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Abstract

An analytical version of the discrete-ordinates method (the ADO method) is used to establish concise and particularly
solutions to the viscous-slip and the half-space thermal-creep problems for a binary gas mixture. The kinetic equat
to describe the flow are based on the McCormack model for mixtures. In addition to a computation of the viscous-
thermal-slip coefficients, for the case of Maxwell boundary conditions for each of the two species, the velocity, heat-flow a
shear-stress profiles are established for both types of particles. Numerical results are reported for three binary mixture
He–Ar and He–Xe) with various molar concentrations. The complete solution requires only a (matrix) eigenvalue/eig
routine and the solution of a system of linear algebraic equations, and thus the algorithm is considered especiall
use. The developed (FORTRAN) code requires typically less than 0.1 seconds on a 1.2 GHz Pentium-based PC to
problems.
 2003 Elsevier SAS. All rights reserved.

1. Introduction

The study of slip phenomena in gas flows over plane boundaries is of major importance in gas dynamics, especia
the flow is in the transition or in the slip regimes [1,2]. In the transition regime the application of the Boltzmann equatio
or of kinetic model equations is necessary to describe the thermal creep and the mechanocaloric effects. In addition,
regime the determination of the appropriate slipboundary conditions to be coupled withthe hydrodynamic continuum equations
should be obtained from the solution of kinetic type equations (BE or suitable models). The fundamental theoretical sig
and the great practical importance of the slip coefficients easily justify the interest in this area of research. Most wor
regard has been focused on the case of a single gas [3–6]; however, the case of gas mixtures has also received som
attention [7–12]. Efforts are now being made [13–18] to extend early work on gas mixtures in order to solve complicate
gas problems in an efficient and accurate manner. This is achieved by adapting well-developed techniques for single-c
gases to gas mixtures. The renewed interest in these problems is justified by the basic need of a thorough unders
micro and mesoscale transport phenomena in mixtures due to an increasing number of technological applications [19

One of the major difficulties in dealing with gas mixtures is the large number of parameters (concentration ratios, m
masses and diameters, gas-surface accommodation coefficients, intermolecular laws and forces), which are invol
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it is important to develop methodologies able to handle all these parameters with a modest computational effort. To
this kind of problem Ivchenko, Loyalka and Tompson [16,17] have developed general and convenient expressions fo
coefficients of various binary gases. These authors compared their results with experimental work [21,22] and concl
there was good agreement when the theoretical results are obtained through a second-order Chapman-Enskog app
Sharipov and Kalempa [14,15] have recently reported solutions of the velocity-slip and thermal-slip problems for three diffe
gas mixtures based on the McCormack model equation [23]. Sharipov and Kalempa implemented the discrete-velocit
to solve the coupled equations, and they reported that they found good agreement with results [16,17] deduced
Boltzmann equation. We consider that Sharipov and Kalempa [13–15] have demonstrated the merits of the McCorma
model for describing binary gas flows.

During the last few years, an analytical version of the discrete-ordinates (ADO) method has been developed [24]
established as a simple, efficient and highly accurate methodology for solving problems in rarefied gas dynamics
number of a single-gas flow and thermal problems has been solved in a unified manner [25–27], while the method
been used to solve [28,29] problems for mixtures described by the Hamel model [30]. In the present work the ADO
is used to solve the half-space viscous-slip (or the Kramers’) and thermal-slip (or the half-space thermal-creep) b
flow problems defined by the McCormack model, with specular-diffuse boundary conditions. Ourobjective here is to provide
concise and accurate solutions (to the considered problems) that define what we consider to be a high standard of a
addition to defining good numerical results, these new solutions are valid for wall conditions described by a general specul
diffuse scattering law, and the solutions can be implemented at a computational cost much less, we believe, than t
evaluating basic quantities of interest with strictly numerical solutions. Finally, we note that our numerical results are
on a species-specific basis so that various ways (that could depend on a specific application) of defining the velocity,
and shear-stress profiles for the binary mixture can be used. While we report, in this work, the viscous-slip and the
coefficients, we also establish velocity, heat-flow and shear-stress profiles.

2. The McCormack model

In this work we base our analysis of a binary gas mixture on the McCormack model as introduced in an important pa
published in 1973. While we use this model as defined in [23], we use an explicit notation that is appropriate to the
and computations we report here. We consider that the required functionshα(x,v) for the two type of particles (α = 1 and 2)
denote perturbations from Maxwellian distributions for each species, i.e.,

fα(x,v) = fα,0(v)
[
1+ hα(x,v)

]
, (1)

where

fα,0(v) = nα

(
λα

π

)3/2
e−λαv2

, λα = mα

2kT0
. (2)

Herek is the Boltzmann constant,mα andnα are the mass and the equilibrium density of theα-th species,x is the spatial
variable (measured, for example, in cm),v, with componentsvx, vy, vz and magnitudev, is the particle velocity, andT0 is a
reference temperature. It follows from McCormack’s work [23]that the perturbations satisfy (for the case of variations in o
one spatial variable) the coupled equations

cx
∂

∂x
hα(x, c) + ωαγαhα(x, c) = ωαγαLα{h1, h2}(x, c), α = 1,2, (3)

where the vectorc, with componentscx, cy , cz and magnitudec, is a dimensionless variable,

ωα =
[

mα

2kT0

]1/2
, (4)

and the collision frequenciesγα are to be defined. Here we write the integral operators as

Lα{h1, h2}(x, c) = 1

π3/2

2∑
β=1

∞∫
−∞

∞∫
−∞

∞∫
−∞

e−c′2
hβ(x, c′)Kβ,α(c′, c)dc′

x dc′
y dc′

z, (5)

where the kernelsKβ,α(c′, c) are listed explicitly in Appendix A of this paper. We note that in obtaining Eq. (3) from the f
given by McCormack [23], we have introduced the dimensionless vectorc differently in the two equations, i.e., for the ca
α = 1 we used the transformationc = ω1v, whereas for the caseα = 2 we used the transformationc = ω2v. It can be noted tha
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by changing the independent variablev differently in the two balance equations, we arrive at the convenient form displayed in

re valid
Eq. (3). As we wish to work with a dimensionless spatial variable, we introduce

τ = x

l0
, (6)

where

l0 = µv0

P0
(7)

is the mean-free path (based on viscosity) introduced by Sharipov and Kalempa [14]. Here, following [14], we write

v0 =
(

2kT0

m

)1/2
, (8)

where

m = n1m1 + n2m2

n1 + n2
. (9)

Continuing to follow [14], we express the viscosity of the mixture in terms of the partial pressuresPα and the collision
frequenciesγα as

µ = P1

γ1
+ P2

γ2
, (10)

where

Pα

P0
= nα

n1 + n2
, (11)

γ1 = [
Ψ1Ψ2 − ν

(4)
1,2ν

(4)
2,1

][
Ψ2 + ν

(4)
1,2

]−1 (12a)

and

γ2 = [
Ψ1Ψ2 − ν

(4)
1,2ν

(4)
2,1

][
Ψ1 + ν

(4)
2,1

]−1
. (12b)

Here definitions given in Appendix A have been used,

Ψ1 = ν
(3)
1,1 + ν

(3)
1,2 − ν

(4)
1,1 (13a)

and

Ψ2 = ν
(3)
2,2 + ν

(3)
2,1 − ν

(4)
2,2. (13b)

Finally, to compact our notation we introduce

σα = γαωαl0 (14)

or, more explicitly,

σα = γα
n1/γ1 + n2/γ2

n1 + n2

(
mα

m

)1/2
, (15)

and so we rewrite Eq. (3) in terms of theτ variable as

cx
∂

∂τ
hα(τ, c) + σαhα(τ, c) = σαLα{h1, h2}(τ, c). (16)

In this work we consider the viscous-slip and thermal-slip problems, and so we will seek solutions of Eqs. (16) that a
for all τ > 0, and we use Maxwell boundary conditions at the wall, viz.,

hα(0, cx , cy , cz) = (1− aα)hα(0,−cx, cy , cz) + aαI{hα}(0), (17)

for cx > 0 and allcy andcz. Note that

hα(τ, c) ⇔ hα(τ, cx , cy , cz) (18)
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and that we usea1 anda2 to denote the two accommodation coefficients. In addition, we have used

dary
d

I{hα}(τ) = 2

π

∞∫
−∞

∞∫
−∞

∞∫
0

e−c′2
hα(τ,−c′

x , c′
y , c′

z)c
′
x dc′

x dc′
y dc′

z (19)

to denote the diffuse term in Eq.(17). In this work, we considerhalf-space problems, and so we must, in addition to the boun
condition listed as Eq. (17), specify some conditions on the desired solutions asτ tends to infinity. This point will be addresse
later in this work when the two specific problems of interest are discussed in detail.

Here we seek to compute the velocity profiles

uα(τ) = 1

π3/2

∞∫
−∞

∞∫
−∞

∞∫
−∞

e−c2
hα(τ, c)cz dcx dcy dcz, (20a)

the shear-stress profiles

pα(τ) = 1

π3/2

∞∫
−∞

∞∫
−∞

∞∫
−∞

e−c2
hα(τ, c)cxcz dcx dcy dcz (20b)

and the heat-flow profiles

qα(τ) = 1

π3/2

∞∫
−∞

∞∫
−∞

∞∫
−∞

e−c2
hα(τ, c)(c2 − 5/2)cz dcx dcy dcz, (20c)

and so we can obtain these quantities from “moments” of Eq. (16). To this end, we first multiply Eq. (16) by

φ1(cy , cz) = 1

π
e−(c2

y+c2
z )

cz (21)

and integrate over allcy and allcz. We then repeat this procedure using

φ2(cy , cz) = 1

π
e−(c2

y+c2
z )(

c2
y + c2

z − 2
)
cz. (22)

Defining

g2α−1(τ, cx) =
∞∫

−∞

∞∫
−∞

φ1(cy, cz)hα(τ, c)dcy dcz (23a)

and

g2α(τ, cx) =
∞∫

−∞

∞∫
−∞

φ2(cy , cz)hα(τ, c)dcy dcz, (23b)

we find from these projections four coupled balance equations which we write (in matrix notation) as

ξ
∂

∂τ
G(τ, ξ) + ΣG(τ, ξ) = Σ

∞∫
−∞

ψ(ξ ′)K(ξ ′, ξ)G(τ, ξ ′)dξ ′, (24)

where the components ofG(τ, ξ) aregα(τ, ξ), for α = 1,2,3,4, where we now useξ in place ofcx and where

Σ = diag{σ1, σ1, σ2, σ2} (25)

and

ψ(ξ) = π−1/2 e−ξ2
. (26)

In addition, the componentski,j (ξ ′, ξ) of the kernelK(ξ ′, ξ) are as listed in Appendix B of this work.
So, if we can solve Eq. (24) we can compute the quantities of interest from
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uα(τ) =
∞∫

ψ(ξ)g2α−1(τ, ξ)dξ, (27a)

to

0),
−∞

pα(τ) =
∞∫

−∞
ψ(ξ)g2α−1(τ, ξ)ξ dξ (27b)

and

qα(τ) =
∞∫

−∞
ψ(ξ)

[(
ξ2 − 1

2

)
g2α−1(τ, ξ) + g2α(τ, ξ)

]
dξ. (27c)

To complete this section, we project Eq. (17) againstφ1(cy, cz) andφ2(cy, cz) to find the boundary condition

G(0, ξ) − SG(0,−ξ) = 0, ξ ∈ (0,∞), (28)

subject to which we must solve Eq. (24). Here

S = diag{1− a1,1− a1,1− a2,1− a2}. (29)

In addition to the boundary condition listed as Eq. (28), acondition, for each of the two considered problems, onG(τ, ξ) asτ

tends to infinity must also be specified. This will be done later in this work.

3. The elementary solutions

As we intend to find a particular solution if an inhomogeneous source termS(ξ) is added to Eq. (24), we now proceed
establish (in terms of the ADO method) the elementary solutions of

ξ
∂

∂τ
G(τ, ξ) + ΣG(τ, ξ) = Σ

∞∫
−∞

ψ(ξ ′)K(ξ ′, ξ)G(τ, ξ ′)dξ ′. (30)

We seek solutions of Eq. (30) of the form

G(τ, ξ) = Φ(ν, ξ)e−τ/ν , (31)

where the separation constantsν and the elementary solutionsΦ(ν, ξ) are to be determined. Substituting Eq. (31) into Eq. (3
we find

(νΣ − ξI )Φ(ν, ξ) = νΣ

∞∫
0

ψ(ξ ′)
[
K(ξ ′, ξ)Φ(ν, ξ ′) + K(−ξ ′, ξ)Φ(ν,−ξ ′)

]
dξ ′ (32a)

and

(νΣ + ξI )Φ(ν,−ξ) = νΣ

∞∫
0

ψ(ξ ′)
[
K(ξ ′,−ξ)Φ(ν, ξ ′) + K(−ξ ′,−ξ)Φ(ν,−ξ ′)

]
dξ ′ (32b)

from which we conclude, since

K(ξ ′,−ξ) = K(−ξ ′, ξ), (33)

that

Φ(ν, ξ) = Φ(−ν,−ξ). (34)

Now, adding and subtracting Eqs. (32), one from the other, we find that

1

ξ2

[
Σ2V (ν, ξ) −

∞∫
0

ψ(ξ ′)K(ξ ′, ξ)V (ν, ξ ′)dξ ′
]

= λV (ν, ξ) (35a)
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U(ν, ξ) = ν

ξ
Σ V (ν, ξ) −

∞∫
0

ψ(ξ ′)K−(ξ ′, ξ)V (ν, ξ ′)dξ ′ , (35b)

where

U(ν, ξ) = Φ(ν, ξ) + Φ(ν,−ξ) (36a)

and

V (ν, ξ) = Φ(ν, ξ) − Φ(ν,−ξ). (36b)

Here

λ = 1

ν2
, (37)

K+(ξ ′, ξ) = K(ξ ′, ξ) + K(−ξ ′, ξ), (38a)

K−(ξ ′, ξ) = K(ξ ′, ξ) − K(−ξ ′, ξ) (38b)

and

K(ξ ′, ξ) = ξ

ξ ′ ΣK+(ξ ′, ξ)Σ + Σ2K−(ξ ′, ξ) −
∞∫

0

ψ(ξ ′′) ξ

ξ ′′ ΣK+(ξ ′′, ξ)ΣK−(ξ ′, ξ ′′)dξ ′′. (39)

We now introduce a “half-range” quadrature scheme (with weights and nodes,wk andξk ) and rewrite Eqs. (35) evaluated at t
quadrature points as

1

ξ2
i

[
Σ2V (νj , ξi) −

N∑
k=1

wkψ(ξk)K(ξk, ξi)V (νj , ξk)

]
= λjV (νj , ξi) (40)

and

U(νj , ξi) = νj

ξi
Σ

[
V (νj , ξi ) −

N∑
k=1

wkψ(ξk)K−(ξk, ξi)V (νj , ξk)

]
, (41)

for i = 1,2, . . . ,N . Eq. (40) defines our eigenvalue problem, to which we have added the subscriptj to label the eigenvalue
and eigenvectors. Once this eigenvalue problem is solved, we have the elementary solutions from

Φ(νj , ξi) = 1

2

[
U (νj , ξi) + V (νj , ξi)

]
(42a)

and

Φ(νj ,−ξi) = 1

2

[
U (νj , ξi ) − V (νj , ξi)

]
. (42b)

Note that the separation constants defined by

νj = ±λ
−1/2
j (43)

occur in± pairs. From this point, we takeνj to be the positive root listed in Eq. (43). Once we have solved the eigen
problem defined by Eq. (40), we can write our general (discrete ordinates) solution to Eq. (30) as

G(τ,±ξi ) =
4N∑
j=1

[
AjΦ(νj ,±ξi )e−τ/νj + BjΦ(νj ,∓ξi )eτ/νj

]
, (44)

for i = 1,2, . . . ,N . Here the arbitrary constants{Aj } and {Bj } are to be determined from the boundary conditions of
specific problem. Before proceeding to develop our solutions tothe viscous-slip and the thermal-slip problems, we make
modification to Eq. (44). While we could use the solution as given by Eq. (44), we can also improve it. We have found
eigenvalue problem yields one separation constant, sayν1, that approximates the one expected unbounded separation con
And so, instead of using what we see as an approximate solution that corresponds toν1 in Eq. (44), we replace the contributio
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from ν1 with the exact solution we would expect if the approximation parameterN were unbounded. In this way, we replace
rm,

roblems

r works

ed in
different

d so our
uired to

listed as
we

re
one (the least accurate) approximate solution with an exact solution that allows us to capture the correct asymptotic fo

G(τ,±ξi ) = AG+ + BG−(τ,±ξi ) +
4N∑
j=2

[
AjΦ(νj ,±ξi )e−τ/νj + BjΦ(νj ,∓ξi )eτ/νj

]
, (45)

for i = 1,2, . . . ,N . Here

G+ =



1
0
s

0


 and G−(τ, ξ) =




σ1τ − ξ

0
sσ1(τ − ξ/σ2)

0


 (46a,b)

are two exact solutions of Eq. (30). In the work, we use

r =
(

m1

m2

)1/2
and s =

(
m2

m1

)1/2
(47a,b)

in order to compact our notation.

4. The problems

Having developed our elementary solutions of Eq. (30), we are now ready to use them to solve the two specific p
basic to our current study. First, however, we note that while Eqs. (20) define the species-specific quantitiesuα(τ), pα(τ) and
qα(τ), for α = 1,2, the way to define the basic elements for a binary gas mixture is not so clear. Here we follow othe
[13–18] and define these basic elements as

u(τ) = ϕu,1u1(τ) + ϕu,2u2(τ), (48a)

p(τ) = ϕp,1p1(τ) + ϕp,2p2(τ) (48b)

and

q(τ) = ϕq,1q1(τ) + ϕq,2q2(τ), (48c)

where the “adaptation coefficients”ϕi,α, i = u,p,q, α = 1,2, are to be specified. Since these factors have been defin
several ways in other works [13–18], and since the choice of these factors could conveniently be made differently for
applications of the theory, we develop our solution and report our numerical results without specifying these factors.

4.1. The viscous-slip problem

The viscous-slip problem (also known as Kramers’ problem) has no driving (inhomogeneous) term in Eq. (24), an
solution can be constructed from Eq. (45). Since there is no explicit driving term for this problem, the solution is req
diverge asτ tends to infinity, but at the same time the bulk velocity of the mixture should satisfy

lim
τ→∞

d

dτ
u(τ) = kp, (49)

wherekp is a normalization constant that depends on the choice of adaptation factors to be used. The condition
Eq. (49) requires us to takeBj = 0 in Eq. (45), and in order to accommodate all choices of adaptation factors to be used,
first normalize our solution by taking

B = 1

σ1
. (50)

It follows that the constantsA andAj can be obtained from the system of linear algebraic equations we find when

G(τ,±ξi ) = AG+ + 1

σ1
G−(τ,±ξi) +

4N∑
j=2

AjΦ(νj ,±ξi)e−τ/νj (51)

is substituted into a discrete-ordinates version of Eq. (28) evaluated at theN quadrature pointsξi . Once these constants a
established we can use Eqs. (27) and express our final results as
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u1(τ) = A + τ +
4N∑

AjNu,1(νj )e−τ/νj , (52a)

factors.

-
ptation
solved
j=2

u2(τ) = s(A + τ) +
4N∑
j=2

AjNu,2(νj )e−τ/νj , (52b)

p1(τ) = −1

2
+

4N∑
j=2

AjNp,1(νj )e−τ/νj , (52c)

p2(τ) = −1

2

sσ1

σ2
+

4N∑
j=2

AjNp,2(νj )e−τ/νj (52d)

and

qα(τ) =
4N∑
j=2

AjNq,α(νj )e−τ/νj . (52e)

If we useuasy(τ) to denote the asymptotic part (the part that excludes the exponential factors) ofu(τ) then

u1,asy(τ) = A + τ (53a)

and

u2,asy(τ) = s(A + τ), (53b)

where Eq. (47b) has been noted. And so using the definition

ζP = uasy(0)

u′
asy(0)

, (54)

we see that

ζP = A (55)

is the viscous slip coefficient for the bulk velocity of the mixture defined by Eq. (48a) for any choice of the adaptation
To complete Eqs. (52), we find

Nu,α(νj ) = FT
α

N∑
k=1

wkψ(ξk)
[
Φ(νj , ξk) + Φ(νj ,−ξk)

]
, (56a)

Np,α(νj ) = FT
α

N∑
k=1

wkψ(ξk)ξk
[
Φ(νj , ξk) − Φ(νj ,−ξk)

]
(56b)

and

Nq,α(νj ) =
N∑

k=1

wkψ(ξk)F
T
q,α(ξk)

[
Φ(νj , ξk) + Φ(νj ,−ξk)

]
, (56c)

where we use the superscript T to denote the transpose operation and where

F1 =



1
0
0
0


 , F 2 =




0
0
1
0


 , F q,1(ξ) =




ξ2 − 1/2
1
0
0


 and F q,2(ξ) =




0
0

ξ2 − 1/2
1


 . (57a–d)

While we have introduced the (arbitrary) normalization listed in Eq. (50), the bulk velocity

u(τ) = kP
ϕu,1u1(τ) + ϕu,2u2(τ)

ϕu,1 + sϕu,2
(58)

will satisfy Eq. (49) for any choice of the adaptation factors.
In regard to our numerical work, we report in a following section of this work, the viscous-slip coefficientζP and the species

specific profilesuα(τ) andqα(τ) for selected sets of data. In this way results are available for any choice of the ada
factorsϕi,α . Having completed our solution to the viscous-slip problem, we look now at the second of the two problems
in this work.
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4.2. The half-space thermal creep problem

er

)

h we
In regard to the case of thermal creep, the flow is caused by a constant temperature gradient in the direction (z: parallel to
the wall) of the flow, and so it is helpful tolinearize the particle velocity distribution functions about a local Maxwellian, rath
than an absolute Maxwellian as was done in Eq. (1). We thus write

fα(τ, η, c) = fα,0(c)

{
1+ η

[(
c2 − 3

2

)
Kη + Rη

]
+ hα(τ, c)

}
, (59)

whereη = z/l0, Kη andRη are the (non-dimensional) temperature and density gradients in theη direction and

fα,0(c) = nα

(
λα

π

)3/2
e−c2

, λα = mα

2kT0
. (60)

For the problem of thermal creep we takeRη = −Kη, and then letkT = Kη so that Eq. (59) becomes

fα(τ, η, c) = fα,0(c)

[
1+ η

(
c2 − 5

2

)
kT + hα(τ, c)

]
. (61)

As a result of this linearizion, an inhomogeneous source

S(ξ) = kT




(1/2)(ξ2 − 1/2)

1

(1/2)(ξ2 − 1/2)

1


 (62)

must now be added to Eq. (24) to yield

S(ξ) + ξ
∂

∂τ
G(τ, ξ) + ΣG(τ, ξ) = Σ

∞∫
−∞

ψ(ξ ′)K(ξ ′, ξ)G(τ, ξ ′)dξ ′. (63)

Since we have linearized about a local Maxwellian, we now require oursolution to Eq. (63) to be bounded asτ tends to
infinity, and so we write our (discrete ordinates) solution as

G(τ,±ξi ) = Gp(τ,±ξi ) + AG+ +
4N∑
j=2

AjΦ(νj ,±ξi)e−τ/νj , (64)

whereGp(τ, ξ) is a particular solution that corresponds to the inhomogeneous driving termS(ξ). We impose the (arbitrary
normalizationkT = 1 and find that we can write

Gp(τ, ξ) =



E(ξ2 − 1/2− sw)

2E

F(ξ2 − 1/2− rw)

2F


 , (65)

where we have again used Eqs. (47). After we note definitions given in Appendix A, we can write

w = 5

4
r
ν
(2)
1,2

ν
(1)
1,2

. (66)

In addition, the two constantsE andF required in Eq. (65) are defined by a system of linear algebraic equations whic
write as

N

[
E

F

]
= 1

2

[
1/σ1
1/σ2

]
, (67)

where the elements ofN are given by

n1,1 = −Φ1 + 5

8

[η(2)
1,2]2
η
(1)
1,2

, (68a)

n1,2 = η
(6)
1,2 − 5

8
r3

[η(2)
1,2]2
η
(1)
1,2

, (68b)
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n2,1 = η
(6)
2,1 − 5

s3
[η(2)

2,1]2 (68c)

fine

ixture is

cified,

umerical
8 η
(1)
2,1

and

n2,2 = −Φ2 + 5

8

[η(2)
2,1]2
η
(1)
2,1

, (68d)

with

Φ1 = η
(5)
1,1 + η

(5)
1,2 − η

(6)
1,1 (69a)

and

Φ2 = η
(5)
2,2 + η

(5)
2,1 − η

(6)
2,2. (69b)

At this point we can substitute Eq. (64) into a discrete-ordinates version of the boundary condition listed as Eq. (28) to de
a system of linear algebraic equations. After solving the set of algebraic equations for the constantsA and{Aj }, we can write
our final results for the half-space thermal-creep problem as

u1(τ) = A − swE +
4N∑
j=2

AjNu,1(νj )e−τ/νj , (70a)

u2(τ) = sA − rwF +
4N∑
j=2

AjNu,2(νj )e−τ/νj , (70b)

pα(τ) =
4N∑
j=2

AjNp,α(νj )e−τ/νj , (70c)

q1(τ) = 5

2
E +

4N∑
j=2

AjNq,1(νj )e−τ/νj (70d)

and

q2(τ) = 5

2
F +

4N∑
j=2

AjNq,2(νj )e−τ/νj , (70e)

where we continue to use the definitions given by Eqs. (56). Considering that the thermal-slip coefficient for the m
given by

ζT = lim
τ→∞u(τ), (71)

we can write

ζT = (ϕu,1 + sϕu,2)A − w(sϕu,1E + rϕu,2F). (72)

In contrast to the viscous-slip problem, we see that here the slip coefficient depends on the factorsϕu,1 andϕu,2, and so for this
reason we intend to report

ζ1 = u1(∞) = A − swE (73a)

and

ζ2 = u2(∞) = sA − rwF (73b)

as well as species-specific profilesuα(τ) andqα(τ) for selected sets of data. It follows that once adaptation factors are spe
the thermal-slip coefficient for the mixture can be evaluated from

ζT = ϕu,1ζ1 + ϕu,2ζ2. (74)

As our solutions are complete, we continue with an implementation of the algorithms defined here to establish n
results with what we consider to be a very good standard of accuracy.
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5. Numerical results

nalytical

s, we have
cies:
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problem
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e found
m
e have

0
3
9
0
1
2
6
0
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0
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The first thing to note in regard to our numerical work is the way we defined the quadrature scheme for the a
discrete-ordinates method used in this work. To keep matters simple, we used the transformation

v(ξ) = e−ξ (75)

to mapξ ∈ [0,∞) ontov ∈ [0,1], and we then used the Gauss–Legendre scheme mapped (linearly) onto the interval[0,1]. In
order to evaluate the merits of the solutions developed here for the half-space viscous-slip and thermal-creep problem
elected to use the three data cases defined by Sharipov and Kalempa[14]. These three data cases refer to a mixture of the spe
(i) Ne–Ar, (ii) He–Ar and (iii) He–Xe. As we are reporting numerical work only for the case of rigid-sphere interaction
can see that the McCormack model requires, for this case, only three ratios: the mass ratio(m1/m2), the diameter ratio(d1/d2)

and the density ratio(n1/n2). In addition, by formulating the McCormack model in terms of a convenient mean-free pat
by observing the ratios of parameters that result, we can see that the constant factor(πkT0/32)1/2 in Eq. (A.35) of Appendix
A need not be specified.

For the sake of our computations we consider that the data

m2 = 39.948, m1 = 20.183,
d2

d1
= 1.406 (Ne–Ar mixture),

m2 = 39.948, m1 = 4.0026,
d2

d1
= 1.665 (He–Ar mixture),

and

m2 = 131.30, m1 = 4.0026,
d2

d1
= 2.226 (He–Xe mixture)

are exact. We follow Sharipov and Kalempa [14] and tabulate our results for these three cases in terms of the molar con
defined (in terms of the first particle) as

C = n1/n2

1+ n1/n2
. (76)

In Tables 1–3 we list some typical results for the viscous-slip problem, and similar results for half-space thermal-creep
are listed in Tables 4–7. Although we have computed all thebasic quantitiesuα(τ), qα(τ) andpα(τ), we have (for economy o
space) omittedpα(τ) from our tabulations, and we report results only for two choices of the accommodation coefficient

While we have no definitive proof of the accuracy of our results, we believe the results listed in our tables are correct (wit
the context of the kinetic model used) to all digits given. To establish some confidence in our numerical results, w
stability in the results as we varied the only approximation parameterN from 20 to 100 and we obtained identical results fro
two independently implemented numerical codes: one based on MATLAB and the other on FORTRAN. In addition, w
also used the identity

n1

n
p′

1(τ) + n2

n
p′

2(τ) = 0, (77)

Table 1
The viscous-slip coefficient

Ne–Ar mixture He–Ar mixture He–Xe mixture

a1 = 1.0 a1 = 0.3 a1 = 1.0 a1 = 0.3 a1 = 1.0 a1 = 0.3
a2 = 1.0 a2 = 0.6 a2 = 1.0 a2 = 0.6 a2 = 1.0 a2 = 0.6

C ζP

0.0 1.01837 2.26010 1.01837 2.26010 1.01837 2.2601
0.1 1.02446 2.40900 1.04375 2.37943 1.05671 2.3833
0.2 1.02980 2.57378 1.07010 2.51563 1.09891 2.5259
0.3 1.03424 2.75760 1.09715 2.67285 1.14546 2.6934
0.4 1.03759 2.96460 1.12434 2.85672 1.19678 2.8931
0.5 1.03963 3.20041 1.15059 3.07526 1.25300 3.1362
0.6 1.04008 3.47283 1.17386 3.34006 1.31339 3.4397
0.7 1.03862 3.79302 1.19002 3.66856 1.37452 3.8310
0.8 1.03486 4.17770 1.19034 4.08692 1.42417 4.3545
0.9 1.02831 4.65301 1.15387 4.62895 1.41346 5.0633
1.0 1.01837 5.26255 1.01837 5.26255 1.01837 5.2625
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Table 2
The viscous-slip problem: velocity profiles for each species for the casea = 1.0, a = 1.0 andC = 0.5
1 2

Ne–Ar mixture He–Ar mixture He–Xe mixture

τ u1(τ ) u2(τ ) u1(τ ) u2(τ ) u1(τ ) u2(τ )

0.0 7.55303(−1) 9.64122(−1) 8.46368(−1) 2.46223 9.68271(−1) 4.83343
0.1 9.25139(−1) 1.22950 1.01778 3.05860 1.13443 5.92751
0.2 1.05946 1.43216 1.15358 3.51600 1.26763 6.76873
0.3 1.18367 1.61666 1.27907 3.93269 1.39123 7.53506
0.4 1.30233 1.79106 1.39884 4.32666 1.50949 8.25931
0.5 1.41738 1.95887 1.51487 4.70573 1.62428 8.95576
0.6 1.52989 2.12199 1.62824 5.07417 1.73660 9.63227
0.7 1.64049 2.28160 1.73962 5.43462 1.84708 1.02937(1)

0.8 1.74962 2.43848 1.84944 5.78883 1.95611 1.09433(1)

0.9 1.85756 2.59319 1.95802 6.13805 2.06400 1.15833(1)

1.0 1.96453 2.74612 2.06558 6.48319 2.17095 1.22156(1)

2.0 3.00483 4.22178 3.10979 9.80986 3.21183 1.82941(1)

5.0 6.03383 8.48848 6.14308 1.94062(1) 6.24416 3.57470(1)

9.0 1.00388(1) 1.41233(1) 1.01494(1) 3.20639(1) 1.02513(1) 5.87116(1)

Table 3
The viscous-slip problem: heat-flow profiles for the casea1 = 1.0, a2 = 1.0 andC = 0.5

Ne–Ar mixture He–Ar mixture He–Xe mixture

τ q1(τ ) q2(τ ) q1(τ ) q2(τ ) q1(τ ) q2(τ )

0.0 1.89366(−1) 2.20338(−1) 2.01585(−1) 5.44563(−1) 2.29190(−1) 1.09101
0.1 1.54414(−1) 1.66050(−1) 1.62946(−1) 4.12577(−1) 1.88953(−1) 8.49530(−1)

0.2 1.35151(−1) 1.39133(−1) 1.42141(−1) 3.46192(−1) 1.66994(−1) 7.24066(−1)

0.3 1.20599(−1) 1.20029(−1) 1.26690(−1) 2.98938(−1) 1.50595(−1) 6.32992(−1)

0.4 1.08780(−1) 1.05257(−1) 1.14298(−1) 2.62360(−1) 1.37376(−1) 5.61368(−1)

0.5 9.88249(−2) 9.33169(−2) 1.03960(−1) 2.32786(−1) 1.26292(−1) 5.02669(−1)

0.6 9.02527(−2) 8.33959(−2) 9.51224(−2) 2.08213(−1) 1.16764(−1) 4.53306(−1)

0.7 8.27593(−2) 7.49926(−2) 8.74385(−2) 1.87401(−1) 1.08431(−1) 4.11047(−1)

0.8 7.61370(−2) 6.77728(−2) 8.06745(−2) 1.69523(−1) 1.01050(−1) 3.74389(−1)

0.9 7.02355(−2) 6.15014(−2) 7.46631(−2) 1.53996(−1) 9.44481(−2) 3.42263(−1)

1.0 6.49414(−2) 5.60054(−2) 6.92799(−2) 1.40391(−1) 8.84958(−2) 3.13877(−1)

2.0 3.21782(−2) 2.47749(−2) 3.58737(−2) 6.30190(−2) 5.02212(−2) 1.47335(−1)

5.0 5.77450(−3) 3.66393(−3) 7.48265(−3) 9.93901(−3) 1.32122(−2) 2.50836(−2)

9.0 8.46370(−4) 4.53106(−4) 1.32329(−3) 1.35016(−3) 3.00230(−3) 3.63951(−3)

Table 4
The thermal-slip coefficients for the casea1 = 1.0 anda2 = 1.0

Ne–Ar mixture He–Ar mixture He–Xe mixture

C ζ1 ζ2 ζ1 ζ2 ζ1 ζ2

0.0 6.04774(−1) 5.87362(−1) 4.70214(−1) 5.87362(−1) 4.42313(−1) 5.87362(−1)

0.1 6.00986(−1) 5.83201(−1) 4.73861(−1) 5.80695(−1) 4.54594(−1) 6.04903(−1)

0.2 5.97620(−1) 5.79717(−1) 4.78681(−1) 5.76174(−1) 4.68238(−1) 6.25615(−1)

0.3 5.94687(−1) 5.76933(−1) 4.85008(−1) 5.74625(−1) 4.83582(−1) 6.50701(−1)

0.4 5.92196(−1) 5.74871(−1) 4.93284(−1) 5.77203(−1) 5.01099(−1) 6.82026(−1)

0.5 5.90161(−1) 5.73553(−1) 5.04090(−1) 5.85548(−1) 5.21483(−1) 7.22615(−1)

0.6 5.88592(−1) 5.73006(−1) 5.18165(−1) 6.02021(−1) 5.45779(−1) 7.77615(−1)

0.7 5.87506(−1) 5.73255(−1) 5.36343(−1) 6.30009(−1) 5.75544(−1) 8.56322(−1)

0.8 5.86919(−1) 5.74333(−1) 5.59045(−1) 6.74031(−1) 6.12694(−1) 9.76405(−1)

0.9 5.86859(−1) 5.76278(−1) 5.83581(−1) 7.37580(−1) 6.54585(−1) 1.16839
1.0 5.87362(−1) 5.79143(−1) 5.87362(−1) 8.01401(−1) 5.87362(−1) 1.28637
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Table 5
The thermal-slip coefficients for the casea = 0.3 anda = 0.6
1 2

Ne–Ar mixture He–Ar mixture He–Xe mixture

C ζ1 ζ2 ζ1 ζ2 ζ1 ζ2

0.0 5.49447(−1) 5.09525(−1) 4.45575(−1) 5.09525(−1) 4.28722(−1) 5.09525(−1)

0.1 5.39213(−1) 4.96294(−1) 4.46866(−1) 4.95415(−1) 4.38344(−1) 5.11831(−1)

0.2 5.28974(−1) 4.83141(−1) 4.48563(−1) 4.81026(−1) 4.48693(−1) 5.13670(−1)

0.3 5.18723(−1) 4.70062(−1) 4.50765(−1) 4.66445(−1) 4.59883(−1) 5.14969(−1)

0.4 5.08450(−1) 4.57050(−1) 4.53588(−1) 4.51795(−1) 4.72056(−1) 5.15685(−1)

0.5 4.98144(−1) 4.44097(−1) 4.57144(−1) 4.37239(−1) 4.85384(−1) 5.15856(−1)

0.6 4.87787(−1) 4.31186(−1) 4.61492(−1) 4.22980(−1) 5.00052(−1) 5.15720(−1)

0.7 4.77358(−1) 4.18292(−1) 4.66449(−1) 4.09198(−1) 5.16120(−1) 5.15977(−1)

0.8 4.66824(−1) 4.05375(−1) 4.70961(−1) 3.95757(−1) 5.32701(−1) 5.18251(−1)

0.9 4.56133(−1) 3.92363(−1) 4.70646(−1) 3.80798(−1) 5.42127(−1) 5.24294(−1)

1.0 4.45192(−1) 3.79127(−1) 4.45192(−1) 3.52257(−1) 4.45192(−1) 4.72090(−1)

Table 6
The thermal-creep problem: velocity profiles for each species for the casea1 = 1.0, a2 = 1.0 andC = 0.5

Ne–Ar mixture He–Ar mixture He–Xe mixture

τ u1(τ ) u2(τ ) u1(τ ) u2(τ ) u1(τ ) u2(τ )

0.0 1.61427(−1) 1.33496(−1) 1.57774(−1) 1.34776(−1) 1.72434(−1) 1.58232(−1)

0.1 2.34650(−1) 2.03781(−1) 2.22911(−1) 1.98945(−1) 2.36530(−1) 2.27514(−1)

0.2 2.78299(−1) 2.45648(−1) 2.60670(−1) 2.37882(−1) 2.73967(−1) 2.70694(−1)

0.3 3.11995(−1) 2.78192(−1) 2.89263(−1) 2.68519(−1) 3.02416(−1) 3.05217(−1)

0.4 3.39637(−1) 3.05111(−1) 3.12347(−1) 2.94144(−1) 3.25453(−1) 3.34477(−1)

0.5 3.63026(−1) 3.28090(−1) 3.31610(−1) 3.16251(−1) 3.44727(−1) 3.60018(−1)

0.6 3.83201(−1) 3.48090(−1) 3.48021(−1) 3.35689(−1) 3.61190(−1) 3.82719(−1)

0.7 4.00838(−1) 3.65731(−1) 3.62208(−1) 3.53005(−1) 3.75454(−1) 4.03148(−1)

0.8 4.16409(−1) 3.81444(−1) 3.74605(−1) 3.68577(−1) 3.87948(−1) 4.21698(−1)

0.9 4.30262(−1) 3.95544(−1) 3.85530(−1) 3.82684(−1) 3.98982(−1) 4.38659(−1)

1.0 4.42663(−1) 4.08274(−1) 3.95225(−1) 3.95538(−1) 4.08793(−1) 4.54252(−1)

2.0 5.18478(−1) 4.88964(−1) 4.52587(−1) 4.80487(−1) 4.67313(−1) 5.61595(−1)

5.0 5.77603(−1) 5.57537(−1) 4.94838(−1) 5.61770(−1) 5.11187(−1) 6.77819(−1)

9.0 5.88323(−1) 5.71122(−1) 5.02555(−1) 5.81196(−1) 5.19526(−1) 7.12253(−1)

Table 7
The thermal-creep problem: heat-flow profiles for the casea1 = 1.0, a2 = 1.0 andC = 0.5

Ne–Ar mixture He–Ar mixture He–Xe mixture

τ −q1(τ ) −q2(τ ) −q1(τ ) −q2(τ ) −q1(τ ) −q2(τ )

0.0 8.95414(−1) 7.52679(−1) 8.62425(−1) 7.74480(−1) 9.94638(−1) 8.54990(−1)

0.1 1.12207 9.71566(−1) 1.06318 9.78587(−1) 1.19797 1.06944
0.2 1.25061 1.09138 1.17530 1.09088 1.31439 1.19009
0.3 1.34625 1.17882 1.25793 1.17298 1.40150 1.27952
0.4 1.42232 1.24731 1.32318 1.23737 1.47117 1.35047
0.5 1.48495 1.30299 1.37662 1.28977 1.52887 1.40879
0.6 1.53768 1.34932 1.42140 1.33344 1.57774 1.45784
0.7 1.58275 1.38853 1.45955 1.37044 1.61979 1.49974
0.8 1.62174 1.42212 1.49245 1.40217 1.65640 1.53597
0.9 1.65576 1.45118 1.52111 1.42966 1.68859 1.56759
1.0 1.68568 1.47652 1.54627 1.45366 1.71709 1.59539
2.0 1.85623 1.61626 1.68953 1.58686 1.88563 1.75403
5.0 1.96928 1.70100 1.78730 1.66945 2.01414 1.85916
9.0 1.98609 1.71179 1.80371 1.68046 2.04045 1.87413
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n = n1 + n2, (78)

to see that our computations confirmed (to the same number of digits listed in our tables) that

Π(τ) = n1

n
p1(τ) + n2

n
p2(τ) (79)

is constant. We have also been able (after taking note of some differing definitions) to confirm, for the case of rigid
interactions, the three–four digit numerical results for the viscous-slip problem and the half-space thermal-creep
reported for the case of purely diffuse boundary conditions, i.e.,a1 = 1 anda2 = 1, by Sharipov and Kalempa [14,15] fo
the three mixtures defined in that work. Finally we have seen that our computations yield known results available
S-model calculations [26] when we allow our data to collapse to the single-species gas. We have obtained this redu
single gas in three ways: (i)n1 = 0, for which the quantities with subscript 2 yield the single-gas results, (ii)n2 = 0, for which
the quantities with subscript 1 yield the single-gas results, and (iii)m1 = m2 andd1 = d2. That we obtain identical results from
these three limiting cases can be attributed, we believe, to the good way the mean-free pathl0 used in this work is defined [14
We find it especially interesting to see that theS model can be obtained from the McCormack model when the data for th
mixture is reduced to that of a single species.

In regard to adaptation factors, we note that

ϕu,α = nαmα

n1m1 + n2m2

(
m

mα

)1/2
, α = 1,2, (80)

can be used with our solutions, in the manner of Eq. (48a), to obtain the bulk velocity of the mixture and the slip coe
as they are defined by Sharipov and Kalempa [14,15]. On the other hand, Sharipov and Kalempa [13] and Naris, Valo
Sharipov and Kalempa [18] have used the adaptation factors

ϕu,α = nα

n1 + n2

(
m

mα

)1/2
, α = 1,2, (81)

to define the velocity profile for a binary mixture. Note that the mean molecular massm is defined in Eq. (9).

6. A relationship between the two considered problems

In a recent work [31] Sharipov used physical arguments to provide, within the context of theS model for a single-specie
gas, a relationship between the heat flow from Kramers’ problemand the thermal-slip coefficient. In a following work [32
Siewert used the defining equations relevant to the linearized Boltzmann equation (and some kinetic models) and
the boundary condition (that includes the Maxwell and Cercignani-Lampis boundary conditionsas special cases) to find an
evaluate an explicit relationship between the heat flow from Kramers’ problem and the thermal-slip coefficient. Th
results [31,32] define, for the case of a single-species gas, a relationship between the viscous-slip problem and the
thermal-creep problem that can be used, for example, to help evaluate numerical results obtained for the two problems
extended the mentioned results [31,32] to the currently considered case of a binary-gas mixture described by the Mc
model. Since our derivation follows very closely the one given in [32], we list here only the final result. If we add subscK

for the viscous-slip problem andT for the half-space thermal-creep problem, we find we can write

n1

n
QK,1 + rn2

n
QK,2 = β −

(
n1

nσ1
ζT ,1 + n2

nσ2
ζT ,2

)
, (82)

where

β = −
(

n1

nσ1
E + n2

nσ2
F

)
. (83)

Here,E andF are the constants defined by Eq. (67), the thermal-slip coefficientsζT ,α are as defined by Eqs. (73) and

QK,α =
∞∫

0

qK,α(τ)dτ, (84)

where the heat flow profiles for Kramers’ problem are defined by Eq. (20c). We have confirmed, to many significant
Eq. (82) as part of our testing of the solutions reported in this work.
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7. Concluding remarks

al creep
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cussions

of all, in
To conclude this work, we note that we believe our solutions to the considered problems of viscous slip and therm
are especially concise and easy to use. We have included a general form of the Maxwell boundarycondition in our formulation,
and we have reported what we believe to be highly accurate results for some test cases. It should be noted that our
species-specific results listed, for the two considered problems, in Eqs. (52) and (70) are continuous in theτ variable and thus
are valid for allτ � 0.

In this work we have considered only the case of rigid-sphere interactions, but as pointed out by Sharipov and
[14] the solutions can be used for other scattering laws such the one defined by the Lennard-Jones potential simply
instead of Eqs. (A.34) and (A.35), appropriate definitions of the omega integrals [1,2]. In addition, it is clear that we no
essentially all we need to solve well the classical flow problems (Poiseuille, thermal creep and Couette) in a plane cha
binary gas mixture that can be described by the McCormack model. In developing our solutions here for the McCormac
we have noted one aspect of the computation that made this work especially interesting when compared to our prev
[28,29] for mixtures described by the Hamel model. This aspectof the solution can be seen in Eq. (39) where there appea
integral term that we have not seen in any of our previous work with the ADO method. While this integral term has r
some attention, the ensuing additional work is considered modest when we take into account the merits of the Mc
model. We also see that the way in which Eqs. (35) and (39) were formulated can be utilized for other problems in rar
dynamics.

Since our solutions require only a matrix eigenvalue/eigenvector routine and a solver of linear algebraic equat
algorithm is especially efficient, fast and easy to implement. In fact, the developed (FORTRAN) code solves both prob
all quantities of interest with 5 or 6 figures of accuracy in less than 0.1 seconds on a 1.2 GHz mobile PentiumIII machine –
which confirms, we believe, the merit of this work.
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Appendix A. Basic elements of the defining equations

Here we list some basics results that are required to define certain elements of the main text of this paper. First
regard to Eq. (5), we note that

Kβ,α(c′, c) = K
(1)
β,α(c′, c) + K

(2)
β,α(c′, c) + K

(3)
β,α(c′, c) + K

(4)
β,α(c′, c), α,β = 1,2, (A.1)

where

K
(1)
1,1(c

′, c) = 1+ {
2
[
1− η

(1)
1,2

] − η
(2)
1,2

(
c′2 − 5/2

)}
c′ · c, (A.2)

K
(2)
1,1(c

′, c) = (2/3)
[
1− 2r∗η

(1)
1,2

](
c′2 − 3/2

)(
c2 − 3/2

)
, (A.3)

K
(3)
1,1(c

′, c) = 2�1
[
(c′ · c)2 − (1/3)c′2c2]

, (A.4)

K
(4)
1,1(c

′, c) = [
(4/5)β1

(
c′2 − 5/2

) − η
(2)
1,2

](
c2 − 5/2

)
c′ · c, (A.5)

K
(1)
2,1(c

′, c) = r
{
2η

(1)
1,2 + η

(2)
1,2

[
r2(c′2 − 5/2

) + c2 − 5/2
]}

c′ · c, (A.6)

K
(2)
2,1(c

′, c) = (4/3)r∗η
(1)
1,2

(
c′2 − 3/2

)(
c2 − 3/2

)
, (A.7)

K
(3)
2,1(c

′, c) = 2η
(4)
1,2

[
(c′ · c)2 − (1/3)c′2c2]

, (A.8)

K
(4)
2,1(c

′, c) = (4/5)η
(6)
1,2

(
c′2 − 5/2

)(
c2 − 5/2

)
c′ · c, (A.9)

K
(1)
2,2(c

′, c) = 1+ {
2
[
1− η

(1)
2,1

] − η
(2)
2,1

(
c′2 − 5/2

)}
c′ · c, (A.10)

K
(2)
2,2(c

′, c) = (2/3)
[
1− 2s∗η

(1)
2,1

](
c′2 − 3/2

)(
c2 − 3/2

)
, (A.11)

K
(3)
2,2(c

′, c) = 2�2
[
(c′ · c)2 − (1/3)c′2c2]

, (A.12)
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K
(4)
2,2(c

′, c) = [
(4/5)β2

(
c′2 − 5/2

) − η
(2)
2,1

](
c2 − 5/2

)
c′ · c, (A.13)
K
(1)
1,2(c

′, c) = s
{
2η

(1)
2,1 + η

(2)
2,1

[
s2(

c′2 − 5/2
) + c2 − 5/2

]}
c′ · c, (A.14)

K
(2)
1,2(c

′, c) = (4/3)s∗η
(1)
2,1

(
c′2 − 3/2

)(
c2 − 3/2

)
, (A.15)

K
(3)
1,2(c

′, c) = 2η
(4)
2,1

[
(c′ · c)2 − (1/3)c′2c2]

(A.16)

and

K
(4)
1,2(c

′, c) = (4/5)η
(6)
2,1

(
c′2 − 5/2

)(
c2 − 5/2

)
c′ · c. (A.17)

Here

r∗ = r2/
(
1+ r2)

(A.18)

and

s∗ = s2/
(
1+ s2)

. (A.19)

In addition,

�1 = 1+ η
(4)
1,1 − η

(3)
1,1 − η

(3)
1,2, (A.20)

�2 = 1+ η
(4)
2,2 − η

(3)
2,2 − η

(3)
2,1, (A.21)

β1 = 1+ η
(6)
1,1 − η

(5)
1,1 − η

(5)
1,2 (A.22)

and

β2 = 1+ η
(6)
2,2 − η

(5)
2,2 − η

(5)
2,1, (A.23)

where

η
(k)
i,j

= ν
(k)
i,j

/γi . (A.24)

Following McCormack [23], we write

ν
(1)
α,β = 16

3

mα,β

mα
nβΩ11

αβ, (A.25)

ν
(2)
α,β = 64

15

(
mα,β

mα

)2
nβ

(
Ω12

αβ − 5

2
Ω11

αβ

)
, (A.26)

ν
(3)
α,β = 16

5

(
mα,β

mα

)2 mα

mβ
nβ

(
10

3
Ω11

αβ + mβ

mα
Ω22

αβ

)
, (A.27)

ν
(4)
α,β = 16

5

(
mα,β

mα

)2 mα

mβ
nβ

(
10

3
Ω11

αβ − Ω22
αβ

)
, (A.28)

ν
(5)
α,β = 64

15

(
mα,β

mα

)3 mα

mβ
nβΓ

(5)
α,β (A.29)

and

ν
(6)
α,β = 64

15

(
mα,β

mα

)3(
mα

mβ

)3/2
nβΓ

(6)
α,β , (A.30)

with

Γ
(5)
α,β = Ω22

αβ +
(

15mα

4mβ
+ 25mβ

8mα

)
Ω11

αβ −
(

mβ

2mα

)(
5Ω12

αβ − Ω13
αβ

)
(A.31)

and, after a correction by Sharipov and Kalempa [14],

Γ
(6)
α,β = −Ω22

αβ + 55

8
Ω11

αβ − 5

2
Ω12

αβ + 1

2
Ω13

αβ. (A.32)

In addition,

mα,β = mαmβ/(mα + mβ) (A.33)
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and theΩ functions are the Chapman–Cowling integrals [1,2] which for the case of rigid-sphere interactions take the simple

.
604.
nel,
forms

Ω12
α,β = 3Ω11

α,β, Ω13
α,β = 12Ω11

α,β and Ω22
α,β = 2Ω11

α,β (A.34a–c)

with

Ω11
αβ = 1

4

(
πkT0

2mα,β

)1/2
(dα + dβ)2. (A.35)

Appendix B. The basic kernels for flow problems

The components of the kernelK(ξ ′, ξ) required in Eq. (24) are as follows:

k1,1(ξ
′, ξ) = 2�1ξ ′ξ + 1− η

(1)
1,2 − η

(2)
1,2

(
ξ ′2 + ξ2 − 1

)
/2+ 2β1

(
ξ ′2 − 1/2

)(
ξ2 − 1/2

)
/5, (B.1)

k1,2(ξ
′, ξ) = −(1/2)η

(2)
1,2 + 2β1

(
ξ2 − 1/2

)
/5, (B.2)

k1,3(ξ
′, ξ) = 2η

(4)
1,2ξ

′ξ + r
{
η
(1)
1,2 + η

(2)
1,2

[
r2(

ξ ′2 − 1/2
) + ξ2 − 1/2

]
/2

} + 2η
(6)
1,2

(
ξ ′2 − 1/2

)(
ξ2 − 1/2

)
/5, (B.3)

k1,4(ξ
′, ξ) = (1/2)r3η

(2)
1,2 + 2η

(6)
1,2

(
ξ2 − 1/2

)
/5, (B.4)

k2,1(ξ
′, ξ) = −η

(2)
1,2 + 4β1

(
ξ ′2 − 1/2

)
/5, (B.5)

k2,2(ξ
′, ξ) = (4/5)β1, (B.6)

k2,3(ξ
′, ξ) = rη

(2)
1,2 + 4η

(6)
1,2

(
ξ ′2 − 1/2

)
/5, (B.7)

k2,4(ξ
′, ξ) = (4/5)η

(6)
1,2, (B.8)

k3,1(ξ
′, ξ) = 2η

(4)
2,1ξ

′ξ + s
{
η
(1)
2,1 + η

(2)
2,1

[
s2(

ξ ′2 − 1/2
) + ξ2 − 1/2

]
/2

} + 2η
(6)
2,1

(
ξ ′2 − 1/2

)(
ξ2 − 1/2

)
/5, (B.9)

k3,2(ξ
′, ξ) = (1/2)s3η

(2)
2,1 + 2η

(6)
2,1

(
ξ2 − 1/2

)
/5, (B.10)

k3,3(ξ
′, ξ) = 2�2ξ ′ξ + 1− η

(1)
2,1 − η

(2)
2,1

(
ξ ′2 + ξ2 − 1

)
/2+ 2β2

(
ξ ′2 − 1/2

)(
ξ2 − 1/2

)
/5, (B.11)

k3,4(ξ
′, ξ) = −(1/2)η

(2)
2,1 + 2β2

(
ξ2 − 1/2

)
/5, (B.12)

k4,1(ξ
′, ξ) = sη

(2)
2,1 + 4η

(6)
2,1

(
ξ ′2 − 1/2

)
/5, (B.13)

k4,2(ξ
′, ξ) = (4/5)η

(6)
2,1, (B.14)

k4,3(ξ
′, ξ) = −η

(2)
2,1 + 4β2

(
ξ ′2 − 1/2

)
/5 (B.15)

and

k4,4(ξ
′, ξ) = (4/5)β2. (B.16)
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