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The McCormack model for gas mixtures: Heat transfer in a plane channel

R. D. M. Garcia
HSH Scientific Computing, Rua Carlos de Campos, 286, Sdo José dos Campos,
Séao Paulo 12242-540, Brazil

C. E. Siewert
Mathematics Department, North Carolina State University, Raleigh, North Carolina 27695-8205

(Received 22 March 2004; accepted 19 May 2004; published online 2 August 2004

An analytical version of the discrete-ordinates metlititte ADO method is used to establish a
concise and particularly accurate solution to the heat-transfer problem in a plane channel for a
binary gas mixture described by the McCormack kinetic model. The solution yields for the general
(specular-diffusecase of Maxwell boundary conditions for each of the two species, the density and
temperature profiles for both types of particles, as well as the overall heat flow associated with each
of the two species of gas particles. Numerical results are reported for two binary migtie-eAr

and He—X@&. The algorithm is considered especially easy to use, and the devekprerRAN) code
requires typically less than a second on a 2.2 GHz Pentium 4 machine to compute all quantities of
interest. ©2004 American Institute of PhysiddDOI: 10.1063/1.1773711

I. INTRODUCTION types of particlesa=1 and 3 denote perturbations from

The heat-transfer problem within the context of rarefiedMaxwe”'an distributions for each species, i.e.,

gas dynamics has been studied in terms of linear theory fora  f,(x,v) = f, o(v)[1 +h,(x,v)], (D
single-species gas based on the BGK maodele, for ex-
ample, a work by Thomas, Chang, and Sieweand the
references quoted thergiand, in more recent years, on the foo(v) = na()\a/q-r)3/2e—kav2, N, =m,/(2kTy). 2
linearized  Boltzmann  equation  for  rigid-sphere
interactions* Very recently, this problem has also been Herek is the Boltzmann constanty, andn, are the mass
studied in terms of the nonlinear Boltzmann equation for 2&nd the equilibrium density of theth speciesx is the spatial
mixture of two gase$. variable (measured, for example, in centimejers, with

In this work, we develop a concise and accurate solutioffFPMPONents, vy, v, and magnitude, is the particle veloc-
for a mixture of two gases described by the McCormacklly, and Ty is a reference temperature. It follows from M-
kinetic modeP We do not discuss here many relevant worksCormack’s work that the perturbations satisffor the case
on this subject, but we refer instead to the books ofof spgtial variations only in the direction) the coupled
Cercignant’ Williams 2 and Ferziger and Kapéas well as ~ €duations
review papers by Sharipov and Selezifeand Williams™ 9
for general background material. O NalX,0) + 04 Yaha(X,€) = wo el olhi o} (x,0), (3)

where

IIl. AFORMULATION OF THE PROBLEM IN TERMS OF a=1,2,
THE McCORMACK MODEL

) ] ) ) wherec, with components,, ¢, ¢, and magnitude, is a
In this work we base our analysis of a binary gas mixturégimensionless velocity variable

on the McCormack model as introduced in an important

pape? published in 1973. While we use this model as de- @ =[Mg /(2KTo)]*2 4
fined previouslﬁ we employ an explicit notation that is ap- 444 the collision frequencieg, are to be defined. Here we
propriate to the analysis and computations we report hergy it the integral operators as

We note that we have used an analytical discrete-ordinates

(ADO) method? in two recent work§*to solve a collec- I e e
‘Ca{hl’hZ}(Xa C) = E
=1 J —o —o0 o —0

tion of basic flow problems, defined for mixtures in terms of Wleﬁ_

the McCormack model, for semi-infinite medi&ramers’

problem and the half-space problem of thermal cyesmmd Xe‘c'zhﬁ(x,c’)Kﬁ'a(c’,c)dc;dc{,dc;,
plane channeléPoiseuille flow, thermal-creep flow, and flow 5)

driven by density gradientsA third work™ reports a solu-

tion of the temperature-jump problem for a binary-gas mix-where the kernel&; ,(c’,c) are listed explicitly in Appendix
ture described by the McCormack model, and so some of ouh of this paper. We note that in obtaining E@) from the
introductory material here is repeated from other wdfks>  form given by McCormack,we have introduced the dimen-
We consider that the required functiohg(x,v) for the two  sionless velocityc differently in the two equations, i.e., for
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the casea=1 we used the transformati@¥ w,v, whereas h_(-a, CXvasz) -(1-ayh,(-a,- Cx.Cy, c,) -a,Z{h }(-a)
for the casex=2 we used the transformatias w,v. As we

— 2
wish to work with a dimensionless spatial variable, we intro- ~ 8,8(c" = 2) (199
duce
and

T= X/|0, (6)

where ha(@, = 6,Cy,Co) = (1 =b,)h,(8,6,,¢y,C) = b, Z{h,H(@)
MU =-b,8(c*-2 19b
lo="5" @) ac-2) (19b)
0

for c,>0 and allc, andc,. Here we have chosefy to be the
is the mean-free patlibased on viscosijyintroduced by average ofT,; andT,,, and so we have written
Sharipov and Kalempja?. Here

T =To(1+9) (203

vo= (2kTo/m)*2, (8) g
an
where

Tawo=To(1-9), (20b)
m= M + oMy 9) wem o
n+n, whereé is the parameter we use to specify the deviations of

the wall temperatures relative to the reference temperature

Continuing, we express the viscosity of the mixture in terms]-o_ We use{a; ,a,} and{b; ,b,} to denote the accommodation

of the partial pressureB, and the collision frequencieg,  .qefficients basic to the walls locatedat = a, and we have

6
as used
M:Pl/Yl+P2/’y21 (10) 2 0 o0 o0
where Zsfhab(7) = —f J f
TJ - J - 0
P, n, —¢'2 — Al AR AN AN A
R (11 xe " hy(r, ¥ ¢, cp,c)cdgdode,  (21)
o N+
to denote the diffuse terms in Eq4.9). Note that
=V, ¥, - V(f)zv(f)l][‘lfz + V(f)z]_l (12
h,(7,€) = h,(7,¢Cy.C)).
and

@ @ (@11 If we sought to compute the complete distribution func-
Y2 = [WaWo = vl Wa+ vpa] (13)  tions h,(r,c), then we would have to work explicitly with
Egs. (18) and (19); however, since we seek primarily the

Here
@ . .3 @ density and temperature perturbations
Vy=viit i (14) 1 (= (= (=
_2
and N (7) = WTIZJ_OO f_m J_m e “h,(r,c)dcdc,dc, (22
Vo= v+ v5 - vh), (15)

) @ ) and
and we note that the parameteﬁ andv; are given ex-

plicitly by Egs. (A27) and (A28) of Appendix A. (= 2 (" (° (7
Finally, to compact our notation we introduce o7 = 3n2) ) ).
Ta= Yaalo (1) xe&h,(7,c)(c? - 3/2dcdc,dc,, (23

or, more explicitly, . . :
e we can work only with certain momenténtegralg of

. Ny /y + nz/Yz(m Y2 (177  Eds.(18)and(19). To this end, we first multiply Eq(18) by
o (23 n + nz a 1
? | | $1(6,0) = (Ume 5 (24)
and so we rewrite Eq.3) in terms of ther variable as

P and integrate over att, and allc,. We then repeat this pro-
G, Na(7,0) + 7aha(7,0) = 0L ofhy, 1 (7,0). (18)  cedure using

T

_ —(02+c§) 2 2 _

In this work we consider the heat-transfer problem in a $2(Cy,Cp) = (Ume™ 5= (cy + ¢~ 1). (25)

plane channel, and so we seek solutions of EIfi).that are  pefining
valid for all 7€ (-a,a), and we use Maxwell boundary con-

ditions at the walls. If we denote the temperatures of the (T

wallls located at=-a andr=a by T,,; andT,,, respectively, O20-1(7:C0) = f . f . ¢1(Cy,CINo(7,C)dcdc, (26)
we can follow a recent review paper by Williathgind lin-

earize the boundary conditions abdytto find and
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Nu(7) = f i (&) G2a-1(7,£)dE (36)

we find from these projections four coupled balance equaand

tions which we write(in matrix notation as

£26(0+ 360 =3 | WEIK(E HG(reNe.

(28)

where the components @&(r,¢) areg,(r, &) ,a=1,2,3,4,
where we now usé in place ofc, and where

3 :diaqo'l,(fl,a'z,(fz} (29)
and

W& = m %t (30)
In addition, the elements ;(¢',£) of the kernelK (¢',¢) are

5 (=
T (1) = §f UOL(E = 12017, 6) + Gl 7, O IDE.

(37

lll. THE SOLUTION OF THE HEAT-TRANSFER
PROBLEM

In an earlier work® the ADO method was used to solve
the temperature-jump problem as defined by the McCormack
model for mixtures. In that worR the elementary solutions
of a discrete-ordinates version of our E@8) were estab-
lished and reported in detail. In order to avoid much repeti-

as listed in Appendix B of this work. To find the boundary tion, we do not repeat a development of these elementary

conditions relevant to Eq28) we project Eqs(198 and
(19b) againstey(cy,c,) and ¢,(cy,c,) to find

G(-a,§) - S,G(-a,~§ - 2D, f e€°G(-a,- &) de

0

= 0A1R(§) (319
and
G(a,-¢§-5,G(aé) - 2D2f e¥’G(a &) de’
0
=~ 0A.R(9) (31b)
for £>0. Here
Slz dla@{l _a]_,l _al,l _a2,1 _az}, (323)
82:diaql_bl,l_bl,l_bz,l_bz}, (32b)
D, =diaga;,0,a,,0}, (339
and
D2 = diaqbl,o,bz,o}. (33b)
In addition
Al = diagal,al,az,az}, (346)
AZ = diaqbl,bl,bz,bz}, (34b)
and
£-1
R(¢) = ! 35
©= 4., (35
1

So, if we can solve Eq28), subject to Eqs(31), we can
use Egs(22) and(23) and Eqgs(26) and(27) and compute
the density and temperature perturbations we seek from

solutions here, but a brief review of these solutions is given
in Appendix C. And so we express our solution to th@ *“
problem” as

4N

G(r, ££) =Gu(7, £ &) + X [A®(v;, £ §)e" ™
j=4

+B®(v;, ¥ §)e @], (38)
where
Gu(7,8) = A Gy + AgGy + AsG3(é) + B1Gy(d)
+ByGs(7,§) + B3Ge(7,€), (39

and where the constanf4,,B;} are to be determined so that
the result given by Eq(38) will satisfy discrete-ordinates
versions of the boundary conditions, which we write here as
G(-a,§) -SG(-a-§)

N

- 272D, > Wb EIG(- a,- &) = SAR(&) (409
k=1
and
N
G(a,- &) - S,G(a,&) - 27D, >, W& EIG(a, &)
k=1
= - 5A,R(£) (40b)

fori=1,2,... N. Here, as mentioned in Appendix 8y, &}

are theN weights and nodes used to evaluate integrals over
the interval[0,). We can now enter the solution listed as
Eq. (38) into Egs.(40) to define a system of linear algebraic
equations for the constant4,, B;}. However, there is a com-
plication. It can be shown that bot®; and G, satisfy ho-
mogeneous versions of the boundary conditions listed as
Egs.(31), and so the constan#s, and A, cannot be deter-
mined from these boundary conditions. It follows that the
boundary conditions listed as Eq81) are not sufficient to
define a unique solution to the considered heat-transfer prob-
lem. This issue was encountered and discussed in earlier
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work, and so we follow previous papé’ﬁg and impose the the components oN(7), and similarly the components of

additional conditions T(7) in Eq. (44) areT,(7) and T,(7).
a In addition to the density and temperature perturbations,
f Ng(n)dr=0, g=1,2. (41 we consider that the flow and the heat flow the x direc-
-a tion) are also of interest. These quantities are defined for

each of the two species by

1 o o0 o0
UQ(T):WT/Z f J f e_czha(T,C)CXddeCydCZ (47)

To be clear about Eq41), we note that the number density
for particles of typex is given by

na(x) = j f f fa,O(U)[l + ha(X,V)]dUXdedUZ,

and
e ) )]
= — Ch :
wheref, o(v) is given by Eq.(2). Making use of our dimen- Qul?) m2) ). _we o(7:0)
sionless variables and E(R2), we can rewrite Eq(423 as )
X(c”-5/2)cdede,dc, (48)
N(7) =N [1+N,(7)]. (42b)

for =1,2.Noting Eqgs.(24)—<27), we can rewrite Eqg47)
Now, since the total number of particles of typein the  and(48) as

channel(per unit cross sectional are&s given by an,, it

follows that Un(7) = f W(E)Gper(7, &) é0E (49)
f_a n,(7)dr=2an,, (420 and

and so, using Eq42b) in the left-hand side of Eq420¢), we - : 2 _

find the justification for Eq(41). Qul7) j o UOLE = 312o0ma(78) + Goul 7. ) JECIE.

We see now that if we augment the linear system ob- (50)
tained when EQq(38) is substituted into Eqg40) with the
two conditions listed as Eq(4l), we find a system of Upon multiplying Eq.(28) by (&) and integrating over
8N+2 equations for thel8 unknowns. However, considering all ¢ we can conclude that botb,(7) and U,(7) are con-
that this augmented system has rar¥, 8e seek unique stants, and we can then use either of E§4) to show that
solutions for the constantg\;, B;}. And so, considering that U,(7)=0 and thatU,(7)=0.
we have solved the mentioned system of linear equations, we In regard to the heat flow associated with each of the two
can evaluate Eq$36) and(37) to obtain the desired density species, we have taken moments of E2B) to find, after

and temperature profiles viz., some elementary algebra, the expression
- B,7 (1) + (7) = Qo, (52)
N( ) _ |: :| + E X(VJ)[A e a+T/VJ + B o a_T)/VJ] (plQl ¢2Q2 QO
Az~ Bar whereQ is a constant and where
(43) c
o= —= (529
and Cytrc,
1 and
T(7) =[As+ (c,B, + C;B3) 7] 1
S (52b)
o N 2 cp+rc,’
(a+7)/v; —(a-7lv
" 124 YlAe '+Be ' (44 with r=(m,/m,)*2. If we define the two components f(7)
] to beQ,(7) andQ,(7), then we can use Eq&38) and(50) to
wherec;=n,/n, c,=n,/n, with n=n,+n,, find
AN
X(V]) E Wkl//(fk)|:0 01 0:| [(I)(V] &)+ (I)(VJ, &)1 Q(n=0Q.+ 2 Z(Vj)[Aje‘(aH)/v]- _ Bje‘(a‘ﬁ’Vi], (53)
-
(45) where
and
Z(v) = EW§¢(§k) IR
£-1/2 1 0 0 Vi kSk 2_
Y(y) = EWklﬁ(fk)l “ 0 2-1/2 1] 0 -3z 1
“ X[®(v), ) = B(v),~ §)]. (54)
X[®(v}, &) + P(v),— &)]. (46)

In addition, we can use the vectody and V defined in
Note that in Eq(43) we have used\;(7) andN,(7) to define  Appendix C in order to write
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TABLE I. The density, temperature, and heat-flow profiles for the Ne—Ar mixture.

Ui Ny(-a+27a) Na(-a+27a) —Ti(-a+27a) -Ty(-a+27a) Qu(-a+2na) Qy(-a+27a)

0.0 -1.9283¢-1 -3.78648-1) 1.55883-1) -1.78826-2) 1.55684-1)  3.00003-1)
01 -1.38211-1) -2.49954-1) 2.21773-1) 1.2243§-1) 1.75987-1)  2.809 65-1)
02 -1.017181) -1.73691-1) 2.68727-1) 2.01907-1) 1.88932-1) 2.68820-1)
03 -6.773446-2) -1.09219-1) 3.126 25-1) 2.66876-1) 1.97753-1)  2.60546-1)
0.4 -3.44950-2) -5.02164-2) 3.55442-1) 3.25087-1) 2.03731-1) 2.54939-1)
05 -1.369823)  6.06081-3) 3.97972-1) 3.79958-1) 2.07536-1) 2.51370-1)
0.6  3.20295-2)  6.13134-2)  4.40754-1) 4.33628-1) 2.09518-1) 2.49511-1)
0.7 6613322  1.17024-1) 4.84379-1) 4.87966-1) 2.0980%-1)  2.492 43-1)
0.8  1.01710-1)  1.75110-1) 5.29820-1) 5.45381-1) 2.08316-1)  2.506 39-1)
0.9  1.40802-1)  2.39510-1) 5.79453-1) 6.10727-1) 2.04681-1)  2.54048§-1)
1.0  1.98917-1)  3.34457-1)  6.496 60-1) 7.11747-1) 1.97770-1)  2.60531-1)

1{0 10 o} 3[1 00 o] fied. And so we usem;=20.183, m,=39.948, and
T2

0 0 o 1|BYtBUI+ 1 0 dy/di=1.406 in our first test case, andy=4.0026,
m,=131.30, andd,/d;=2.226 in our second test case. We
X(BaVy+B3Vy). (55 usen,/(n,+n,)=0.4 for both test cases.

To conclude this section, we note that the case of a The remaining input data are taken to be the same for
single-species gas can be achieved here as any one of thrieeth test cases. Thus, we consider a channel with half width
limiting cases defined as a=1.5, and we assign the accommodation coefficients
a;=0.2 anda,=0.4 to the wall atr=-a and b;=0.6 and
b,=0.8 to the wall atr=a, where the subscripts identify the
In each of the limiting cases, the resulting valuefis the  type of particle. We use heré=1.0.

¢;=0 orc,=0 or my=m, and d; =d,.

constant heat flow for the single-gas case. We report in Tables | and Il our converged numerical
results for the density, temperature, and heat-flow profiles.
IV. NUMERICAL RESULTS We have verified that the tabulated heat-flow profiles satisfy

In order to demonstrate that our ADO solution for the t€ identity expressed by E¢p1). In addition, we note that
considered heat-transfer problem can yield accurate resulfdl numerical results were generated with a quadrature
with a relatively modest computational effort, we report de-Scheme defined upon using the transformaiés) =e ‘1o
tailed numerical results for two test cases. map¢ e [0,0) ontov [0, 1] and then mapping the Gauss-

The first test case consists of a Ne—Ar mixture and thd-€g9endre scheme linearly onto the interf@l 1]. To estab-
second of a He—Xe mixture. We note that only the mass rati¢sh confidence in the accuracy of our results, we have ob-
m,/m,, the diameter ratial;/d,, and the density ratio;/n,  served numerical stability in all entries of the tables, as the
are needed to define the McCormack model for rigid-spher@rder of the quadraturi was varied between 40 and 100, in
interactions. In particular, noting the convenient choice ofincrements of 20.
mean-free path made in Sec. Il and the ratios of parameters In regard to numerical linear algebra, we have used sub-
that result, it is easy to see that the constant factoroutines from theeiSPACK collectiort® to find the required
(mkTo/32)Y2in Eq. (A35) of Appendix A need not be speci- eigenvalues and eigenvectors, and we used subroutines from

TABLE II. The density, temperature, and heat-flow profiles for the He—Xe mixture.

7 Ny(-a+27a) Ny(-a+2na)  -Ti(-a+27a) -Ty(-a+2na) Qi(-a+27a) Qy(-a+27a)

0.0 -1.62236-1) -3.79689-1) 2.35893-1) 2.35284-3)  1.62929-1)  3.080 1%-1)
0.1 -1.10416-1) -2.5825%-1) 3.0298%-1)  1.30798-1) 1.65449-1) 2.98396-1)
02 -7.84992-2) -1.81404-1) 3.48292-1) 2.08381-1) 1.67436-1) 2.90808-1)
03 -5.07322-2) -1.14669-1) 3.88738-1)  2.73539-1) 1.69064-1)  2.84590-1)
0.4 -247108-2) -527933-2) 4.27089-1)  3.32629-1) 1.70404-1)  2.79476-1)
05  592828-4) 6.48157-3) 4.64576-1)  3.88478-1) 1.71494-1) 2.75312-1)
0.6 2583322  6.45566-2) 5.02001-1)  4.42876-1)  1.72359-1) 2.72009-1)
07 5162882  1.22657-1) 5.40130-1)  4.97390-1) 1.73011-1) 2.69519-1)
0.8  7.88621-2)  1.82368-1) 5.80033-1) 5.54009-1) 1.73453-1) 2.67834-1)
0.9  1.09491-1)  2.46963-1) 6.23994-1)  6.16682-1) 1.73670-1) 2.6700%-1)
1.0  1.55804-1)  3.3672%-1) 6.85392-1)  7.07949-1) 1.7360%-1) 2.67254-1)
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TABLE Ill. Comparison of results for a normalized heat ﬂm\q*l).

my/m,=2 andd;/d,=1 m,/m,=4 andd,/d,=2
ny/n, Kn NLBE (Ref. 4 This work NLBE (Ref. 4 This work
1.01) 1.0-1) 0.184 0.181 0.207 0.202
1.01) 1.0 0.509 0.519 0.547 0.557
1.01) 1.01) 0.656 0.683 0.693 0.721
1.0 1.0-1) 0.209 0.205 0.370 0.358
1.0 1.0 0.589 0.599 0.814 0.830
1.0 1.Q1) 0.763 0.794 0.966 1.006
1.0-1) 1.0-1) 0.245 0.241 0.659 0.653
1.0-1) 1.0 0.677 0.689 1.124 1.159
1.0-1) 1.01) 0.871 0.906 1.244 1.298

the LINPACK packagé’ to find a least-squares solutigia  Aoki, and Takatd. Since our mean-free path is defined in a

QR decompositionfor the augmented system oN& 2 lin-  way different from that of Kosuge, Aoki, and Takdtahe

ear algebraic equations antll 8inknowns{A;, B;} mentioned  equivalent channel width in our formulation is computed

in Sec. Ill. We should mention that we have also followedfrom

the alternative route of combining some equations to trans- 2a=1 /(1,Kn) (59)

form the overdetermined system obtained when @B8) is OTVORT

used in Egs(40) into a square system for all unknowns, wherel, is the mean-free path given by E@) andlgand Kn

exceptA; andA,. This system was solved by Gaussian elimi- are, respectively, the mean-free path and the Knudsen num-

nation and therA; and A, were determined using E@1). ber used by Kosuge, Aoki, and Takdts/e note also that to

We have concluded that both approaches yielded essentialgompute our entries in Table 11, we have put all our accom-

the same results. modation coefficients equal to unity, and we have used
As a(not very severgtest of our results, we have found §=-1/3. We see from Table IIl that, as might be expected,

agreement for the case of a single-species gas witthe McCormack model appears to yield better reqfittsthe

S-modet? results obtained from a special case of the codéheat flow for small Knudsen numberglarge channel

written to establish the results based on the linearizeavidths).

Boltzmann equatiorgfor rigid-sphere interactionghat were

.repolrted earliet.As noted™ the McQormack modqlas used V. CONCLUDING REMARKS

in this work) reduces, for the special case of a single gas, to

the S model, not the BGK model. To conclude this work, we note that we believe that our
Finally, we note that we have also used our code to comsolution to the considered heat-transfer problem is especially

pute the normalized heat flow reported by Kosuge, Aoki, andconcise and easy to use. In our formulation we have utilized

Takatd for the problem of a binary mixture of rigid-sphere at each wall a general form of the Maxwell boundary condi-

gases confined between two diffusely reflecting paralletion, and we have reported what we believe to be highly

plates with different temperatures. These authors employedccurate(within the context of the kinetic model usete-

an iterative finite-difference technique to solve the twosults for the density, temperature, and heat-flow profiles for

coupled nonlinear Boltzmann equations that describe théwo test cases. It should be noted that our complete, species-

problem and reported numerical results in tabular form for especific results for the density, temperature, and heat-flow

normalized heat flow defined as perturbations are continuous in thevariable and thus are
w o o valid anywhere in the gas.
q’;: [2P0(2kTw1/m1)1/2]_1f J j [myfy(x,v) In this work we have considered only the case of rigid-
—o0 J =0 J - sphere interactions, but the solutions can be used for other

(56) scattering laws, such as the one defined by the Lennard-
Jones potential, simply by using appropriate definitions of
where, except for the pressupg=k(n;+n,)T,,, all symbols  the Q integrals?° mentioned in Appendix A. It can be noted
have been defined in our work. We have found tfjatan be  here that the McCormack model has the attractive feature
expressed in terms of our const&@py introduced in Eq(51)  that it preserves the basic physical laws prescribed by the
as Boltzmann equation, while at the same time this kinetic
x ~3/2 model does not require the heavy numerical work that is
6y = (1+9) ey +1ez)Qo, (57 associated with theqfull Boltzmar:/ri/ equation. The work of
and so we report in Table Ill our numerical results tﬁr McCormack also is considered important in the one-species
along with those based on the nonlinear Boltzmann equatiolimit since by a specific choice of, a free parameter in the
(NLBE) for rigid-sphere interactions reported by Kosuge,model, we are able to obtain either the S mdUer the

+ mzfz(x,v)]vzvxdvxdvydvz,
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explicit N=5 model reported by Gross and Jackson in their K(Zg)z(c’,c) = 2w,[(c’ -¢)? - (1/3)c'%c?], (A12)
famous work?* And because the McCormack model, even in '

the one-species limit, allows some choice of the collision  K{(c’,c) =[(4/5)B,(c'2 - 5/2) - ](c?- 5/2)¢’ -c,
frequencyy, other kinetic models are also contained in Mc- (A13)
Cormack’s formulation. Having said that, we recall that in
this work we have used Eq$12) and (13) to define the

D! @) = (1) (2) 12 _ 2 _ ’.
collision frequencies for a two-species gas. KIAC',0) = 8271 + 721[ ('~ 5/2) +¢* = 5/2]c’ -c,

Finally, in regard to computational requirements, we (Al4)
note that since our solutions require only a matrix
eigenvalue/eigenvector routine and a solver of linear alge- (2)(C ,C) = (4/3)s* 7; (c -3/2)(c*-3/2), (A15)
braic equations, the algorithm is especially efficient, fast, and
easy to implement. In fact, the develop@@RTRAN) code K3y(c',c) = 25[(c’ - )2 - (1/3)c'%?, (A16)
requires less than a seco(@h a 2.2 GHz mobile Pentium 4 d
machine to yield all quantities of interest with what we be- an
lieve to be five or six figures of accuracy. K(c',0) = (4/5) 7y (c'2 - 5/2)(c? - 5/2)c -c.  (A17)
Here we used
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r=(my/my)*2 (A18a)
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s=(my/my)*?, (A18b)
APPENDIX A: BASIC ELEMENTS OF THE DEFINING ;
EQUATIONS along with
r* =r%(1+r? (A19a)

Here we list some basic results that are required to define
certain elements of the main text of this paper. First of all, inand

regard to Eq(5), we note that s* = H(1+9). (A19b)
Ko olC',0) = Kigu(C',0) + KiGL(e',0) + KFL(C',©) In addition,
@
+KpalC'0), @ =12, (A1) m1:l+77( 77(13)1 7713)2= (A20)
where @ @ @
=1+ , A21
K{(C,0) = 1+ {211 - 7{3] - 72Yc? - 5/2)c’ -, oL T e M (A2
(A2) Br= 1470~ 9 - 7, (A22)
K(c',0) = (21391 - 2r * 5{](c’2 - 3/12(c2 - 3/2), and
(A3) B2=1+ 0= nh=m>1, (A23)
where
KE)(c',0) = 2wy[(c' - ©)2 - (1/3)¢'%c?], (Ad) Y
i =V ) /7| (A24)
KW 2 _ (2(c2 — ' .
"(c’,c) =[(4/5)By(c'* = 5/2) = 5)(c* = 5/2)c’ -c, Following McCormack we write
(A5)
vg};:E—ém“' Qs (A25)
KSh(c',c) = r{2n)+ n2fr¥(c'? - 5/2) + ¢ - 5/2]}c’ -c, 3 m,
A6 2
"o v<2>3:%(—§m“' ) nﬁ<912ﬁ——911ﬂ>, (A26)
K2\(c,0) = (4131 * 7(c'2 - 312)(c? - 312), (A7) T\ m, 2"
2
KSi(c',.0) = 27 (c" - ©)* = (1/3)c'%c?], (A8) Vfgzl—:(%é) ﬂ”nﬁ<1—;)911 922> (A27)
: m, | m, B
KS(c',c) = (4/5) 72)(c'2 - 5/2)(c® - 5/2)c’ -c,  (A9) 1 , 0
@ _ o[ Myp| ™M, (10 99 22
D) mr W]~ 2 (¢ , Yap= g N\ 3 V=gl (A28)
K5a(c',0) =1 +{2[1 - n;3] - 75 1(c'“ = 5/2)}c’ -c, m, 8
(A10)
V(S) —%(M)sﬂ'n 1"(5) (A29)
ap™ Bl o
K2(c',0) = (2/3)[1 - 25* 75h](c'2 - 3/2)(c? - 3/2), S5\ m, /) my
(A11) and
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64(m, ,\3/m_ \%?2
0 :_(_a.[_") (_‘1) nﬁrf)ﬁl

A30
“f15\ m, / \my (A30)

with

and

15m, @é) o1
4mg;  8m, ) P

_( Mg 12 _ 13
(%o,

(5) _ 22

(A31)

a

, after a correction by Pan and Storviek,

6) _ 22 55~ 11 5An12 1~13
rg)ﬁ = - 02+ 50, - 307, + 305 (A32)

In addition,

and the(Q functions are the Chapman—Cowling integtafs
which for the case of rigid-sphere interactions take the

m, g = M,Mg /(M, +mpg) (A33)

simple forms
a%%,= 30t (A343
0%, =120, (A34b)
and
02, =207, (A340)
with
1( KT, )1/2
11 _ 0 2
aB=7 (d, +dp)”. (A35)
£ a\2m,,

Here, as noted in the main text of this woikis the Boltz-
mann constanfl, is a reference temperature, agidandd,

are

the diameters of the two types of particles.

R. D. M. Garcia and C. E. Siewert

koo €,8) = [+ (415) 7y(¢'% - 312)]¢ £+ (213)

X[2r* pd- 75lE2 - 1/2), (B7)
Ko d(€',6) = (815) 0% £+ (LIJ[4r * 7%+ 7Y,  (B8)
ksa(€,8) = f31(&,O& £+ (813)[s* 75+ 7]

X(£2-1/2(&-1/2), (B9)
ks o&',6) =[S 5L+ (415) (& - 312)]¢ £+ (213)

x[2s* 75~ )& - 1/2), (B10)

ke €, =1 +fa5(¢ & E+(21I[1 - 25* 73+ 2w,
X(£2-1/2(&-1/2), (B11)

ks (€.8) = [(419)B,(€2 - 312) - nP11E &
+ (2131 - 25* nyy - wpl(€-1/2), (B12)

ke a(£,8) =[s72 + (415) LU (E'2 - 312)]¢ £+ (213)

X[2s* 75— myl (€2 - 1/2), (B13)
ke o&,8) = (415) pPE £+ (L3)[4s* nih+ 7], (B14)

ke a(€,8) = [(415)By(£'2 - 312) - 71 E &
+(2/3)[1 - 25* 9 - w,l(¢2 - 1/2), (B1Y)

APPENDIX B: THE BASIC KERNELS FOR
TEMPERATURE-DENSITY PROBLEMS

We express the elements of the kerKdk', £) required

in Eq. (28) as follows:

Ky o(€,6)=1+F,4(€,08 é+ (2131 -2r * )+ 2wy]

and
keal€',€) = (2131 = 25% 73]+ (13w, + (415) 5o €.
(B16)
Here we have used
fLa€,6) = 21 = gl - €%+ €3
+(415) (&2 - 312 (£ - 3/2), (B17)

f14(€,8) = 20+ rp2Yr2(£'2 - 312) + £ - 312

+(415) 70 £2 - 312(£ - 312), (B18)

X(£2-112)(&-1/2), (B1)
Ky A€,8) = [(415)By(8 - 312) - n)E' ¢

+@1B[L-2* B - (812, (B2
Ky o(€,8 = f1 48,08 £+ (A1) * 7%+ 1Y)

X(£%-112)(&-1/2), (B3)
Ky o(€,8) = [rPyZh+ (415) 7PN E - 312)]¢ £+ (213)

x[2r* - 9 (€2 - 112), (B4)
koa(€,8) = [(415)By(¢'% - 312) - p)¢' ¢

+(213[1-2r* -, )(£2-1/2), (BS)

koo(€,6) = (213)[1 - 2r * 9] + (1w, + (415) B,€ ¢,
(B6)

fa (&, = 2575 + sy SX(E'2 - 312) + £ - 3/2]

+(415) 7 (£2 - 312(£ - 312), (B19)
and
faa(&,6) =21 - nyil - n2(E2+ -3
+(4/5)B,(¢'2 - 312)(&% - 3/2). (B20)

APPENDIX C: THE ELEMENTARY SOLUTIONS

While our complete work regarding the elementary so-
lutions was reported earlié?, we give here a brief descrip-
tion of the way in which these solutions are defined. To start,
we rewrite Eq.(28) as
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J ” 1]
Sa—TG(Tf) +2G(7,¢) =EJ WEK(E,HG(1,E) 0
° Gi=| . | (C9a
+K(-£,8G(r,-£)]d¢’, (CD) 8
and we then look for solutions of E¢C1) of the form o
G(r9 = B(nHe" 2 :
Substitution of Eq(C2) into Eq.(C1) leads us, after we use G2 = 1l (C9b)
the N weights and nodefw,, &} to represent the integration 0
process in Eq(C1) and after we evaluate the resulting ver- il
sion of Eq.(C1) at{+£}, to the eigenvalue problem _52— 1/2
N 1
(L) TN (v,&) — 2 W EJIC (& fi)V(Vjagk)] Ga(é) = 2-1/2 | (C99
k=1
1
=NV, 6). (C3 -
Here ré
0
” Gu(& = (Cod
IC(E,8) = (§18)3K (€, 9% + 3K _(¢,8) - J &) ) §
0 0
X(§1€N2K (&, XK _(¢',€)dE", (C4)
h Gs(7,6) = TH1(&) + F1(9) (C109
wher
ore and
K+(§,§):K(§,§)+K(_§,§) (Csa) G6(T,§):TH2(§)+F2(§). (ClOb)
and Here
K_(&,8=K(,8-K(-¢,¢ (C5b) -1+ (£-1/2)
and where the kerneK(¢',¢) is defined in Appendix B. Hy (9 = C1 (C113
Upon solving the resulting eigenvalue problem, we use the ! c(£-1/2
eigenvalues\; and the eigenvectold(v;, &) to establish the c
separation constants - -
s and ) .
Vj = i)\l (C6) C2(§2 _ 1/2)
and the vectors Ho(8) = C2 C11b
A9 =] _ 1+c(£-1/2) | ( )
Uy, &) = (v /§i)2[V(ij§i) | C2 i
N with ¢;=n;/n andc,=n,/n. In addition, and as discuss&t,
the vector-valued functionE4(¢) are solutions of the inte-
- glwklﬂ(gk)K—(fka gi)V(Vjagk)] : (C7) gral equations £
We now can use Fa(é) = — &7 H4(8) +J (&K (& EFp(&)dE
(I)(legl) = (1/2)[U(V|1§|) + V(V],é:')] (Cga) (ClZ)
and for B=1,2 and¢ e (-, ). Previously® it was shown that
D (v},- &) = (1/2[U(v;, &) - V(v,6)] (csp  Fe(9) could be expressed as

— 2
to establish the discrete-ordinates elementary solutions. As Fa(e) =8Up+ 687~ 3120V 5, (€13
noted™® there are thregplus/minug pairs of separation con- where the constant vectok$; and V4 are solutions of the
stants that appear to become unbounded as the order of owrank 8 linear systems defined by
quadrature scheme increases, and so we replace the corre- _ -
sponding discrete-ordinates elementary solutions with the six (I =AU, - CVy=[cloy —cloy —Clo, —Cilo,],
exact solutions (C19
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(1-D)V,-BU,;=[-c/o; 0 —c,/o, 0], (C15
and

[0010U,=0 (C16)
for =1, and by

(I = AU, - CV, = [~ Clay —Colay cyloy —colo]',

(C17)

(1 -D)V,-BU,=[-Clo; 0 —c,lo, 0], (C18
and

[0010U,=0 (C19

for B=2. Herel is the identity matrix, and the superscript
is used to denote the transpose operation. In addition

1-78 -@27% gl (%25
Ao|@W2ne @O (27 @9
snyy (17 1-78 - W2792
293 (@97 -7 (255,
(C20)
(U272 (258, (1272 (2575,
B 0 0 0 0
S5 @97, -2 @58, |
0 0 0 0
(C21
- (314797 0 (33472 0
(396, 0 @57 0
=1 a2 0 ~@an2 0| (€22
( )7]21 ( )7721
@57, 0 (358, 0
and

(3/98, 0 (3/57F 0
- o 0 0 O (23
| @AY 0 @B, o)

0 0 0 0
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