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On computing the thermal-slip coefficient from Kramers’ problem
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Classical techniques are used to derive a variant of an Onsager relation~used typically for Poiseuille
flow and thermal-creep flow! that yields a convenient relationship between the heat flow of
Kramers’ problem and the thermal-slip coefficient. The analysis is based on the linearized
Boltzmann equation for rigid-sphere interactions, and wall interactions are described by a general
law that includes, for example, the Maxwell model~a mixture of specular and diffuse reflection! and
the Cercignani–Lampis model. ©2004 American Institute of Physics.@DOI: 10.1063/1.1728157#
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In a first-draft version of some recent work Sharip
communicated an interesting expression that relates the
flow from Kramers’ problem~viscous-slip problem! and the
thermal-slip coefficient. Sharipov’s result was deduced fr
physical arguments and was~in the first-draft version! pre-
sented in terms of the S model1 that is used frequently in the
general area of rarefied gas dynamics. Having seen
Sharipov’s expression provides a useful way to simp
some computations, or alternatively that the result can
used as a measure of the accuracy obtained from a nume
algorithm, we generalize Sharipov’s work to the case of
linearized Boltzmann equation~for rigid-sphere interac-
tions!. The approach used here, in contrast to one focuse
physical arguments, is based on the defining balance e
tions, the boundary conditions, and known exact compon
of the solutions of the two problems~Kramers and therma
creep!. It is noted that subsequent to the work reported he
and after many e-mail communications with the current
thor, Sharipov, in a second-draft version of his work, e
tended his analysis to obtain a generalized, but less exp
version of his first-draft work.

We consider the linearized Boltzmann equation~for
rigid-sphere interactions! written ~essentially! in the Pekeris
form2–4

c~12m2!1/2cosx~c225/2!kT1cm
]

]t
h~t,c!

5«L$h%~t,c!, ~1!

where

L$h%~t,c!52n~c!h~t,c!1E
0

`E
21

1 E
0

2p

e2c82
h~t,c8!

3K~c8:c!c82dx8 dm8 dc8. ~2!

HereK(c8:c) is the scattering kernel and

n~c!5
2c211

c E
0

c

e2x2
dx1e2c2

~3!

is the collision frequency. In Eq.~1! we have used

«5s0
2n0p1/2l , ~4!
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wherel is ~at this point! an unspecified mean-free path,n0 is
the density, ands0 is the scattering diameter of the gas pa
ticles. In this work, the spatial variablet is measured in units
of the mean-free pathl andc(2kT0 /m)1/2 is the magnitude
of the particle velocity. Also,k is the Boltzmann constant,m
is the mass of a gas particle, andT0 is a reference tempera
ture. It can be noted that we have included in Eq.~1! an
inhomogeneous driving term that is required for the therm
creep problem~when the imposed temperature gradient
kT). Note also that we use spherical coordina
(c8,arccosm8,x8) and (c,arccosm,x) to define the~dimen-
sionless! velocity vectorsc8 andc. In addition to Eq.~1!, we
consider the boundary condition at the wall (t50) written as

h~0,c,m,x!5E
0

`E
0

1E
0

2p

e2c82
h~0,c8,2m8,x8!

3R~c8:c!c82dx8 dm8 dc8, ~5!

for mP(0,1# and all c and x. Here R(c8:c) describes the
manner in which the gas particles interact with the wall.
this notation the bulk velocity and the heat-flow profiles a
written as

u~t!5
1

p3/2E
0

`E
21

1 E
0

2p

e2c2
h~t,c!

3c3~12m2!1/2cosx dx dm dc ~6!

and

q~t!5
1

p3/2E
0

`E
21

1 E
0

2p

e2c2
h~t,c!~c225/2!

3c3~12m2!1/2cosx dx dm dc. ~7!

And so ~in general! we seek, for the two considered prob
lems, solutions of Eq.~1! that satisfy the boundary conditio
written as Eq.~5!. In addition, for the thermal-creep problem
the solution must be bounded ast tends to infinity, while for
Kramers’ problem, since there is no driving term in Eq.~1!,
the solution must diverge~in a certain way! as t tends to
infinity.

In this work, we make use of the Pekeris2 form of the
scattering kernel, viz.
2 © 2004 American Institute of Physics
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K~c8:c!5
1

4p (
n50

`

(
m50

n

~2n11!~22d0,m!Pn
m~m8!

3Pn
m~m!kn~c8:c!cosm~x82x!, ~8!

where the component functionskn(c8,c) are reviewed in an-
other work,3 and where thenormalizedLegendre functions
are given~in terms of the Legendre polynomials! by

Pn
m~m!5F ~n2m!!

~n1m!! G
1/2

~12m2!m/2
dm

dmm Pn~m!, n>m.

~9!

We note from Eqs.~6! and ~7! that if we seek only the bulk
velocity and the heat-flow profiles, then we can define
problems in terms of the azimuthal average

c~t,c,m!5
1

p
~12m2!21/2E

0

2p

h~r ,c!cosx dx. ~10!

And so we multiply Eqs.~1! and~5! by cosx and integrate to
find the balance equation

c~c225/2!kT1cm
]

]t
c~t,c,m!5«L* $c%~t,c,m! ~11!

and the boundary condition

c~0,c,m!5E
0

`E
0

1

e2c82
c~0,c8,2m8!

3r ~c8,m8:c,m!c82 dm8 dc8, ~12!

for mP(0,1# and allc. Here

L* $c%~t,c,m!

52n~c!c~t,c,m!1E
0

`E
21

1

e2c82
c~t,c8,m8!

3k~c8,m8:c,m!c82dm8 dc8, ~13!

where we see from Eq.~8! that we can write

cosx8~12m2!1/2k~c8,m8:c,m!

5~12m82!1/2E
0

2p

K~c8:c!cosx dx. ~14!

While we do not specify the wall kernelR(c8:c), we assume
that it has properties similar to those ofK(c8:c), i.e., we
consider here that we can write

cosx8~12m2!1/2r ~c8,m8:c,m!

5~12m82!1/2E
0

2p

R~c8:c!cosx dx. ~15!

We add subscripts K for Kramers’ problem andT for the
thermal-creep problem and state the two problems as
Downloaded 17 May 2004 to 152.1.79.117. Redistribution subject to AIP
r

cm
]

]t
cK~t,c,m!5«aL* $cK%~t,c,m! ~16!

and

c~c225/2!kT1cm
]

]t
cT~t,c,m!5«bL* $cT%~t,c,m!,

~17!

where bothcK(t,c,m) andcT(t,c,m) must satisfy Eq.~12!.
While cT(t,c,m) will be bounded ast tends to infinity,
cK(t,c,m) must diverge in that same limit, but at the sam
time the resulting bulk velocityuK(t) must satisfy

lim
t→`

d

dt
uK~t!5K, ~18!

whereK is a normalizing constant. Since there is a cho
between using a mean-free path based, for example, on
cosity or one based on thermal conductivity, and since th
and other choices have been made in the literature, we h
used«a in Eq. ~16! and«b in Eq. ~17!. In this way, we can
have a general result that allows free choice of mean-
paths for each of the two problems. In Eq.~16! let t→ht,
whereh5«b /«a , and in Eq.~17! let m→2m, so we can
write

cm
]

]t
cK~ht,c,m!5«bL* $cK%~ht,c,m! ~19!

and

c~c225/2!kT2cm
]

]t
cT~t,c,2m!

5«bL* $cT%~t,c,2m!. ~20!

We now multiply Eq.~19! by

f T~t,c,m!5c2e2c2
~12m2!cT~t,c,2m!, ~21!

multiply Eq. ~20! by

f K~t,c,m!5c2e2c2
~12m2!cK~ht,c,m! ~22!

and integrate the resulting equations over allc andm. Sub-
tracting the resulting equations, one from the other, we fi

p1/2kTqK~ht!5E
0

`E
21

1

e2c2
c3m~12m2!

3
]

]t
@cK~ht,c,m!cT~t,c,2m!#dm dc.

~23!

In obtaining Eq.~23!, we have used the fact that the bas
scattering kernel is invariant under time reversal, i.e.,

K~c8,m8,x8:c,m,x!5K~c,2m,x:c8,2m8,x8!, ~24!

for all c and c8. We now integrate Eq.~23! from t50 to
t5t0 to find
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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p1/2kTE
0

t0
qK~ht!dt

5E
0

`E
21

1

e2c2
c3m~12m2!

3cK~ht0 ,c,m!cT~t0 ,c,2m!dm dc. ~25!

To arrive at Eq.~25! we have assumed that the wall scatt
ing function has the basic property

cmR~c8:c!5c8m8R~c:c8!, ~26!

for m, m8P@0,1# and allc, c8, x8, andx. Kramers’ problem
and the half-space thermal-creep problem were solved
other works3,4 to yield

cK~t,c,m!5K$cAK12ct2~2m/«a!B~c!1¯% ~27!

and

cT~t,c,m!5kT$cAT2~1/«b!A~c!1¯%, ~28!

where the ¯ are used to indicate terms that vanish ast
tends to infinity. In addition,A(c) andB(c) are solutions of
the Chapman–Enskog integral equations5,6 related to thermal
conductivity and viscosity. We also note thatAK andAT are
to be determined from the boundary condition at the w
and so these two constants depend on the particular
kernel R(c8:c) that is used. Now use Eqs.~27! and ~28! in
Eq. ~25! and lett0→` to find

1

K E
0

`

qK~ht!dt5
8

15p1/2«a«b
E

0

`

e2c2
A~c!B~c!c3 dc

2~AT/2!~«p /«a!. ~29!

Noting Eq.~10!, we can use Eq.~28! in Eq. ~6! to find

uT~t!5kT$~1/2!AT1¯%, ~30!

where we have used the fact5,6 that A(c) is normalized such
that

E
0

`

e2c2
A~c!c3 dc50. ~31!

The thermal-slip coefficient is defined by

zT5uT~`!/kT , ~32!

and so since Eq.~29! is independent ofK ~we useK51 to
normalize Kramers’ problem!, we can rewrite Eq.~29! as

E
0

`

qK~t!dt5
«p« t

«a
2 @b2~«b /« t!zT#, ~33!

where

b5
8

15p1/2«p« t
E

0

`

e2c2
A~c!B~c!c3 dc. ~34!

To be clear, we note that if we wish to use in a problem
mean-free path based on viscosity, we should use«5«p ; on
the other hand, if we wish to base the mean-free path
thermal conductivity, we should use«5« t . These two basic
constants are given5,6 in terms of the Chapman–Ensko
functionsA(c) andB(c) as
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l,
all

a

n

«p5
16

15p1/2E
0

`

e2c2
B~c!c4 dc50.449 027 806... ~35!

and

« t5
16

15p1/2E
0

`

e2c2
A~c!c5 dc50.679 630 049... . ~36!

We have evaluated Eq.~34! to find

b50.398 935 128... . ~37!

We note that the conditions listed as Eqs.~15! and ~26! are
satisfied by both the Maxwell model~a mixture of specular
and diffuse reflection! and the Cercignani–Lampis mode7

for defining the boundary condition at the wall.
The CES model8 of the linearized Boltzmann equatio

uses the exact Chapman–Enskog functionsA(c) andB(c),
and so Eq.~33!, with Eqs.~35!–~37!, is valid. On the other
hand, the required approximations for the S model are

B~c!5c2, A~c!5« tc~c225/2!, «p51, « t53/2,
~38!

which lead tob51/2 for the S model. For the BGK mode
the relevant expressions are

B~c!5c2, A~c!5c~c225/2!, «p51, « t51, ~39!

which lead tob51/2 also for the BGK model.
The purpose of this work was to establish Eq.~33! that

relates the heat flow from Kramers’ problem to the therm
slip coefficient. This result can be used to find one of the t
quantities in terms of the other, or the expression can be u
to support confidence in results obtained from numerical
gorithms used to solve the two problems.

While we have based our derivation of Eq.~33! on the
linearized Boltzmann equation for rigid-sphere interactio
and the Maxwell or the Cercignani–Lampis boundary con
tion, a justification of Eq.~33! for other interaction laws is
possible. To be clear, we note that Eqs.~14!, ~15!, ~24!, and
~26! are the properties of the interaction laws we have u
in this work. If these~reasonable! properties are valid for
other laws, and if the general forms of the solutions, as lis
in Eqs.~27! and~28!, are available, then Eq.~33! will also be
valid.

To conclude this work, we note that we have used
FORTRAN code written to establish the numerical resu
~based on the linearized Boltzmann equation and
Cercignani–Lampis boundary condition! previously
reported4 to confirm the usefulness of the basic result giv
by Eq. ~33!. Using, as was done before,«a5«p and
«b5« t , we were able to confirm with six figures of accura
the results for the thermal-slip coefficient given in Table
of the previous work.4 In carrying out this numerical work
one special case was found noteworthy. For Kramers’ pr
lem with the Cercignani–Lampis accommodation coe
cientsa t52 andan50, the heat flow is zero. And so for thi
special case, Eq.~33! yields the interesting~and correct! re-
sult zT5b.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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