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c© 2005 Birkhäuser Verlag, Basel

Zeitschrift für angewandte
Mathematik und Physik ZAMP

The McCormack model for gas mixtures: The temperature-
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Abstract. An analytical version of the discrete-ordinates method (the ADO method) is used
to establish a concise and particularly accurate solution to the temperature-jump problem for a
binary gas mixture described by the McCormack kinetic model. The solution yields, in addition
to the temperature-jump coefficient for the general (specular–diffuse) case of Maxwell boundary
conditions for each of the two species, the density and temperature profiles for both types of
particles. Numerical results are reported for two binary mixtures (Ne-Ar and He-Xe) with various
molar concentrations. The algorithm is considered especially easy to use, and the developed
(FORTRAN) code requires typically less than a second on a 2.2 GHz Pentium 4 machine to
compute all quantities of interest.
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1. Introduction

The classical temperature-jump problem as defined by Welander [1] for single-
species gases has, over the years, been studied and solved in numerous ways and
for various kinetic models, as well as for the linearized Boltzmann equation. We
do not discuss here many important works on this subject, but we refer instead to
the books of Cercignani [2, 3], Williams [4] and Ferziger and Kaper [5], as well as a
review paper by Sharipov and Seleznev [6], for general background material. How-
ever, since this paper is another contribution to our study of the temperature-jump
problem, we comment briefly on two of our preceding works [7–14] on this subject.
The first definitive result for the temperature-jump coefficient for a single-species
gas defined by the BGK model [15] was reported by Kriese, Chang and Siewert [7].
Considerably more recently, we reported [12, 13] a numerical implementation of
a semi-analytical solution of this same temperature-jump problem, with Maxwell
and with Cercignani-Lampis [16] boundary conditions, based on the linearized
Boltzmann equation for rigid-sphere interactions. In this work, we consider the
temperature-jump problem for the case of a binary-gas mixture. While in Ref. [14]
we reported a concise and accurate solution of the temperature-jump problem for
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gas mixtures, that work was based on the Hamel model [17], and so our work
here with the McCormack kinetic model [18] is thought to yield physically more
meaningful results.

2. A formulation of the problem in terms of the McCormack
model

In this work we base our analysis of a binary gas mixture on the McCormack model
as introduced in an important paper [18] published in 1973. While we use this
model as defined in Ref. [18], we use an explicit notation that is appropriate to the
analysis and computations we report here. We note that we have used an analyt-
ical discrete-ordinates (ADO) method [19] in two recent works [20, 21] to solve a
collection of basic flow problems, defined for mixtures in terms of the McCormack
model, for semi-infinite media (Kramers’ problem and the half-space problem of
thermal creep) and plane-parallel channels (Poiseuille flow, thermal-creep flow and
flow driven by density gradients), and so some of our introductory material here
is repeated from Refs. [20, 21]. We consider that the required functions hα(x,v)
for the two types of particles (α = 1 and 2) denote perturbations from Maxwellian
distributions for each species, i.e,

fα(x,v) = fα,0(v)[1 + hα(x,v)], (1)

where
fα,0(v) = nα(λα/π)3/2e−λαv2

, λα = mα/(2kT0). (2)

Here k is the Boltzmann constant, mα and nα are the mass and the equilibrium
density of the α-th species, x is the spatial variable (measured, for example, in
cm), v, with components vx, vy, vz and magnitude v, is the particle velocity, and
T0 is a reference temperature. It follows from McCormack’s work [18] that the
perturbations satisfy (for the case of variations in only one spatial variable) the
coupled equations

cx
∂

∂x
hα(x, c) + ωαγαhα(x, c) = ωαγαLα{h1, h2}(x, c), α = 1, 2, (3)

where c, with components cx, cy, cz and magnitude c, is a dimensionless velocity
variable,

ωα = [mα/(2kT0)]1/2 (4)

and the collision frequencies γα are to be defined. Here we write the integral
operators as

Lα{h1, h2}(x, c) =
1

π3/2

2∑

β=1

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−c′2hβ(x, c′)Kβ,α(c′, c)dc′xdc′ydc′z,

(5)
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where the kernels Kβ,α(c′, c) are listed explicitly in Appendix A of this paper. We
note that in obtaining Eq. (3) from the form given by McCormack [18], we have
introduced the dimensionless velocity c differently in the two equations, i.e., for
the case α = 1 we used the transformation c = ω1v, whereas for the case α = 2
we used the transformation c = ω2v. As we wish to work with a dimensionless
spatial variable, we introduce

τ = x/l0, (6)

where
l0 =

µv0

P0
(7)

is the mean-free path (based on viscosity) introduced by Sharipov and Kalempa
[22]. Here, following Ref. [22], we write

v0 = (2kT0/m)1/2, (8)

where
m =

n1m1 + n2m2

n1 + n2
. (9)

Continuing, we express the viscosity of the mixture in terms of the partial pressures
Pα and the collision frequencies γα as [22]

µ = P1/γ1 + P2/γ2, (10)

where
Pα

P0
=

nα

n1 + n2
, (11)

γ1 = [Ψ1Ψ2 − ν
(4)
1,2ν

(4)
2,1 ][Ψ2 + ν

(4)
1,2 ]−1 (12)

and
γ2 = [Ψ1Ψ2 − ν

(4)
1,2ν

(4)
2,1 ][Ψ1 + ν

(4)
2,1 ]−1. (13)

Here definitions given in Appendix A have been used,

Ψ1 = ν
(3)
1,1 + ν

(3)
1,2 − ν

(4)
1,1 (14)

and
Ψ2 = ν

(3)
2,2 + ν

(3)
2,1 − ν

(4)
2,2 . (15)

Finally, to compact our notation we introduce

σα = γαωαl0 (16)

or, more explicitly,

σα = γα
n1/γ1 + n2/γ2

n1 + n2
(mα/m)1/2, (17)

and so we rewrite Eq. (3) in terms of the τ variable as

cx
∂

∂τ
hα(τ, c) + σαhα(τ, c) = σαLα{h1, h2}(τ, c). (18)
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In this work we consider the half-space temperature-jump problem, and so
we seek solutions of Eqs. (18) that are valid for all τ > 0, and we use Maxwell
boundary conditions at the wall, viz.,

hα(0, cx, cy, cz) = (1 − aα)hα(0,−cx, cy, cz) + aαI{hα}(0), (19)

for cx > 0 and all cy and cz. Note that

hα(τ, c) ⇔ hα(τ, cx, cy, cz) (20)

and that we use a1 and a2 to denote the two accommodation coefficients. In
addition, we have used

I{hα}(τ) =
2
π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

e−c′2hα(τ,−c′x, c′y, c′z)c
′
xdc′xdc′ydc′z (21)

to denote the diffuse term in Eq. (19). In this formulation of the temperature-
jump problem there is no driving term in Eq. (18), and so in addition to the
boundary condition listed as Eq. (19), we will include in our statement of the
problem a condition on hα(τ, c) as τ tends to infinity. This condition will be seen
more clearly once we have expressed the density and temperature perturbations
in terms of hα(τ, c).

If we sought to compute the complete distribution functions hα(τ, c), then we
would have to work explicitly with Eqs. (18) and (19); however, since we seek only
the density and temperature perturbations

Nα(τ) =
1

π3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−c2

hα(τ, c)dcxdcydcz (22)

and

Tα(τ) =
2

3π3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−c2

hα(τ, c)(c2 − 3/2)dcxdcydcz (23)

we need work only with certain moments (integrals) of Eqs. (18) and (19). To this
end, we first multiply Eq. (18) by

φ1(cy, cz) = (1/π)e−(c2
y+c2

z) (24)

and integrate over all cy and all cz. We then repeat this procedure using

φ2(cy, cz) = (1/π)e−(c2
y+c2

z)(c2
y + c2

z − 1). (25)

Defining

g2α−1(τ, cx) =
∫ ∞

−∞

∫ ∞

−∞
φ1(cy, cz)hα(τ, c)dcydcz (26)

and

g2α(τ, cx) =
∫ ∞

−∞

∫ ∞

−∞
φ2(cy, cz)hα(τ, c)dcydcz, (27)
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we find from these projections four coupled balance equations which we write (in
matrix notation) as

ξ
∂

∂τ
G(τ, ξ) + ΣG(τ, ξ) = Σ

∫ ∞

−∞
ψ(ξ′)K(ξ′, ξ)G(τ, ξ′)dξ′, (28)

where the components of G(τ, ξ) are gα(τ, ξ), α = 1, 2, 3, 4, where we now use ξ in
place of cx and where

Σ = diag
{
σ1, σ1, σ2, σ2

}
(29)

and

ψ(ξ) = π−1/2e−ξ2
. (30)

In addition, the elements ki,j(ξ′, ξ) of the kernel K(ξ′, ξ) are as listed in Appendix
B of this work. To find the boundary condition relevant to Eq. (28) we project
Eq. (19) against φ1(cy, cz) and φ2(cy, cz) to find

G(0, ξ) = SG(0,−ξ) + 2D
∫ ∞

0

e−ξ′2
G(0,−ξ′)ξ′dξ′, (31)

for ξ > 0. Here

S = diag{1 − a1, 1 − a1, 1 − a2, 1 − a2} (32)

and

D = diag{a1, 0, a2, 0}. (33)

So, if we can solve Eq. (28), subject to Eq. (31), we can compute the density and
temperature perturbations we seek from

Nα(τ) =
∫ ∞

−∞
ψ(ξ)g2α−1(τ, ξ)dξ (34)

and

Tα(τ) =
2
3

∫ ∞

−∞
ψ(ξ)[(ξ2 − 1/2)g2α−1(τ, ξ) + g2α(τ, ξ)]dξ. (35)

Now, since there is no driving term in Eq. (28) we require that the solutions
hα(τ, c) diverge as τ tends to infinity, but at the same time we impose the (gen-
eralized) Welander condition [1], viz.

lim
τ→∞

d
dτ

T (τ) = K
[

1
1

]
. (36)

Here K is a normalizing constant, and the vector-valued function T (τ) has the
perturbed temperatures Tα(τ) as components. At this point we are ready to
discuss the ADO method and to develop our solution of the formulated problem.
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3. The elementary solutions

As the temperature-jump problem has (in our formulation) no inhomogeneous
diving term in the balance equation, we require only basic solutions of the homo-
geneous equation, and so here we establish (in terms of the ADO method) the
elementary solutions of

ξ
∂

∂τ
G(τ, ξ) + ΣG(τ, ξ) = Σ

∫ ∞

−∞
ψ(ξ′)K(ξ′, ξ)G(τ, ξ′)dξ′. (37)

We seek solutions of Eq. (37) of the form

G(τ, ξ) = Φ(ν, ξ)e−τ/ν (38)

where the separation constants ν and the elementary solutions Φ(ν, ξ) are to be
determined. Substituting Eq. (38) into Eq. (37), we find

(νΣ− ξI)Φ(ν, ξ) = νΣ
∫ ∞

0

ψ(ξ′)[K(ξ′, ξ)Φ(ν, ξ′) + K(−ξ′, ξ)Φ(ν,−ξ′)]dξ′ (39)

and

(νΣ + ξI)Φ(ν,−ξ) = νΣ
∫ ∞

0

ψ(ξ′)[K(ξ′,−ξ)Φ(ν, ξ′) + K(−ξ′,−ξ)Φ(ν,−ξ′)]dξ′

(40)
from which we conclude, since

K(ξ′,−ξ) = K(−ξ′, ξ), (41)

that
Φ(ν, ξ) = Φ(−ν,−ξ). (42)

Now, adding and subtracting Eqs. (39) and (40), one from the other, we find that

(1/ξ2)
[
Σ2V (ν, ξ) −

∫ ∞

0

ψ(ξ′)K(ξ′, ξ)V (ν, ξ′)dξ′
]

= λV (ν, ξ) (43)

and

U(ν, ξ) = (ν/ξ)Σ
[
V (ν, ξ) −

∫ ∞

0

ψ(ξ′)K−(ξ′, ξ)V (ν, ξ′)dξ′
]
, (44)

where
U(ν, ξ) = Φ(ν, ξ) + Φ(ν,−ξ) (45)

and
V (ν, ξ) = Φ(ν, ξ) − Φ(ν,−ξ). (46)

Here
λ = 1/ν2, (47)

K+(ξ′, ξ) = K(ξ′, ξ) + K(−ξ′, ξ), (48)

K−(ξ′, ξ) = K(ξ′, ξ) − K(−ξ′, ξ) (49)
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and
K(ξ′, ξ) = (ξ/ξ′)ΣK+(ξ′, ξ)Σ + Σ2K−(ξ′, ξ)

−
∫ ∞

0

ψ(ξ′′)(ξ/ξ′′)ΣK+(ξ′′, ξ)ΣK−(ξ′, ξ′′)dξ′′. (50)

We now introduce a “half-range” quadrature scheme (with weights and nodes, wk

and ξk) and rewrite Eqs. (43) and (44) evaluated at the quadrature points as

(1/ξ2
i )

[
Σ2V (νj , ξi) −

N∑

k=1

wkψ(ξk)K(ξk, ξi)V (νj , ξk)
]

= λjV (νj , ξi) (51)

and

U(νj , ξi) = (νj/ξi)Σ
[
V (νj , ξi) −

N∑

k=1

wkψ(ξk)K−(ξk, ξi)V (νj , ξk)
]
, (52)

for i = 1, 2, ..., N . Equation (51) defines our eigenvalue problem, to which we
have added the subscript j to label the eigenvalues and eigenvectors. Once this
eigenvalue problem is solved, we have the elementary solutions from

Φ(νj , ξi) = (1/2)[U (νj , ξi) + V (νj , ξi)] (53)

and
Φ(νj ,−ξi) = (1/2)[U (νj , ξi) − V (νj , ξi)]. (54)

Note that the separation constants defined by

νj = ±λ
−1/2
j (55)

occur in ± pairs. From this point, we take νj to be the positive root listed in
Eq. (55). Once we have solved the eigenvalue problem defined by Eq. (51), we can
write our general (discrete ordinates) solution to Eq. (37) as

G(τ,±ξi) =
4N∑

j=1

[
AjΦ(νj ,±ξi)e−τ/νj + BjΦ(νj ,∓ξi)eτ/νj

]
, (56)

for i = 1, 2, ..., N . Here the arbitrary constants {Aj} and {Bj} are to be deter-
mined from the boundary conditions of a specific problem. While Eq. (56) is our
general discrete-ordinates solution, we can make some improvements in that re-
sult. We have found that the eigenvalue problem yields 3 separation constants,
say ν1, ν2 and ν3, that approximate the three expected unbounded separation con-
stants. And so we ignore ν1, ν2 and ν3, in Eq. (56) and rewrite that equation
as

G(τ,±ξi) = G∗(τ,±ξi) +
4N∑

j=4

[
AjΦ(νj ,±ξi)e−τ/νj + BjΦ(νj ,∓ξi)eτ/νj

]
, (57)

G∗(τ, ξ) = A1G1 + A2G2 + A3G3 + B1G4(ξ)
+ B2[τH1(ξ) + F 1(ξ)] + B3[τH2(ξ) + F 2(ξ)]. (58)
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Here

G1 =





1
0
0
0



 , G2 =





0
0
1
0



 , G3(ξ) =





ξ2 − 1/2
1

ξ2 − 1/2
1



 and G4(ξ) =





rξ
0
ξ
0





(59a,b, c,d)
are exact (linearly independent) solutions of Eq. (37). Note that, in general, we
use

r = (m1/m2)1/2, s = (m2/m1)1/2 and n = n1 + n2. (60a,b, c)

We also find that if we write

H1(ξ) =





−1 + c1(ξ2 − 1/2)
c1

c1(ξ2 − 1/2)
c1



 and H2(ξ) =





c2(ξ2 − 1/2)
c2

−1 + c2(ξ2 − 1/2)
c2



 ,

(61a,b)
with c1 = n1/n and c2 = n2/n, then there exist vector-valued functions F 1(ξ) and
F 2(ξ) that render

τH1(ξ) + F 1(ξ) and τH2(ξ) + F 2(ξ) (62a,b)

also solutions of Eq. (37). While we have not found explicit expressions for F 1(ξ)
and F 2(ξ), we have used a software package to conclude that these two functions
can be defined in terms of solutions to two systems of linear algebraic equations.
If we substitute Eqs. (62) into Eq. (37) and use the fact that H1(ξ) and H2(ξ)
are exact solutions of that equation, then we find the integral equations

F β(ξ) = −ξΣ−1Hβ(ξ) +
∫ ∞

−∞
ψ(ξ′)K(ξ′, ξ)F β(ξ′)dξ′, (63)

for β = 1, 2 and ξ ∈ (−∞,∞). Since any linear combination of the solutions listed
in Eqs. (59 is a solution of the homogeneous version of Eq. (63), the functions
F 1(ξ) and F 2(ξ) clearly are not uniquely defined.

After noting the inhomogeneous term in Eq. (63) and the explicit form of the
scattering kernel K(ξ′, ξ), we conclude that the functions F 1(ξ) and F 2(ξ) can be
expressed as

F β(ξ) =
3∑

α=0

Pα(ξ)F β,α (64)

where the vectors F β,α are constants and the orthogonal polynomials are given by

P0(ξ) = 1, P1(ξ) = ξ, P2(ξ) = ξ2 − 1/2 and P3(ξ) = ξ(ξ2 − 3/2).
(65a,b, c,d)

At this point we substitute Eq. (64) into Eq. (63), multiply the resulting equation
by ψ(ξ)Pk(ξ), for k = 0, 1, 2, 3, and integrate over all ξ to find a system of 16 linear-
algebraic equations (with rank 12) that can be solved to find the components of
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the vectors F β,α required in Eq. (64). Of course, since the system is rank deficient,
solutions exist only for certain inhomogeneous terms. It is for this reason that the
vector-valued functions H1(ξ) and H2(ξ) in Eqs. (62) are as defined in Eqs. (61).
In regard to Eq. (64) we can be more explicit. We have used the MAPLE 9
software package to conclude that we can write

F β(ξ) = UβP1(ξ) + V βP3(ξ) (66)

where the constant vectors Uβ and V β are solutions of the (rank 8) linear systems
defined by

(I − A)U1 − CV 1 =
[

c2/σ1 −c1/σ1 −c1/σ2 −c1/σ2

]T
, (67)

(I − D)V 1 − BU1 =
[ −c1/σ1 0 −c1/σ2 0

]T (68)

and [
0 0 1 0

]
U1 = 0, (69)

for β = 1, and by

(I − A)U2 − CV 2 =
[ −c2/σ1 −c2/σ1 c1/σ2 −c2/σ2

]T
, (70)

(I − D)V 2 − BU2 =
[ −c2/σ1 0 −c2/σ2 0

]T (71)

and [
0 0 1 0

]
U2 = 0, (72)

for β = 2. Here I is the identity matrix, the superscript T is used to denote the
transpose operation and the matrices

A = 2
∫ ∞

−∞

∫ ∞

−∞
ψ(ξ′)ψ(ξ)K(ξ′, ξ)P1(ξ′)P1(ξ)dξ′dξ, (73)

B = (4/3)
∫ ∞

−∞

∫ ∞

−∞
ψ(ξ′)ψ(ξ)K(ξ′, ξ)P1(ξ′)P3(ξ)dξ′dξ, (74)

C = 2
∫ ∞

−∞

∫ ∞

−∞
ψ(ξ′)ψ(ξ)K(ξ′, ξ)P3(ξ′)P1(ξ)dξ′dξ (75)

and

D = (4/3)
∫ ∞

−∞

∫ ∞

−∞
ψ(ξ′)ψ(ξ)K(ξ′, ξ)P3(ξ′)P3(ξ)dξ′dξ (76)

are listed explicitly in Appendix C. We note that Eqs. (69) and (72) have been
made a part of the (9× 8) linear systems to be sure that the systems have unique
solutions.

As our elementary solutions are established, we are ready to use them to solve
the considered temperature-jump problem.
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4. The solution of the temperature-jump problem

Since the solution we seek is not allowed to diverge exponentially as τ tends to
infinity, it follows from Eq. (57) that we must, in that equation, take Bj = 0, for
j = 4, 5, ..., 4N . And so we now have

G(τ,±ξi) = G∗(τ,±ξi) +
4N∑

j=4

AjΦ(νj ,±ξi)e−τ/νj (77)

for i = 1, 2, ..., N . Considering that the solution to our “G problem” is given by
Eq. (77), we can now use that result to compute the density and temperature
profiles [defined initially in Eqs. (22) and (23)] from Eqs. (34) and (35). In regard
to the asymptotic part of the density and temperature profiles, we let N∗

α(τ)
and T ∗

α(τ) denote the perturbations obtained from Eqs. (34) and (35) when the
exponential terms in Eq. (77) are ignored. In this way, we find, after carrying out
all required integrals analytically, that we can write

N∗
1 (τ) = A1 − B2τ, (78)

N∗
2 (τ) = A2 − B3τ, (79)

T ∗
1 (τ) = A3 + (c1B2 + c2B3)τ (80)

and
T ∗

2 (τ) = A3 + (c1B2 + c2B3)τ. (81)

We note that G1 and G2, as defined in Eqs. (59a,b), satisfy the boundary condition
listed as Eq. (31) and so the constants A1 and A2 can not be determined from that
condition. We see therefore that our solution will satisfy the boundary condition
given as Eq. (19) and the (generalized) Welander condition written as Eq. (36),
for any value of A1 and A2. It can be seen from Eqs. (78) and (79) that this
arbitrariness illustrates simply that the density perturbations are not uniquely
defined for this problem here. We choose to “normalize” our solution by taking
A1 = −A3 and A2 = −A3, and so we now have

G(τ,±ξi) = G∗(τ,±ξi) +
4N∑

j=4

AjΦ(νj ,±ξi)e−τ/νj , (82)

where

G∗(τ, ξ) = A3R(ξ)+B1G4(ξ)+B2[τH1(ξ)+F 1(ξ)]+B3[τH2(ξ)+F 2(ξ)] (83)

and

R(ξ) =





ξ2 − 3/2
1

ξ2 − 3/2
1



 . (84)
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The solution given by Eqs. (82–84) contains 4N + 1 arbitrary constants, and so
when that solution is used in a discrete-ordinates version of Eq. (31), viz.,

G(0, ξi) = SG(0,−ξi) + 2π1/2D

N∑

k=1

wkξkψ(ξk)G(0,−ξk), (85)

for i = 1, 2..., N , we obtain a system of 4N linear algebraic equations for the 4N +1
unknowns; however, there is the normalization condition listed as Eq. (36). And
so we add to our system the normalization condition

c1B2 + c2B3 = 1, (86)

where (without loss of generality) we have taken K = 1. Once we solve the defined
system of linear algebraic equations, our solution is established. We therefore can
write

N(τ) = −
[

A3 + B2τ
A3 + B3τ

]
+

4N∑

j=4

AjX(νj)e−τ/νj (87)

and

T (τ) = (A3 + τ)
[

1
1

]
+

2
3

4N∑

j=4

AjY (νj)e−τ/νj . (88)

Here

X(νj) =
N∑

k=1

wkψ(ξk)
[

1 0 0 0
0 0 1 0

] [
Φ(νj , ξk) + Φ(νj ,−ξk)

]
(89)

and

Y (νj) =
N∑

k=1

wkψ(ξk)
[

ξ2
k − 1/2 1 0 0

0 0 ξ2
k − 1/2 1

] [
Φ(νj , ξk) + Φ(νj ,−ξk)

]
.

(90)
To conclude this section, we note that the temperature-jump coefficient (for each
species) is defined as

T ∗
α(0) = ζα

d
dτ

T ∗
α(τ)

∣∣∣
τ=0

. (91)

However, it is clear from Eq. (88) that the temperature-jump coefficient is, in fact,
the same for both species. And so

ζ = A3 (92)

is our result for the desired temperature-jump coefficient.

5. Numerical results

The first thing to note in regard to our numerical work is the way we defined the
quadrature scheme for the analytical discrete-ordinates method used in this work.
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To keep matters simple, we used the transformation

v(ξ) = e−ξ (93)

to map ξ ∈ [0,∞) onto v ∈ [0, 1], and we then used the Gauss-Legendre scheme
mapped (linearly) onto the interval [0,1]. In order to evaluate the merits of the
solutions developed here, we have elected to use two data cases defined by Sharipov
and Kalempa [22]. These data cases refer to a mixture of the species: (i) Ne-Ar and
(ii) He-Xe. As we are reporting numerical work only for the case of rigid-sphere
interactions, we can see that the McCormack model requires, for this case, only
three ratios: the mass ratio (m1/m2), the diameter ratio (d1/d2) and the density
ratio (n1/n2). In addition, by formulating the model in terms of a convenient
mean-free path and by observing the ratios of parameters that result, we can see
that the constant factor (πkT0/32)1/2 in Eq. (A.35) of Appendix A need not be
specified.

For the sake of our computations we consider that the data

m2 = 39.948 m1 = 20.183 d2/d1 = 1.406 (Ne-Ar mixture)

and
m2 = 131.30 m1 = 4.0026 d2/d1 = 2.226 (He-Xe mixture)

are exact. We tabulate our results for these two cases in terms of the molar
concentration defined (in terms of the first particle) as

C =
n1/n2

1 + n1/n2
. (94)

In addition to computing the temperature-jump coefficient, we have computed
both the density and temperature distributions, as given by Eqs. (87) and (88),
for various combinations of the accommodation coefficients a1 and a2. And so,
first of all, we list in Tables 1 and 2 our results for the temperature-jump coefficient
as a function of the number mix of the two species of particles for several typical
values of the accommodation coefficients a1 and a2. And then, to demonstrate the
totality of our solution we report in Table 3 our complete results (including the
constants B2 and B3) for a typical (non-special) case.

We have no definitive proof of the accuracy of our results, but we believe the
results listed in Tables 1 – 3 are correct (within the context of the kinetic model
used) to all digits given. To establish some confidence in our numerical results,
we found stability in the results as we varied the only approximation parameter
N from 20 to 100. Additional confidence in this work (analytical and numerical)
has been achieved through the supporting work of Garcia [23], Knackfuss and
Barichello [24] and Thomas [25]. In fact, Garcia [23] has confirmed all of the
analytical derivations and all of the numerical results that are reported in this
work.

In the process of testing our solutions, we looked at the special case of a single-
species gas. This reduction to a single gas was achieved in three ways: (i) n1 = 0,
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Table 1. The temperature-jump coefficient ζ for the Ne-Ar mixture

a1 = 0.1 a1 = 0.1 a1 = 0.3 a1 = 0.1 a1 = 0.8 a1 = 1.0C a2 = 0.1 a2 = 0.3 a2 = 0.5 a2 = 0.8 a2 = 0.9 a2 = 1.0

0.0 3.217519(1) 9.945770 5.443688 2.849612 2.355397 1.954073
0.1 3.204931(1) 1.108708(1) 5.846473 3.541425 2.414712 1.947628
0.2 3.196034(1) 1.235509(1) 6.258400 4.343080 2.471826 1.943362
0.3 3.190331(1) 1.377357(1) 6.679777 5.290552 2.526664 1.940884
0.4 3.187412(1) 1.537269(1) 7.110970 6.437165 2.579178 1.939863
0.5 3.186951(1) 1.719128(1) 7.552432 7.865494 2.629358 1.940024
0.6 3.188708(1) 1.928033(1) 8.004756 9.710594 2.677239 1.941156
0.7 3.192549(1) 2.170812(1) 8.468756 1.220952(1) 2.722925 1.943118
0.8 3.198470(1) 2.456833(1) 8.945601 1.581984(1) 2.766615 1.945858
0.9 3.206648(1) 2.799312(1) 9.437041 2.155319(1) 2.808654 1.949434
1.0 3.217519(1) 3.217519(1) 9.945770 3.217519(1) 2.849612 1.954073

Table 2. The temperature-jump coefficient ζ for the He-Xe mixture

a1 = 0.1 a1 = 0.1 a1 = 0.3 a1 = 0.1 a1 = 0.8 a1 = 1.0C a2 = 0.1 a2 = 0.3 a2 = 0.5 a2 = 0.8 a2 = 0.9 a2 = 1.0

0.0 3.217519(1) 9.945770 5.443688 2.849612 2.355397 1.954073
0.1 3.096147(1) 1.372577(1) 6.493532 5.808954 2.431914 1.883572
0.2 3.080385(1) 1.695103(1) 7.280924 8.562522 2.515514 1.872570
0.3 3.115779(1) 1.988923(1) 7.950479 1.132311(1) 2.607910 1.892737
0.4 3.184507(1) 2.269384(1) 8.570618 1.422486(1) 2.711077 1.933886
0.5 3.280467(1) 2.547350(1) 9.181867 1.738174(1) 2.827455 1.992269
0.6 3.402541(1) 2.831853(1) 9.813221 2.091217(1) 2.959979 2.067018
0.7 3.551431(1) 3.130593(1) 1.048636(1) 2.494813(1) 3.111346 2.158302
0.8 3.722795(1) 3.444906(1) 1.120061(1) 2.959654(1) 3.278705 2.263097
0.9 3.861956(1) 3.725510(1) 1.179573(1) 3.451536(1) 3.413730 2.347510
1.0 3.217519(1) 3.217519(1) 9.945770 3.217519(1) 2.849612 1.954073

for which the quantities with subscript 2 yield the single-gas results, (ii) n2 = 0, for
which the quantities with subscript 1 yield the single-gas results, and (iii) m1 = m2

and d1 = d2. That we obtained identical results from these three limiting cases can
be attributed, we believe, to the good way the mean-free path l0 used in this work
is defined [22]. As we noted [20, 21] for flow problems based on the McCormack
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Table 3. Temperature and density profiles for the He-Xe mixture with C = 0.3,
a1 = 0.3, a2 = 0.6: ζ = 7.345950, B2 = 0.6434143, B3 = 1.152822.

τ −N1(τ) −N2(τ) T1(τ) T2(τ)

0.0 6.90689 5.03578 6.87509 4.69618
0.1 7.11313 5.45593 7.13187 5.14852
0.2 7.24491 5.73415 7.30983 5.44479
0.3 7.35582 5.97246 7.46464 5.69461
0.4 7.45531 6.18862 7.60648 5.91793
0.5 7.54742 6.39019 7.73978 6.12346
0.6 7.63433 6.58123 7.86699 6.31596
0.7 7.71738 6.76423 7.98960 6.49842
0.8 7.79744 6.94085 8.10863 6.67283
0.9 7.87513 7.11223 8.22478 6.84061
1.0 7.95090 7.27924 8.33859 7.00283
2.0 8.65150 8.80252 9.40554 8.43799
5.0 1.05938(1) 1.27604(1) 1.24056(1) 1.19876(1)
9.0 1.31507(1) 1.76004(1) 1.63721(1) 1.62245(1)

model, we found again that the McCormack model reduces to the S model [6]
when the data for the gas mixture is reduced to that of a single species.

While investigating the special case of a single-species gas we found that our
results for the S model were not, as suggested by the form of the balance equation
used by Sharipov [26], identical to those predicted by the BGK model. We have
concluded that, while the S-model results (when expressed in terms of a mean-
free path based on thermal conductivity) for the temperature-jump coefficient and
the density and temperature perturbations at the wall where identical to known
BGK results (see Ref. [9], for example), there is a (very slight) difference in the
results from the BGK and the S kinetic models for the density and temperature
perturbations within the gas. The observation that the S model and the BGK
model yield different temperature and density distributions within the gas has
been confirmed by the very recent work of Knackfuss and Barichello [24].

6. Concluding remarks

To conclude this work, we note that we believe our solution to the considered
temperature-jump problem is especially concise and easy to use. We have included
a general form of the Maxwell boundary condition in our formulation, and we have
reported what we believe to be highly accurate results for the temperature-jump
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coefficient and the temperature and density profiles for some test cases. It should
be noted that our complete, species-specific results for the density and temperature
perturbations are continuous in the τ variable and thus are valid anywhere in the
gas.

In this work we have considered only the case of rigid-sphere interactions, but as
pointed out by Sharipov and Kalempa [22] the solutions can be used for other scat-
tering laws, such the one defined by the Lennard-Jones potential, simply by using
appropriate definitions of the omega integrals [5, 27] mentioned in Appendix A.

Since our solutions require only a matrix eigenvalue/eigenvector routine and a
solver of linear algebraic equations, the algorithm is especially efficient, fast and
easy to implement. In fact, the developed (FORTRAN) code requires less than a
second (on a 2.2 GHz mobile Pentium 4 machine) to yield all quantities of interest
with what we believe to be 5 or 6 figures of accuracy.
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Appendix A: Basic elements of the defining equations

Here we list some basic results that are required to define certain elements of the
main text of this paper. First of all, in regard to Eq. (5), we note that

Kβ,α(c′, c) = K
(1)
β,α(c′, c) + K

(2)
β,α(c′, c) + K

(3)
β,α(c′, c) + K

(4)
β,α(c′, c), α, β = 1, 2,

(A.1)
where

K
(1)
1,1(c′, c) = 1 + {2[1 − η

(1)
1,2] − η

(2)
1,2(c

′2 − 5/2)}c′ · c, (A.2)

K
(2)
1,1(c′, c) = (2/3)[1 − 2r∗η(1)

1,2](c
′2 − 3/2)(c2 − 3/2), (A.3)

K
(3)
1,1(c′, c) = 2�1[(c′ · c)2 − (1/3)c′2c2], (A.4)

K
(4)
1,1(c′, c) = [(4/5)β1(c′

2 − 5/2) − η
(2)
1,2](c

2 − 5/2)c′ · c, (A.5)

K
(1)
2,1(c′, c) = r{2η

(1)
1,2 + η

(2)
1,2[r

2(c′2 − 5/2) + c2 − 5/2]}c′ · c, (A.6)

K
(2)
2,1(c′, c) = (4/3)r∗η(1)

1,2(c
′2 − 3/2)(c2 − 3/2), (A.7)
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K
(3)
2,1(c′, c) = 2η(4)

1,2[(c
′ · c)2 − (1/3)c′2c2], (A.8)

K
(4)
2,1(c′, c) = (4/5)η(6)

1,2(c
′2 − 5/2)(c2 − 5/2)c′ · c, (A.9)

K
(1)
2,2(c′, c) = 1 + {2[1 − η

(1)
2,1] − η

(2)
2,1(c

′2 − 5/2)}c′ · c, (A.10)

K
(2)
2,2(c′, c) = (2/3)[1 − 2s∗η(1)

2,1](c
′2 − 3/2)(c2 − 3/2), (A.11)

K
(3)
2,2(c′, c) = 2�2[(c′ · c)2 − (1/3)c′2c2], (A.12)

K
(4)
2,2(c′, c) = [(4/5)β2(c′

2 − 5/2) − η
(2)
2,1](c

2 − 5/2)c′ · c, (A.13)

K
(1)
1,2(c′, c) = s{2η

(1)
2,1 + η

(2)
2,1[s

2(c′2 − 5/2) + c2 − 5/2]}c′ · c, (A.14)

K
(2)
1,2(c′, c) = (4/3)s∗η(1)

2,1(c
′2 − 3/2)(c2 − 3/2), (A.15)

K
(3)
1,2(c′, c) = 2η(4)

2,1[(c
′ · c)2 − (1/3)c′2c2] (A.16)

and
K

(4)
1,2(c′, c) = (4/5)η(6)

2,1(c
′2 − 5/2)(c2 − 5/2)c′ · c. (A.17)

Here we used
r = (m1/m2)1/2 and s = (m2/m1)1/2, (A.18)

along with
r∗ = r2/(1 + r2) and s∗ = s2/(1 + s2). (A.19)

In addition,
�1 = 1 + η

(4)
1,1 − η

(3)
1,1 − η

(3)
1,2, (A.20)

�2 = 1 + η
(4)
2,2 − η

(3)
2,2 − η

(3)
2,1, (A.21)

β1 = 1 + η
(6)
1,1 − η

(5)
1,1 − η

(5)
1,2 (A.22)

and
β2 = 1 + η

(6)
2,2 − η

(5)
2,2 − η

(5)
2,1, (A.23)

where
η
(k)
i,j = ν

(k)
i,j /γi. (A.24)

Following McCormack [18], we write

ν
(1)
α,β =

16
3

mα,β

mα
nβΩ11

α,β , (A.25)

ν
(2)
α,β =

64
15

(mα,β

mα

)2

nβ

(
Ω12

α,β − 5
2
Ω11

α,β

)
, (A.26)

ν
(3)
α,β =

16
5

(mα,β

mα

)2 mα

mβ
nβ

(10
3

Ω11
α,β +

mβ

mα
Ω22

α,β

)
, (A.27)
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ν
(4)
α,β =

16
5

(mα,β

mα

)2 mα

mβ
nβ

(10
3

Ω11
α,β − Ω22

α,β

)
, (A.28)

ν
(5)
α,β =

64
15

(mα,β

mα

)3 mα

mβ
nβΓ(5)

α,β (A.29)

and

ν
(6)
α,β =

64
15

(mα,β

mα

)3(mα

mβ

)3/2

nβΓ(6)
α,β , (A.30)

with

Γ(5)
α,β = Ω22

α,β +
(15mα

4mβ
+

25mβ

8mα

)
Ω11

α,β −
( mβ

2mα

)(
5Ω12

α,β − Ω13
α,β

)
(A.31)

and, after a correction by Sharipov and Kalempa [22],

Γ(6)
α,β = −Ω22

α,β +
55
8

Ω11
α,β − 5

2
Ω12

α,β +
1
2
Ω13

α,β . (A.32)

In addition,
mα,β = mαmβ/(mα + mβ) (A.33)

and the Ω functions are the Chapman-Cowling integrals [5,27] which for the case
of rigid-sphere interactions take the simple forms

Ω12
α,β = 3Ω11

α,β , Ω13
α,β = 12Ω11

α,β and Ω22
α,β = 2Ω11

α,β (A.34)

with

Ω11
α,β =

1
4

( πkT0

2mα,β

)1/2

(dα + dβ)2. (A.35)

Here, as noted in the main text of this work, k is the Boltzmann constant, T0

is a reference temperature and d1 and d2 are the diameters of the two types of
particles.

Appendix B: The basic kernels for temperature–density problems

We express the components of the kernel K(ξ′, ξ) required in Eq. (28) as follows:

k1,1(ξ′, ξ) = 1+f1,1(ξ′, ξ)ξ′ξ+(2/3)[1−2r∗η(1)
1,2 +2�1](ξ′

2−1/2)(ξ2−1/2), (B.1)

k1,2(ξ′, ξ) = [(4/5)β1(ξ2−3/2)−η
(2)
1,2]ξ

′ξ+(2/3)[1−2r∗η(1)
1,2−�1](ξ2−1/2), (B.2)

k1,3(ξ′, ξ) = f1,3(ξ′, ξ)ξ′ξ + (4/3)[r∗η(1)
1,2 + η

(4)
1,2](ξ

′2 − 1/2)(ξ2 − 1/2), (B.3)

k1,4(ξ′, ξ) = [r3η
(2)
1,2+(4/5)η(6)

1,2(ξ
2−3/2)]ξ′ξ+(2/3)[2r∗η(1)

1,2−η
(4)
1,2](ξ

2−1/2), (B.4)

k2,1(ξ′, ξ) = [(4/5)β1(ξ′
2−3/2)−η

(2)
1,2]ξ

′ξ+(2/3)[1−2r∗η(1)
1,2−�1](ξ′

2−1/2), (B.5)

k2,2(ξ′, ξ) = (2/3)[1 − 2r∗η(1)
1,2] + (1/3)�1 + (4/5)β1ξ

′ξ, (B.6)
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k2,3(ξ′, ξ) = [rη(2)
1,2+(4/5)η(6)

1,2(ξ
′2−3/2)]ξ′ξ+(2/3)[2r∗η(1)

1,2−η
(4)
1,2](ξ

′2−1/2), (B.7)

k2,4(ξ′, ξ) = (4/5)η(6)
1,2ξ

′ξ + (1/3)[4r∗η(1)
1,2 + η

(4)
1,2], (B.8)

k3,1(ξ′, ξ) = f3,1(ξ′, ξ)ξ′ξ + (4/3)[s∗η(1)
2,1 + η

(4)
2,1](ξ

′2 − 1/2)(ξ2 − 1/2), (B.9)

k3,2(ξ′, ξ) = [s3η
(2)
2,1+(4/5)η(6)

2,1(ξ
2−3/2)]ξ′ξ+(2/3)[2s∗η(1)

2,1−η
(4)
2,1](ξ

2−1/2), (B.10)

k3,3(ξ′, ξ) = 1+f3,3(ξ′, ξ)ξ′ξ+(2/3)[1−2s∗η(1)
2,1+2�2](ξ′

2−1/2)(ξ2−1/2), (B.11)

k3,4(ξ′, ξ) = [(4/5)β2(ξ2−3/2)−η
(2)
2,1]ξ

′ξ+(2/3)[1−2s∗η(1)
2,1−�2](ξ2−1/2), (B.12)

k4,1(ξ′, ξ) = [sη(2)
2,1+(4/5)η(6)

2,1(ξ
′2−3/2)]ξ′ξ+(2/3)[2s∗η(1)

2,1−η
(4)
2,1](ξ

′2−1/2), (B.13)

k4,2(ξ′, ξ) = (4/5)η(6)
2,1ξ

′ξ + (1/3)[4s∗η(1)
2,1 + η

(4)
2,1], (B.14)

k4,3(ξ′, ξ) = [(4/5)β2(ξ′
2−3/2)−η

(2)
2,1]ξ

′ξ+(2/3)[1−2s∗η(1)
2,1−�2](ξ′

2−1/2) (B.15)

and
k4,4(ξ′, ξ) = (2/3)[1 − 2s∗η(1)

2,1] + (1/3)�2 + (4/5)β2ξ
′ξ. (B.16)

Here we have used

f1,1(ξ′, ξ) = 2[1− η
(1)
1,2]− η

(2)
1,2(ξ

′2 + ξ2 − 3) + (4/5)β1(ξ′
2 − 3/2)(ξ2 − 3/2), (B.17)

f1,3(ξ′, ξ) = 2rη(1)
1,2 +rη

(2)
1,2[r

2(ξ′2−3/2)+ξ2−3/2]+(4/5)η(6)
1,2(ξ

′2−3/2)(ξ2−3/2),
(B.18)

f3,1(ξ′, ξ) = 2sη(1)
2,1 + sη

(2)
2,1[s

2(ξ′2 − 3/2)+ ξ2 − 3/2]+ (4/5)η(6)
2,1(ξ

′2 − 3/2)(ξ2 − 3/2)
(B.19)

and

f3,3(ξ′, ξ) = 2[1− η
(1)
2,1]− η

(2)
2,1(ξ

′2 + ξ2 − 3) + (4/5)β2(ξ′
2 − 3/2)(ξ2 − 3/2). (B.20)

7. Appendix C: Basic elements for defining a linear system

We list here our results for the matrices A, B, C and D required to define Eqs. (67),
(68), (70) and (71).

A =





1 − η
(1)
1,2 −(1/2)η(2)

1,2 rη
(1)
1,2 (r3/2)η(2)

1,2

−(1/2)η(2)
1,2 (2/5)β1 (r/2)η(2)

1,2 (2/5)η(6)
1,2

sη
(1)
2,1 (s3/2)η(2)

2,1 1 − η
(1)
2,1 −(1/2)η(2)

2,1

(s/2)η(2)
2,1 (2/5)η(6)

2,1 −(1/2)η(2)
2,1 (2/5)β2




, (C.1)
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B =





−(1/2)η(2)
1,2 (2/5)β1 (r/2)η(2)

1,2 (2/5)η(6)
1,2

0 0 0 0

(s/2)η(2)
2,1 (2/5)η(6)

2,1 −(1/2)η(2)
2,1 (2/5)β2

0 0 0 0




, (C.2)

C =





−(3/4)η(2)
1,2 0 (3r3/4)η(2)

1,2 0

(3/5)β1 0 (3/5)η(6)
1,2 0

(3s3/4)η(2)
2,1 0 −(3/4)η(2)

2,1 0

(3/5)η(6)
2,1 0 (3/5)β2 0




(C.3)

and

D =





(3/5)β1 0 (3/5)η(6)
1,2 0

0 0 0 0

(3/5)η(6)
2,1 0 (3/5)β2 0

0 0 0 0




. (C.4)
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