(—1)
0.5 22994 -1) 2.3353-1) —2.9448-3) —2.2547-3)
0.6 12127-1) 1.2816-1) 1.0350-1) 1.0237—1)
0.7 10579-2) 2.1165-2) 2.1140-1) 2.0807—1)
0.8 —1.0458-1) —8.9846-2) 3.2258-1) 3.16371-1)
0.9 —2.303%-1) —2.1157-1) 4.4183-1) 4.3158 1)
1.0 —4.1030-1) —4.02671-1) 6.0750—1) 5.9529-1)

Table 3
The normalized heat flux
o1 ap a=01 a=05 a=10 a=15 a=20 a=25
0.7 0.1 985339 —1) 9.44283-1) 9.04244-1) 8.69276—1) 8.37448-1) 8.08046—1)
0.7 0.3 961123-1) 8.61658—1) 7.75502-1) 7.0800%—1) 6.52110-1) 6.0464%—1)
0.7 05 942048 1) 8.03655—1) 6.93253-1) 6.12618—1) 5.49559 1) 4.98494-1)
0.7 0.7 926730 —1) 7.60971-1) 6.36428-1) 5.49802—1) 4.84614-1) 4.33435-1)
0.7 09 914234-1) 7.28469-1) 5.95003-1) 5.05448-1) 4.39902-1) 3.89560—1)
0.7 10 908832—1) 7.15013-1) 5.78282-1) 4.87862-1) 4.2242Q0-1) 3.725971-1)
09 0.1 985019—1) 9.43315-1) 9.02501-1) 8.66748—1) 8.34195-1) 8.04152-1)
09 03 958139—1) 852558 1) 7.61852-1) 6.91376-1) 6.33546—-1) 5.84853-1)
09 05 934745-1) 7.83172-1) 6.65323-1) 5.81139-1) 5.16540—1) 4.65054—1)
09 0.7 914234-1) 7.28469-1) 5.95003-1) 5.05448-1) 4.39902-1) 3.89560—1)
09 09 896135—1) 6.84283-1) 5.41521-1) 4.50276-1) 3.85821-1) 3.37630-1)
09 10 887870 —1) 6.65245—1) 5.19319-1) 4.279471-1) 3.64341-1) 3.17305-1)
10 1.0 878053 —-1) 6.43426-1) 4.94554-1) 4.03495-1) 3.4113%-1) 2.95558 1)
Table 4
Comparison results for the heat flawfor the casex; =ap =1
k=01 k=05 k=10 k=20 k=5.0 k=8.0 k=100
[36] 3.246(—1) 7.170(-1) 8.577(—1) 9.609(—1) 1.046 1.073 1.083
This work 3247(-1) 7.171(-1) 8.576(—1) 9.609—1) 1.046 1.073 1.083

In order to check our results against those of Ohwada, Aoki and Sone [36], we compare in Table 4 our values of the non-
dimensional heat flux to the results reported in [36]. In order to make this comparison, we have used the expression
21/2
T 8k’
wherek is the scaling factor used in [36], to define the half thickness of the gas. While we believe our resyléstbfor O
are, in general, correct to six figures of accuracy, we see that we have essentially perfect agreement with the four significant
figures reported by Ohwada, Aoki and Sone [36].
In regard to the problem of reverse temperature gradient, we have made use of early works by Pao [14] and by Thomas, Chang
and Siewert [15] that are based on the BGK kinetic model. While the paper of Pao [14] gave the first asymptotic) fesult
Br (00) = 3.5, the first definitive (BGK) resulr (co0) = 3.7723 was reported in [15]. In more recent times, Sone, Ohwada and
Aoki [16] used the linearized Boltzmann equation (for rigid-sphere interactions) t@jitico) = 3.6992; see also a paper by
Aoki and Masukawa [37] that makes use of a non-linear BGK model equation. Here, using the linearized Boltzmann equation
for rigid spheres, our Legendre expansion and the ADO method, we obtained the8jgeult = 3.6996. Our general results
for this problem are given in Tables 5-8. In Tables 5, 6 and 7 we give our results for the two special problems, labeled with
the indicesk = 1 and 2, so that desired results for any specified value of the parafhetevailable as a linear combination

(98)
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Table 5
The problem of a reverse temperature gradient
a -Up —U> 01 —02
0.1 5.3689-1) 1.1036 238571-1) 5.00371-1)
05 5.0653—1) 1.0991 16729-1) 3.6307—1)
10 4.9467—1) 1.1108 12586—1) 2.7541-1)
15 4.8885—1) 1.1207 10147—1) 2.2269—1)
2.0 4.8522-1) 1.1279 85124-2) 1.8705-1)
25 4.8267(—1) 1.1333 73351(—2) 1.6127(—1)
5.0 47628 -1) 1.1473 43408 —2) 9.5481(—2)
9.0 4.7263-1) 1.1553 26263—2) 5.7770—2)
13.0 47105-1) 1.1588 18827—2) 4.1413-2)
Table 6
The problem of a reverse temperature gradient
a Br Bo —U1y —Uoy
0.1 51637 35974 25478 -1) 5.3943-1)
0.5 45030 36705 22444-1) 5.3487-1)
1.0 4.0607 36882 21257-1) 5.4662—1)
15 3.8468 36946 20676-1) 5.5647-1)
2.0 37443 36974 20312-1) 5.6374—-1)
25 3.6979 36986 20058 —1) 5.6914—1)
5.0 36838 36996 19419-1) 5.8310—-1)
9.0 3.6984 36996 19054—1) 5.9113-1)
130 36996 36996 18896 —1) 5.9461(—1)
150 3.6996 36996 18846—1) 5.9570—1)
Table 7
The problem of a reverse temperature gradient for the casé
T —T1(v) Ni(7) Tr(7) Na(7)
0.0 Q0 0.0 0.0 0.0
0.1 10697—2) 1.6599-2) 2.7426-2) —1.2010-2)
0.2 21398 -2) 3.3490—2) 5.5063—-2) —2.3504—2)
0.3 32105-2) 5.1000—2) 8.3140—-2) —3.3908-2)
0.4 42826 —2) 6.9529—2) 1.1193-1) —4.2509—2)
0.5 53569—2) 8.9622—-2) 1.4180-1) —4.8346-2)
0.6 64352—-2) 1.1209-1) 1.7324-1) —4.9982—2)
0.7 75214-2) 1.3824-1) 2.0706-1) —4.5053-2)
0.8 86239-2) 1.7061(—1) 244689 -1) —2.9062—2)
0.9 976871—2) 2.1534-1) 2.8942-1) 8.9304—3)
1.0 11178-1) 3.1031(-1) 3.5985-1) 1.3620-1)
Table 8
Comparison results for the critical valyg:
k=0.01 k=01 k=06 k=10 k=6.0 k=10.0 k=200
[16] 3.6992 3.692 4.590 4.863 5.237 5.227 5.185
This work 3.6996 3.693 4.590 4.863 5.237 5.226 5.177

of these results: see Egs. (80). In Table 6 we also list our resulyfand g, as defined by Egs. (82) and (83), for selected
values of the half thickness In regard to the numerical work, we have, as for the problem of heat transfer, typically used the
approximation paramete#s = 30 andN = 30 in obtaining the results we list in Tables 5-8. Again, while we have no definitive
proof of the accuracy we achieved here, we believe our results are correct to all digits given. To compare our work here with the
best results available, we list in Table 8 our values and those of [16] for the critical alas a function of the parameter

used in Eq. (98) to define the vapor half thickness.
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Table 9
Half-space temperature and density profiles
Evaporation/condensation Heat transfer
T —T(7) —N(7) T(7) —N(7)
0.0 40355-1) 1.3073 86474 —1) 4.1042-1)
0.1 42151(—-1) 1.4586 10902 60070—1)
0.2 43036 —1) 15190 12452 73850—1)
0.3 43636 —1) 1.5570 13819 86335—1)
0.4 44074-1) 1.5835 15091 98153 -1)
0.5 44406 1) 1.6031 16301 10956
0.6 44663 —1) 1.6180 17469 12068
0.7 44865—1) 1.6296 18607 13160
0.8 45024—1) 1.6389 19722 14237
0.9 45152-1) 1.6463 20818 15302
1.0 45254 —1) 1.6524 21899 16357
2.0 45611(—1) 1.6779 32303 26642
5.0 45576 —1) 1.6853 62476 56781
7.0 45563 —1) 1.6855 82484 76789
Table 10
Comparison results: evaporation/condensation problem
-T7(0) —N(0) —T(c0) —N(c0)
[38] 4.0368-1) 1.3074 45566 —1) 1.6856
[39] 4.036 (—1) 1.307 4556 (—1) 1.686
This work 40355-1) 1.3073 45559-1) 1.6855

The formulation of the evaporation/condensation problem we considered in this work is based on two early papers by
Pao [17] and Siewert and Thomas [18] both of which are based on the BGK kinetic model. However, Sone, Ohwada and
Aoki [38] and Loyalka [39] have, more recently, solved this same problem as based on the linearized Boltzmann equation for
rigid-sphere interactions. While the four papers mentioned [17,18,38,39] are the ones most related to our work here, a new paper
by Sone [40] gives an extensive discussion of general evaporation and condensation problems and is a good source of other
reference material. Our numerical results for the temperature and density perturbations are given in Table 9, and in Table 10 we
compare our most basic results to those of Sone, Ohwada and Aoki [38] and to those of Loyalka [39]. We believe our results to
be correct to all digits given.

Finally, the heat-transfer problem solved in this work was also discussed in terms of the BGK kinetic model in [17] and [18].

In Table 9 we report our results for the temperature and density profiles. As mentioned previously in this work, the temperature
perturbation is the same as for the temperature-jump problem [1] for the case of diffuse reflection (accommodation coefficient
equal to unity), while the density perturbation differs only by an additive constant from the density profile for that same
temperature-jump problem.

To conclude this section, we note that we base the confidence we have in the reported numerical results essentially on two
observations: firstly, our results are stable with respect to changes in the number of Legendre terms used in Eq. (49) and with
respect to changes in the orderof the ADO method used, and secondly, our codes yielded known BGK results when the
Pekeris components in the scattering kernel and the collision frequency were replaced by the appropriate BGK versions of these
guantities. Of course, this is not a proof of the accuracy achieved since we kept only the first nine terms in Eq. (18), and the
“multigroup” constants listed as Egs. (52)—(54) where evaluated by numerical integration.

6. Concluding comments

We have used a new polynomial expansion technique and the Pekeris [7] expanded form of the scattering kernel basic to the
linearized Boltzmann equation for rigid-sphere collisions to define a system of coupled transport problems that has been solved
efficiently and accurately with a modern version [3] of the discrete-ordinates method usually associated with Chandrasekhar [4]
and the field of radiative transfer. While there exist other basic works that report numerical results for the four problems solved
here, we are of the opinion that our computational methods are especially efficient in regard to accuracy and computer-time
requirements when compared to existing solutions.
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