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The McCormack model for gas mixtures: Heat transfer in a plane channel
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An analytical version of the discrete-ordinates method(the ADO method) is used to establish a
concise and particularly accurate solution to the heat-transfer problem in a plane channel for a
binary gas mixture described by the McCormack kinetic model. The solution yields for the general
(specular-diffuse) case of Maxwell boundary conditions for each of the two species, the density and
temperature profiles for both types of particles, as well as the overall heat flow associated with each
of the two species of gas particles. Numerical results are reported for two binary mixtures(Ne–Ar
and He–Xe). The algorithm is considered especially easy to use, and the developed(FORTRAN) code
requires typically less than a second on a 2.2 GHz Pentium 4 machine to compute all quantities of
interest. ©2004 American Institute of Physics. [DOI: 10.1063/1.1773711]
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I. INTRODUCTION

The heat-transfer problem within the context of rare
gas dynamics has been studied in terms of linear theory
single-species gas based on the BGK model(see, for ex
ample, a work by Thomas, Chang, and Siewert,1 and the
references quoted therein) and, in more recent years, on
linearized Boltzmann equation for rigid-sph
interactions.2,3 Very recently, this problem has also be
studied in terms of the nonlinear Boltzmann equation f
mixture of two gases.4

In this work, we develop a concise and accurate solu
for a mixture of two gases described by the McCorm
kinetic model.5 We do not discuss here many relevant wo
on this subject, but we refer instead to the books
Cercignani,6,7 Williams,8 and Ferziger and Kaper,9 as well as
review papers by Sharipov and Seleznev10 and Williams,11

for general background material.

II. A FORMULATION OF THE PROBLEM IN TERMS OF
THE McCORMACK MODEL

In this work we base our analysis of a binary gas mix
on the McCormack model as introduced in an impor
paper5 published in 1973. While we use this model as
fined previously,5 we employ an explicit notation that is a
propriate to the analysis and computations we report
We note that we have used an analytical discrete-ordi
(ADO) method12 in two recent works13,14 to solve a collec
tion of basic flow problems, defined for mixtures in terms
the McCormack model, for semi-infinite media(Kramers’
problem and the half-space problem of thermal creep) and
plane channels(Poiseuille flow, thermal-creep flow, and flo
driven by density gradients). A third work15 reports a solu
tion of the temperature-jump problem for a binary-gas m
ture described by the McCormack model, and so some o
introductory material here is repeated from other works.13–15
We consider that the required functionshasx,vd for the two
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types of particles(a=1 and 2) denote perturbations fro
Maxwellian distributions for each species, i.e.,

fasx,vd = fa,0svdf1 + hasx,vdg, s1d

where

fa,0svd = nasla /pd3/2e−lav2
, la = ma /s2kT0d. s2d

Here k is the Boltzmann constant,ma and na are the mas
and the equilibrium density of theath species,x is the spatia
variable (measured, for example, in centimeters), v, with
componentsvx, vy, vz and magnitudev, is the particle veloc
ity, and T0 is a reference temperature. It follows from M
Cormack’s work5 that the perturbations satisfy(for the cas
of spatial variations only in thex direction) the coupled
equations

cx
]

]x
hasx,cd + vagahasx,cd = vagaLahh1,h2jsx,cd, s3d

a = 1,2,

wherec, with componentscx, cy, cz and magnitudec, is a
dimensionless velocity variable,

va = fma /s2kT0dg1/2 s4d

and the collision frequenciesga are to be defined. Here w
write the integral operators as

Lahh1,h2jsx,cd =
1

p3/2o
b=1

2 E
−`

` E
−`

` E
−`

`

3e−c82
hbsx,c8dKb,asc8,cddcx8dcy8dcz8,

s5d

where the kernelsKb,asc8 ,cd are listed explicitly in Appendi
A of this paper. We note that in obtaining Eq.(3) from the
form given by McCormack,5 we have introduced the dime

sionless velocityc differently in the two equations, i.e., for

© 2004 American Institute of Physics
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the casea=1 we used the transformationc=v1v, whereas
for the casea=2 we used the transformationc=v2v. As we
wish to work with a dimensionless spatial variable, we in
duce

t = x/l0, s6d

where

l0 =
mv0

P0
s7d

is the mean-free path(based on viscosity) introduced by
Sharipov and Kalempa.16 Here

v0 = s2kT0 /md1/2, s8d

where

m=
n1m1 + n2m2

n1 + n2
. s9d

Continuing, we express the viscosity of the mixture in te
of the partial pressuresPa and the collision frequenciesga

as16

m = P1 /g1 + P2 /g2, s10d

where

Pa

P0
=

na

n1 + n2
, s11d

g1 = fC1C2 − n1,2
s4dn2,1

s4dgfC2 + n1,2
s4dg−1 s12d

and

g2 = fC1C2 − n1,2
s4dn2,1

s4dgfC1 + n2,1
s4dg−1. s13d

Here

C1 = n1,1
s3d + n1,2

s3d − n1,1
s4d s14d

and

C2 = n2,2
s3d + n2,1

s3d − n2,2
s4d , s15d

and we note that the parametersni,j
s3d and ni,j

s4d are given ex
plicitly by Eqs. (A27) and (A28) of Appendix A.

Finally, to compact our notation we introduce

sa = gaval0 s16d

or, more explicitly,

sa = ga

n1 /g1 + n2 /g2

n1 + n2
sma /md1/2, s17d

and so we rewrite Eq.(3) in terms of thet variable as

cx
]

]t
hast,cd + sahast,cd = saLahh1,h2jst,cd. s18d

In this work we consider the heat-transfer problem
plane channel, and so we seek solutions of Eqs.(18) that are
valid for all t[ s−a,ad, and we use Maxwell boundary co
ditions at the walls. If we denote the temperatures of
walls located att=−a andt=a by Tw1 andTw2, respectively
we can follow a recent review paper by Williams11 and lin-

earize the boundary conditions aboutT0 to find

Downloaded 26 Aug 2004 to 129.137.162.39. Redistribution subject to AIP
has− a,cx,cy,czd − s1 − aadhas− a,− cx,cy,czd − aaI−hhajs− ad

= aadsc2 − 2d s19ad

and

hasa,− cx,cy,czd − s1 − badhasa,cx,cy,czd − baI+hhajsad

= − badsc2 − 2d s19bd

for cx.0 and allcy andcz. Here we have chosenT0 to be the
average ofTw1 andTw2, and so we have written

Tw1 = T0s1 + dd s20ad

and

Tw2 = T0s1 − dd, s20bd

whered is the parameter we use to specify the deviation
the wall temperatures relative to the reference temper
T0. We useha1,a2j andhb1,b2j to denote the accommodati
coefficients basic to the walls located att=7a, and we hav
used

I7hhajstd =
2

p
E

−`

` E
−`

` E
0

`

3e−c82
hast, 7 cx8,cy8,cz8dcx8dcx8dcy8dcz8 s21d

to denote the diffuse terms in Eqs.(19). Note that

hast,cd ⇔ hast,cx,cy,czd.

If we sought to compute the complete distribution fu
tions hast ,cd, then we would have to work explicitly wi
Eqs. (18) and (19); however, since we seek primarily t
density and temperature perturbations

Nastd =
1

p3/2E
−`

` E
−`

` E
−`

`

e−c2
hast,cddcxdcydcz s22d

and

Tastd =
2

3p3/2E
−`

` E
−`

` E
−`

`

3e−c2
hast,cdsc2 − 3/2ddcxdcydcz, s23d

we can work only with certain moments(integrals) of
Eqs.(18) and(19). To this end, we first multiply Eq.(18) by

f1scy,czd = s1/pde−scy
2+cz

2d s24d

and integrate over allcy and allcz. We then repeat this pr
cedure using

f2scy,czd = s1/pde−scy
2+cz

2dscy
2 + cz

2 − 1d. s25d

Defining

g2a−1st,cxd =E
−`

` E
−`

`

f1scy,czdhast,cddcydcz s26d
and
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g2ast,cxd =E
−`

` E
−`

`

f2scy,czdhast,cddcydcz, s27d

we find from these projections four coupled balance e
tions which we write(in matrix notation) as

j
]

]t
Gst,jd + SGst,jd = SE

−`

`

csj8dK sj8,jdGst,j8ddj8,

s28d

where the components ofGst ,jd are gast ,jd ,a=1,2,3,4
where we now usej in place ofcx and where

S = diaghs1,s1,s2,s2j s29d

and

csjd = p−1/2e−j2
. s30d

In addition, the elementski,jsj8 ,jd of the kernelK sj8 ,jd are
as listed in Appendix B of this work. To find the bound
conditions relevant to Eq.(28) we project Eqs.(19a) and
(19b) againstf1scy,czd andf2scy,czd to find

Gs− a,jd − S1Gs− a,− jd − 2D1E
0

`

e−j82
Gs− a,− j8dj8dj8

= dD1Rsjd s31ad

and

Gsa,− jd − S2Gsa,jd − 2D2E
0

`

e−j82
Gsa,j8dj8dj8

= − dD2Rsjd s31bd

for j.0. Here

S1 = diagh1 − a1,1 −a1,1 −a2,1 −a2j, s32ad

S2 = diagh1 − b1,1 −b1,1 −b2,1 −b2j, s32bd

D1 = diagha1,0,a2,0j, s33ad

and

D2 = diaghb1,0,b2,0j. s33bd

In addition

D1 = diagha1,a1,a2,a2j, s34ad

D2 = diaghb1,b1,b2,b2j, s34bd

and

Rsjd = 3
j2 − 1

1

j2 − 1

1
4 . s35d

So, if we can solve Eq.(28), subject to Eqs.(31), we can
use Eqs.(22) and (23) and Eqs.(26) and (27) and comput

the density and temperature perturbations we seek from

Downloaded 26 Aug 2004 to 129.137.162.39. Redistribution subject to AIP
-

Nastd =E
−`

`

csjdg2a−1st,jddj s36d

and

Tastd =
2

3
E

−`

`

csjdfsj2 − 1/2dg2a−1st,jd + g2ast,jdgdj.

s37d

III. THE SOLUTION OF THE HEAT-TRANSFER
PROBLEM

In an earlier work15 the ADO method was used to so
the temperature-jump problem as defined by the McCorm
model for mixtures. In that work15 the elementary solution
of a discrete-ordinates version of our Eq.(28) were estab
lished and reported in detail. In order to avoid much rep
tion, we do not repeat a development of these eleme
solutions here, but a brief review of these solutions is g
in Appendix C. And so we express our solution to theG
problem” as

Gst, ± jid = G*st, ± jid + o
j=4

4N

fAjFsn j, ± jide−sa+td/n j

+ BjFsn j, 7 jide−sa−td/n jg, s38d

where

G*st,jd = A1G1 + A2G2 + A3G3sjd + B1G4sjd

+ B2G5st,jd + B3G6st,jd, s39d

and where the constantshAj ,Bjj are to be determined so th
the result given by Eq.(38) will satisfy discrete-ordinate
versions of the boundary conditions, which we write her

Gs− a,jid − S1Gs− a,− jid

− 2p1/2D1o
k=1

N

wkjkcsjkdGs− a,− jkd = dD1Rsjid s40ad

and

Gsa,− jid − S2Gsa,jid − 2p1/2D2o
k=1

N

wkjkcsjkdGsa,jkd

= − dD2Rsjid s40bd

for i =1,2, . . . ,N. Here, as mentioned in Appendix C,hwk,jkj
are theN weights and nodes used to evaluate integrals
the intervalf0,`d. We can now enter the solution listed
Eq. (38) into Eqs.(40) to define a system of linear algebr
equations for the constantshAj ,Bjj. However, there is a com
plication. It can be shown that bothG1 and G2 satisfy ho-
mogeneous versions of the boundary conditions liste
Eqs. (31), and so the constantsA1 and A2 cannot be dete
mined from these boundary conditions. It follows that
boundary conditions listed as Eqs.(31) are not sufficient t
define a unique solution to the considered heat-transfer

lem. This issue was encountered and discussed in earlier
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work, and so we follow previous papers3,17 and impose th
additional conditions

E
−a

a

Nbstddt = 0, b = 1,2. s41d

To be clear about Eq.(41), we note that the number dens
for particles of typea is given by

nasxd =E
−`

` E
−`

` E
−`

`

fa,0svdf1 + hasx,vdgdvxdvydvz,

s42ad

where fa,0svd is given by Eq.(2). Making use of our dimen
sionless variables and Eq.(22), we can rewrite Eq.(42a) as

nastd = naf1 + Nastdg. s42bd

Now, since the total number of particles of typea in the
channel(per unit cross sectional area) is given by 2ana, it
follows that

E
−a

a

nastddt = 2ana, s42cd

and so, using Eq.(42b) in the left-hand side of Eq.(42c), we
find the justification for Eq.(41).

We see now that if we augment the linear system
tained when Eq.(38) is substituted into Eqs.(40) with the
two conditions listed as Eq.(41), we find a system o
8N+2 equations for the 8N unknowns. However, consideri
that this augmented system has rank 8N, we seek uniqu
solutions for the constantshAj ,Bjj. And so, considering th
we have solved the mentioned system of linear equation
can evaluate Eqs.(36) and(37) to obtain the desired dens
and temperature profiles, viz.,

Nstd = FA1 − B2t

A2 − B3t
G + o

j=4

4N

Xsn jdfAje
−sa+td/n j + Bje

−sa−td/n jg

s43d

and

Tstd = fA3 + sc1B2 + c2B3dtgF1

1
G

+
2

3o
j=4

4N

Ysn jdfAje
−sa+td/n j + Bje

−sa−td/n jg, s44d

wherec1=n1/n, c2=n2/n, with n=n1+n2,

Xsn jd = o
k=1

N

wkcsjkdF1 0 0 0

0 0 1 0
GfFsn j,jkd + Fsn j,− jkdg

s45d

and

Ysn jd = o
k=1

N

wkcsjkdFjk
2 − 1/2 1 0 0

0 0 jk
2 − 1/2 1

G
3fFsn j,jkd + Fsn j,− jkdg. s46d
Note that in Eq.(43) we have usedN1std andN2std to define

Downloaded 26 Aug 2004 to 129.137.162.39. Redistribution subject to AIP
e

the components ofNstd, and similarly the components
Tstd in Eq. (44) areT1std andT2std.

In addition to the density and temperature perturbat
we consider that the flow and the heat flow(in the x direc-
tion) are also of interest. These quantities are defined
each of the two species by

Uastd =
1

p3/2E
−`

` E
−`

` E
−`

`

e−c2
hast,cdcxdcxdcydcz s47d

and

Qastd =
1

p3/2E
−`

` E
−`

` E
−`

`

e−c2
hast,cd

3sc2 − 5/2dcxdcxdcydcz s48d

for a=1,2.Noting Eqs.(24)–(27), we can rewrite Eqs.(47)
and (48) as

Uastd =E
−`

`

csjdg2a−1st,jdjdj s49d

and

Qastd =E
−`

`

csjdfsj2 − 3/2dg2a−1st,jd + g2ast,jdgjdj.

s50d

Upon multiplying Eq.(28) by csjd and integrating ove
all j we can conclude that bothU1std and U2std are con
stants, and we can then use either of Eqs.(31) to show tha
U1std=0 and thatU2std=0.

In regard to the heat flow associated with each of the
species, we have taken moments of Eq.(28) to find, after
some elementary algebra, the expression

w1Q1std + w2Q2std = Q0, s51d

whereQ0 is a constant and where

w1 =
c1

c1 + rc2
s52ad

and

w2 =
rc2

c1 + rc2
, s52bd

with r =sm1/m2d1/2. If we define the two components ofQstd
to beQ1std andQ2std, then we can use Eqs.(38) and(50) to
find

Qstd = Q* + o
j=4

4N

Zsn jdfAje
−sa+td/n j − Bje

−sa−td/n jg, s53d

where

Zsn jd = o
k=1

N

wkjkcsjkdFjk
2 − 3/2 1 0 0

0 0 jk
2 − 3/2 1

G
3fFsn j,jkd − Fsn j,− jkdg. s54d

In addition, we can use the vectorsUb and Vb defined in

Appendix C in order to write
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Q* =
1

2
F0 1 0 0

0 0 0 1
GsB2U1 + B3U2d +

3

4
F1 0 0 0

0 0 1 0
G

3sB2V1 + B3V2d. s55d

To conclude this section, we note that the case
single-species gas can be achieved here as any one o
limiting cases defined as

c1 = 0 or c2 = 0 or m1 = m2 and d1 = d2.

In each of the limiting cases, the resulting value ofQ0 is the
constant heat flow for the single-gas case.

IV. NUMERICAL RESULTS

In order to demonstrate that our ADO solution for
considered heat-transfer problem can yield accurate re
with a relatively modest computational effort, we report
tailed numerical results for two test cases.

The first test case consists of a Ne–Ar mixture and
second of a He–Xe mixture. We note that only the mass
m1/m2, the diameter ratiod1/d2, and the density ration1/n2

are needed to define the McCormack model for rigid-sp
interactions. In particular, noting the convenient choice
mean-free path made in Sec. II and the ratios of param
that result, it is easy to see that the constant fa
spkT0/32d1/2 in Eq. (A35) of Appendix A need not be spec

TABLE I. The density, temperature, and heat-flo

h N1s−a+2had N2s−a+2had −T1s−a+

0.0 −1.928 34s−1d −3.786 48s−1d 1.558 83

0.1 −1.382 11s−1d −2.499 54s−1d 2.217 73

0.2 −1.017 18s−1d −1.736 91s−1d 2.687 27

0.3 −6.773 44s−2d −1.092 19s−1d 3.126 25

0.4 −3.449 50s−2d −5.021 64s−2d 3.554 42

0.5 −1.369 82s−3d 6.060 81s−3d 3.979 72

0.6 3.202 95s−2d 6.131 34s−2d 4.407 54

0.7 6.613 32s−2d 1.170 24s−1d 4.843 79

0.8 1.017 10s−1d 1.751 10s−1d 5.298 20

0.9 1.408 02s−1d 2.395 10s−1d 5.794 53

1.0 1.989 17s−1d 3.344 52s−1d 6.496 60

TABLE II. The density, temperature, and heat-flo

h N1s−a+2had N2s−a+2had −T1s−a+

0.0 −1.622 36s−1d −3.796 89s−1d 2.358 93

0.1 −1.104 16s−1d −2.582 55s−1d 3.029 85

0.2 −7.849 92s−2d −1.814 04s−1d 3.482 92

0.3 −5.073 22s−2d −1.146 69s−1d 3.887 38

0.4 −2.471 08s−2d −5.279 33s−2d 4.270 89

0.5 5.928 23s−4d 6.481 57s−3d 4.645 76

0.6 2.583 32s−2d 6.455 66s−2d 5.020 01

0.7 5.162 83s−2d 1.226 57s−1d 5.401 30

0.8 7.886 21s−2d 1.823 68s−1d 5.800 33

0.9 1.094 91s−1d 2.469 63s−1d 6.239 94

1.0 1.558 04s−1d 3.367 25s−1d 6.853 92
Downloaded 26 Aug 2004 to 129.137.162.39. Redistribution subject to AIP
ee

ts

s
r

fied. And so we use m1=20.183, m2=39.948, an
d2/d1=1.406 in our first test case, andm1=4.0026
m2=131.30, andd2/d1=2.226 in our second test case.
usen1/ sn1+n2d=0.4 for both test cases.

The remaining input data are taken to be the sam
both test cases. Thus, we consider a channel with half w
a=1.5, and we assign the accommodation coeffic
a1=0.2 anda2=0.4 to the wall att=−a and b1=0.6 and
b2=0.8 to the wall att=a, where the subscripts identify t
type of particle. We use hered=1.0.

We report in Tables I and II our converged numer
results for the density, temperature, and heat-flow pro
We have verified that the tabulated heat-flow profiles sa
the identity expressed by Eq.(51). In addition, we note tha
all numerical results were generated with a quadra
scheme defined upon using the transformationvsjd=e−j to
mapjP f0,`d onto vP f0,1g and then mapping the Gaus
Legendre scheme linearly onto the intervalf0,1g. To estab
lish confidence in the accuracy of our results, we have
served numerical stability in all entries of the tables, as
order of the quadratureN was varied between 40 and 100
increments of 20.

In regard to numerical linear algebra, we have used
routines from theEISPACK collection18 to find the require
eigenvalues and eigenvectors, and we used subroutines

files for the Ne–Ar mixture.

−T2s−a+2had Q1s−a+2had Q2s−a+2had

−1.788 26s−2d 1.556 84s−1d 3.000 03s−1d
1.224 38s−1d 1.759 82s−1d 2.809 65s−1d
2.019 07s−1d 1.889 32s−1d 2.688 20s−1d
2.668 76s−1d 1.977 53s−1d 2.605 46s−1d
3.250 87s−1d 2.037 31s−1d 2.549 39s−1d
3.799 58s−1d 2.075 36s−1d 2.513 70s−1d
4.336 28s−1d 2.095 18s−1d 2.495 11s−1d
4.879 66s−1d 2.098 05s−1d 2.492 42s−1d
5.453 81s−1d 2.083 16s−1d 2.506 39s−1d
6.107 22s−1d 2.046 81s−1d 2.540 48s−1d
7.117 47s−1d 1.977 70s−1d 2.605 31s−1d

ofiles for the He–Xe mixture.

−T2s−a+2had Q1s−a+2had Q2s−a+2had

2.352 84s−3d 1.629 29s−1d 3.080 15s−1d
1.307 98s−1d 1.654 49s−1d 2.983 96s−1d
2.083 81s−1d 1.674 36s−1d 2.908 08s−1d
2.735 39s−1d 1.690 64s−1d 2.845 90s−1d
3.326 29s−1d 1.704 04s−1d 2.794 76s−1d
3.884 78s−1d 1.714 94s−1d 2.753 12s−1d
4.428 76s−1d 1.723 59s−1d 2.720 09s−1d
4.973 90s−1d 1.730 11s−1d 2.695 19s−1d
5.540 09s−1d 1.734 53s−1d 2.678 34s−1d
6.166 82s−1d 1.736 70s−1d 2.670 05s−1d
7.079 49s−1d 1.736 05s−1d 2.672 54s−1d
w pro

2had

s−1d
s−1d
s−1d
s−1d
s−1d
s−1d
s−1d
s−1d
s−1d
s−1d
s−1d
w pr

2had

s−1d
s−1d
s−1d
s−1d
s−1d
s−1d
s−1d
s−1d
s−1d
s−1d
s−1d
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the LINPACK package19 to find a least-squares solution(via
QR decomposition) for the augmented system of 8N+2 lin-
ear algebraic equations and 8N unknownshAj ,Bjj mentioned
in Sec. III. We should mention that we have also follow
the alternative route of combining some equations to tr
form the overdetermined system obtained when Eq.(38) is
used in Eqs.(40) into a square system for all unknow
exceptA1 andA2. This system was solved by Gaussian eli
nation and thenA1 andA2 were determined using Eq.(41).
We have concluded that both approaches yielded essen
the same results.

As a (not very severe) test of our results, we have fou
agreement for the case of a single-species gas
S-model10 results obtained from a special case of the c
written to establish the results based on the linear
Boltzmann equation(for rigid-sphere interactions) that were
reported earlier.3 As noted,15 the McCormack model(as used
in this work) reduces, for the special case of a single ga
the S model, not the BGK model.

Finally, we note that we have also used our code to c
pute the normalized heat flow reported by Kosuge, Aoki,
Takata4 for the problem of a binary mixture of rigid-sphe
gases confined between two diffusely reflecting par
plates with different temperatures. These authors empl
an iterative finite-difference technique to solve the
coupled nonlinear Boltzmann equations that describe
problem and reported numerical results in tabular form f
normalized heat flow defined as

q1
* = f2p0s2kTw1/m1d1/2g−1E

−`

` E
−`

` E
−`

`

fm1f1sx,vd

+ m2f2sx,vdgv2vxdvxdvydvz, s56d

where, except for the pressurep0=ksn1+n2dTw1, all symbols
have been defined in our work. We have found thatq1

* can be
expressed in terms of our constantQ0 introduced in Eq.(51)
as

q1
* = s1 + dd−3/2sc1 + rc2dQ0, s57d

and so we report in Table III our numerical results forq1
* ,

along with those based on the nonlinear Boltzmann equ

TABLE III. Comparison of results for a normalize

n1/n2 Kn

m1/m2=2 and

NLBE (Ref. 4)

1.0(1) 1.0s−1d 0.184

1.0(1) 1.0 0.509

1.0(1) 1.0(1) 0.656

1.0 1.0s−1d 0.209

1.0 1.0 0.589

1.0 1.0(1) 0.763

1.0s−1d 1.0s−1d 0.245

1.0s−1d 1.0 0.677

1.0s−1d 1.0(1) 0.871
(NLBE) for rigid-sphere interactions reported by Kosuge,
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Aoki, and Takata.4 Since our mean-free path is defined i
way different from that of Kosuge, Aoki, and Takata,4 the
equivalent channel width in our formulation is compu
from

2a = l0
* /sl0Knd, s58d

wherel0 is the mean-free path given by Eq.(7) andl0
* and Kn

are, respectively, the mean-free path and the Knudsen
ber used by Kosuge, Aoki, and Takata.4 We note also that t
compute our entries in Table III, we have put all our acc
modation coefficients equal to unity, and we have u
d=−1/3. We see from Table III that, as might be expec
the McCormack model appears to yield better results(for the
heat flow) for small Knudsen numbers(large channe
widths).

V. CONCLUDING REMARKS

To conclude this work, we note that we believe that
solution to the considered heat-transfer problem is espe
concise and easy to use. In our formulation we have uti
at each wall a general form of the Maxwell boundary co
tion, and we have reported what we believe to be hi
accurate(within the context of the kinetic model used) re-
sults for the density, temperature, and heat-flow profile
two test cases. It should be noted that our complete, sp
specific results for the density, temperature, and heat
perturbations are continuous in thet variable and thus a
valid anywhere in the gas.

In this work we have considered only the case of ri
sphere interactions, but the solutions can be used for
scattering laws, such as the one defined by the Len
Jones potential, simply by using appropriate definition
theV integrals9,20 mentioned in Appendix A. It can be not
here that the McCormack model has the attractive fe
that it preserves the basic physical laws prescribed b
Boltzmann equation, while at the same time this kin
model does not require the heavy numerical work tha
associated with the full Boltzmann equation. The work
McCormack5 also is considered important in the one-spe
limit since by a specific choice ofg, a free parameter in th

10

at flow(−q1
*).

=1 m1/m2=4 andd1/d2=2

his work NLBE (Ref. 4) This work

0.181 0.207 0.202

0.519 0.547 0.557

0.683 0.693 0.721

0.205 0.370 0.358

0.599 0.814 0.830

0.794 0.966 1.006

0.241 0.659 0.653

0.689 1.124 1.159

0.906 1.244 1.298
d he

d1/d2

T

model, we are able to obtain either the S modelor the
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explicit N=5 model reported by Gross and Jackson in t
famous work.21 And because the McCormack model, eve
the one-species limit, allows some choice of the collis
frequencyg, other kinetic models are also contained in M
Cormack’s formulation. Having said that, we recall tha
this work we have used Eqs.(12) and (13) to define the
collision frequencies for a two-species gas.

Finally, in regard to computational requirements,
note that since our solutions require only a ma
eigenvalue/eigenvector routine and a solver of linear a
braic equations, the algorithm is especially efficient, fast,
easy to implement. In fact, the developed(FORTRAN) code
requires less than a second(on a 2.2 GHz mobile Pentium
machine) to yield all quantities of interest with what we b
lieve to be five or six figures of accuracy.
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APPENDIX A: BASIC ELEMENTS OF THE DEFINING
EQUATIONS

Here we list some basic results that are required to d
certain elements of the main text of this paper. First of a
regard to Eq.(5), we note that

Kb,asc8,cd = Kb,a
s1d sc8,cd + Kb,a

s2d sc8,cd + Kb,a
s3d sc8,cd

+ Kb,a
s4d sc8,cd, a,b = 1,2, sA1d

where

K1,1
s1dsc8,cd = 1 + h2f1 − h1,2

s1dg − h1,2
s2dsc82 − 5/2djc8 ·c,

sA2d

K1,1
s2dsc8,cd = s2/3df1 − 2r * h1,2

s1dgsc82 − 3/2dsc2 − 3/2d,

sA3d

K1,1
s3dsc8,cd = 2Ã1fsc8 ·cd2 − s1/3dc82c2g, sA4d

K1,1
s4dsc8,cd = fs4/5db1sc82 − 5/2d − h1,2

s2dgsc2 − 5/2dc8 ·c,

sA5d

K2,1
s1dsc8,cd = rh2h1,2

s1d + h1,2
s2dfr2sc82 − 5/2d + c2 − 5/2gjc8 ·c,

sA6d

K2,1
s2dsc8,cd = s4/3dr * h1,2

s1dsc82 − 3/2dsc2 − 3/2d, sA7d

K2,1
s3dsc8,cd = 2h1,2

s4dfsc8 ·cd2 − s1/3dc82c2g, sA8d

K2,1
s4dsc8,cd = s4/5dh1,2

s6dsc82 − 5/2dsc2 − 5/2dc8 ·c, sA9d

K2,2
s1dsc8,cd = 1 + h2f1 − h2,1

s1dg − h2,1
s2dsc82 − 5/2djc8 ·c,

sA10d

K2,2
s2dsc8,cd = s2/3df1 − 2s* h2,1

s1dgsc82 − 3/2dsc2 − 3/2d,
sA11d

Downloaded 26 Aug 2004 to 129.137.162.39. Redistribution subject to AIP
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K2,2
s3dsc8,cd = 2Ã2fsc8 ·cd2 − s1/3dc82c2g, sA12d

K2,2
s4dsc8,cd = fs4/5db2sc82 − 5/2d − h2,1

s2dgsc2 − 5/2dc8 ·c,

sA13d

K1,2
s1dsc8,cd = sh2h2,1

s1d + h2,1
s2dfs2sc82 − 5/2d + c2 − 5/2gjc8 ·c,

sA14d

K1,2
s2dsc8,cd = s4/3ds* h2,1

s1dsc82 − 3/2dsc2 − 3/2d, sA15d

K1,2
s3dsc8,cd = 2h2,1

s4dfsc8 ·cd2 − s1/3dc82c2g, sA16d

and

K1,2
s4dsc8,cd = s4/5dh2,1

s6dsc82 − 5/2dsc2 − 5/2dc8 ·c. sA17d

Here we used

r = sm1/m2d1/2 sA18ad

and

s= sm2/m1d1/2, sA18bd

along with

r * = r2/s1 + r2d sA19ad

and

s* = s2/s1 + s2d. sA19bd

In addition,

Ã1 = 1 +h1,1
s4d − h1,1

s3d − h1,2
s3d , sA20d

Ã2 = 1 +h2,2
s4d − h2,2

s3d − h2,1
s3d , sA21d

b1 = 1 +h1,1
s6d − h1,1

s5d − h1,2
s5d , sA22d

and

b2 = 1 +h2,2
s6d − h2,2

s5d − h2,1
s5d , sA23d

where

hi,j
skd = ni,j

skd/gi . sA24d

Following McCormack,5 we write

na,b
s1d =

16

3

ma,b

ma

nbVa,b
11 , sA25d

na,b
s2d =

64

15
Sma,b

ma
D2

nbSVa,b
12 −

5

2
Va,b

11 D , sA26d

na,b
s3d =

16

5
Sma,b

ma
D2ma

mb

nbS10

3
Va,b

11 +
mb

ma

Va,b
22 D , sA27d

na,b
s4d =

16

5
Sma,b

ma
D2ma

mb

nbS10

3
Va,b

11 − Va,b
22 D , sA28d

na,b
s5d =

64

15
Sma,b

ma
D3ma

mb

nbGa,b
s5d , sA29d
and
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na,b
s6d =

64

15
Sma,b

ma
D3Sma

mb
D3/2

nbGa,b
s6d , sA30d

with

Ga,b
s5d = Va,b

22 + S15ma

4mb

+
25mb

8ma
DVa,b

11

− S mb

2ma
Ds5Va,b

12 − Va,b
13 d, sA31d

and, after a correction by Pan and Storvick,22

Ga,b
s6d = − Va,b

22 + 55
8 Va,b

11 − 5
2Va,b

12 + 1
2Va,b

13 . sA32d

In addition,

ma,b = mamb /sma + mbd sA33d

and theV functions are the Chapman–Cowling integrals9,20

which for the case of rigid-sphere interactions take
simple forms

Va,b
12 = 3Va,b

11 , sA34ad

Va,b
13 = 12Va,b

11 , sA34bd

and

Va,b
22 = 2Va,b

11 , sA34cd

with

Va,b
11 =

1

4
S pkT0

2ma,b
D1/2

sda + dbd2. sA35d

Here, as noted in the main text of this work,k is the Boltz-
mann constant,T0 is a reference temperature, andd1 andd2

are the diameters of the two types of particles.

APPENDIX B: THE BASIC KERNELS FOR
TEMPERATURE-DENSITY PROBLEMS

We express the elements of the kernelK sj8 ,jd required
in Eq. (28) as follows:

k1,1sj8,jd = 1 + f1,1sj8,jdj8j + s2/3df1 − 2r * h1,2
s1d + 2Ã1g

3sj82 − 1/2dsj2 − 1/2d, sB1d

k1,2sj8,jd = fs4/5db1sj2 − 3/2d − h1,2
s2dgj8j

+ s2/3df1 − 2r * h1,2
s1d − Ã1gsj2 − 1/2d, sB2d

k1,3sj8,jd = f1,3sj8,jdj8j + s4/3dfr * h1,2
s1d + h1,2

s4dg

3sj82 − 1/2dsj2 − 1/2d, sB3d

k1,4sj8,jd = fr3h1,2
s2d + s4/5dh1,2

s6dsj2 − 3/2dgj8j + s2/3d

3f2r * h1,2
s1d − h1,2

s4dgsj2 − 1/2d, sB4d

k2,1sj8,jd = fs4/5db1sj82 − 3/2d − h1,2
s2dgj8j

+ s2/3df1 − 2r * h1,2
s1d − Ã1gsj82 − 1/2d, sB5d

k2,2sj8,jd = s2/3df1 − 2r * h1,2
s1dg + s1/3dÃ1 + s4/5db1j8j,
sB6d

Downloaded 26 Aug 2004 to 129.137.162.39. Redistribution subject to AIP
k2,3sj8,jd = frh1,2
s2d + s4/5dh1,2

s6dsj82 − 3/2dgj8j + s2/3d

3f2r * h1,2
s1d − h1,2

s4dgsj82 − 1/2d, sB7d

k2,4sj8,jd = s4/5dh1,2
s6dj8j + s1/3df4r * h1,2

s1d + h1,2
s4dg, sB8d

k3,1sj8,jd = f3,1sj8,jdj8j + s4/3dfs* h2,1
s1d + h2,1

s4dg

3sj82 − 1/2dsj2 − 1/2d, sB9d

k3,2sj8,jd = fs3h2,1
s2d + s4/5dh2,1

s6dsj2 − 3/2dgj8j + s2/3d

3f2s* h2,1
s1d − h2,1

s4dgsj2 − 1/2d, sB10d

k3,3sj8,jd = 1 + f3,3sj8,jdj8j + s2/3df1 − 2s* h2,1
s1d + 2Ã2g

3sj82 − 1/2dsj2 − 1/2d, sB11d

k3,4sj8,jd = fs4/5db2sj2 − 3/2d − h2,1
s2dgj8j

+ s2/3df1 − 2s* h2,1
s1d − Ã2gsj2 − 1/2d, sB12d

k4,1sj8,jd = fsh2,1
s2d + s4/5dh2,1

s6dsj82 − 3/2dgj8j + s2/3d

3f2s* h2,1
s1d − h2,1

s4dgsj82 − 1/2d, sB13d

k4,2sj8,jd = s4/5dh2,1
s6dj8j + s1/3df4s* h2,1

s1d + h2,1
s4dg, sB14d

k4,3sj8,jd = fs4/5db2sj82 − 3/2d − h2,1
s2dgj8j

+ s2/3df1 − 2s* h2,1
s1d − Ã2gsj82 − 1/2d, sB15d

and

k4,4sj8,jd = s2/3df1 − 2s* h2,1
s1dg + s1/3dÃ2 + s4/5db2j8j.

sB16d

Here we have used

f1,1sj8,jd = 2f1 − h1,2
s1dg − h1,2

s2dsj82 + j2 − 3d

+ s4/5db1sj82 − 3/2dsj2 − 3/2d, sB17d

f1,3sj8,jd = 2rh1,2
s1d + rh1,2

s2dfr2sj82 − 3/2d + j2 − 3/2g

+ s4/5dh1,2
s6dsj82 − 3/2dsj2 − 3/2d, sB18d

f3,1sj8,jd = 2sh2,1
s1d + sh2,1

s2dfs2sj82 − 3/2d + j2 − 3/2g

+ s4/5dh2,1
s6dsj82 − 3/2dsj2 − 3/2d, sB19d

and

f3,3sj8,jd = 2f1 − h2,1
s1dg − h2,1

s2dsj82 + j2 − 3d

+ s4/5db2sj82 − 3/2dsj2 − 3/2d. sB20d

APPENDIX C: THE ELEMENTARY SOLUTIONS

While our complete work regarding the elementary
lutions was reported earlier,15 we give here a brief descri
tion of the way in which these solutions are defined. To s

we rewrite Eq.(28) as
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j
]

]t
Gst,jd + SGst,jd = SE

0

`

csj8dfK sj8,jdGst,j8d

+ K s− j8,jdGst,− j8dgdj8, sC1d

and we then look for solutions of Eq.(C1) of the form

Gst,jd = Fsn,jde−t/n. sC2d

Substitution of Eq.(C2) into Eq. (C1) leads us, after we us
the N weights and nodeshwk,jkj to represent the integratio
process in Eq.(C1) and after we evaluate the resulting v
sion of Eq.(C1) at h±jij, to the eigenvalue problem

s1/ji
2dFS2Vsn j,jid − o

k=1

N

wkcsjkdKsjk,jidVsn j,jkdG
= l jVsn j,jid. sC3d

Here

Ksj8,jd = sj /j8dSK +sj8,jdS + S2K −sj8,jd −E
0

`

csj9d

3sj /j9dSK +sj9,jdSK −sj8,j9ddj9, sC4d

where

K +sj8,jd = K sj8,jd + K s− j8,jd sC5ad

and

K −sj8,jd = K sj8,jd − K s− j8,jd sC5bd

and where the kernelK sj8 ,jd is defined in Appendix B
Upon solving the resulting eigenvalue problem, we use
eigenvaluesl j and the eigenvectorsVsn j ,jkd to establish th
separation constants

n j = ±l j
−1/2 sC6d

and the vectors

Usn j,jid = sn j /jidSFVsn j,jid

− o
k=1

N

wkcsjkdK −sjk,jidVsn j,jkdG . sC7d

We now can use

Fsn j,jid = s1/2dfUsn j,jid + Vsn j,jidg sC8ad

and

Fsn j,− jid = s1/2dfUsn j,jid − Vsn j,jidg sC8bd

to establish the discrete-ordinates elementary solution
noted,15 there are three(plus/minus) pairs of separation co
stants that appear to become unbounded as the order
quadrature scheme increases, and so we replace the
sponding discrete-ordinates elementary solutions with th

exact solutions

Downloaded 26 Aug 2004 to 129.137.162.39. Redistribution subject to AIP
s

ur
re-
x

G1 = 3
1

0

0

0
4 , sC9ad

G2 = 3
0

0

1

0
4 , sC9bd

G3sjd = 3
j2 − 1/2

1

j2 − 1/2

1
4 , sC9cd

G4sjd = 3
rj

0

j

0
4 , sC9dd

G5st,jd = t H1sjd + F1sjd sC10ad

and

G6st,jd = t H2sjd + F2sjd. sC10bd

Here

H1sjd = 3
− 1 +c1sj2 − 1/2d

c1

c1sj2 − 1/2d
c1

4 sC11ad

and

H2sjd = 3
c2sj2 − 1/2d

c2

− 1 +c2sj2 − 1/2d
c2

4 , sC11bd

with c1=n1/n andc2=n2/n. In addition, and as discussed15

the vector-valued functionsFbsjd are solutions of the inte
gral equations

Fbsjd = − jS−1Hbsjd +E
−`

`

csj8dK sj8,jdFbsj8ddj8

sC12d

for b=1,2 andjP s−` ,`d. Previously15 it was shown tha
Fbsjd could be expressed as

Fbsjd = jUb + jsj2 − 3/2dVb, sC13d

where the constant vectorsUb and Vb are solutions of th
(rank 8) linear systems defined by

sI −AdU1 −CV1 = fc2/s1 − c1/s1 − c1/s2 − c1/s2gT,
sC14d
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sI −DdV1 −BU1 = f− c1/s1 0 − c1/s2 0gT, sC15d

and

f0 0 1 0gU1 = 0, sC16d

for b=1, and by

sI −AdU2 −CV2 = f− c2/s1 − c2/s1 c1/s2 − c2/s2gT,

sC17d

sI −DdV2 −BU2 = f− c2/s1 0 − c2/s2 0gT, sC18d

and

f0 0 1 0gU2 = 0, sC19d

for b=2. HereI is the identity matrix, and the superscripT
is used to denote the transpose operation. In addition

A =3
1 − h1,2

s1d − s1/2dh1,2
s2d rh1,2

s1d sr3/2dh1,2
s2d

− s1/2dh1,2
s2d s2/5db1 sr/2dh1,2

s2d s2/5dh1,2
s6d

sh2,1
s1d ss3/2dh2,1

s2d 1 − h2,1
s1d − s1/2dh2,1

s2d

ss/2dh2,1
s2d s2/5dh2,1

s6d − s1/2dh2,1
s2d s2/5db2

4 ,

sC20d

B = 3
− s1/2dh1,2

s2d s2/5db1 sr/2dh1,2
s2d s2/5dh1,2

s6d

0 0 0 0

ss/2dh2,1
s2d s2/5dh2,1

s6d − s1/2dh2,1
s2d s2/5db2

0 0 0 0
4 ,

sC21d

C =3
− s3/4dh1,2

s2d 0 s3r3/4dh1,2
s2d 0

s3/5db1 0 s3/5dh1,2
s6d 0

s3s3/4dh2,1
s2d 0 − s3/4dh2,1

s2d 0

s3/5dh2,1
s6d 0 s3/5db2 0

4 , sC22d

and

D = 3
s3/5db1 0 s3/5dh1,2

s6d 0

0 0 0 0

s3/5dh2,1
s6d 0 s3/5db2 04 . sC23d
0 0 0 0

Downloaded 26 Aug 2004 to 129.137.162.39. Redistribution subject to AIP
1J. R. Thomas, Jr., T. S. Chang, and C. E. Siewert, “Heat transfer be
parallel plates with arbitrary surface accommodation,” Phys. Fluids16,
2116 (1973).

2T. Ohwada, K. Aoki, and Y. Sone, inRarefied Gas Dynamics: Theoreti
and Computational Techniques, edited by E. P. Muntz, D. P. Weaver, a
D. H. Campbell(AIAA, Washington, 1989), p. 70.

3C. E. Siewert, “Heat transfer and evaporation/condensation pro
based on the linearized Boltzmann equation,” Eur. J. Mech. B/Fluid22,
391 (2003).

4S. Kosuge, K. Aoki, and S. Takata, inRarefied Gas Dynamics: 22
International Symposium, edited by T. J. Bartel and M. A. Gallis(AIP,
Melville, 2001), p. 289.

5F. J. McCormack, “Construction of linearized kinetic models for gas
mixtures and molecular gases,” Phys. Fluids16, 2095(1973).

6C. Cercignani,Mathematical Methods in Kinetic Theory(Plenum, New
York, 1969).

7C. Cercignani,Rarefied Gas Dynamics: From Basic Concepts to Ac
Calculations(Cambridge University Press, Cambridge, 2000).

8M. M. R. Williams, Mathematical Methods in Particle Transport The
(Butterworth, London, 1971).

9J. H. Ferziger and H. G. Kaper,Mathematical Theory of Transport Pr
cesses in Gases(North-Holland, Amsterdam, 1972).

10F. Sharipov and V. Seleznev, “Data on internal rarefied gas flows,” J.
Chem. Ref. Data27, 657 (1998).

11M. M. R. Williams, “A review of the rarefied gas dynamics theory a
ciated with some classical problems in flow and heat transfer,” ZAMP52,
500 (2001).

12L. B. Barichello and C. E. Siewert, “A discrete-ordinates solution f
non-grey model with complete frequency redistribution,” J. Quant. S
trosc. Radiat. Transf.62, 665 (1999).

13C. E. Siewert and D. Valougeorgis, “Concise and accurate solutio
half-space binary-gas flow problems defined by the McCormack m
and specular-diffuse wall conditions,” Eur. J. Mech. B/Fluids(in press).

14C. E. Siewert and D. Valougeorgis, “The McCormack model: channel
of a binary gas mixture driven by temperature, pressure and densit
dients,” Eur. J. Mech. B/Fluids23, 645 (2004).

15C. E. Siewert, “The McCormack model for gas mixtures: the tempera
jump problem,” ZAMP(in press).

16F. Sharipov and D. Kalempa, “Velocity slip and temperature jump co
cients for gaseous mixtures. I. Viscous slip coefficient,” Phys. Fluids15,
1800 (2003).

17C. E. Siewert, “A discrete-ordinates solution for heat transfer in a p
channel,” J. Comput. Phys.152, 251 (1999).

18B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V
Klema, and C. B. Moler,Matrix Eigensystem Routines-EISPACK Gu
(Springer, Berlin, 1976).

19J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart,LINPACK
Users’ Guide(SIAM, Philadelphia, 1979).

20S. Chapman and T. G. Cowling,The Mathematical Theory of Non-unifo
Gases(Cambridge University Press, Cambridge, 1952).

21E. P. Gross and E. A. Jackson, “Kinetic models and the linearized B
mann equation,” Phys. Fluids2, 432 (1959).

22S. Pan and T. S. Storvick, “Kinetic theory calculations of pressure e

of diffusion,” J. Chem. Phys.97, 2671(1992).

 license or copyright, see http://pof.aip.org/pof/copyright.jsp




