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The McCormack model for gas mixtures: Plane Couette flow
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An analytical version of the discrete-ordinates method is used to establish a concise and particularly
accurate solution to the problem of plane Couette flow for a binary gas mixture described by the
McCormack kinetic model. The solution yields, for the generalsspecular-diffused case of Maxwell
boundary conditions for each of the two species, the velocity, heat-flow, and shear-stress profiles for
both types of particles, as well as the particle-flow and heat-flow rates associated with each of the
two species of gas particles. Highly accurate numerical results are reported for the case of a
helium–argon mixture confined between molybdenum and tantalum plates. The algorithm is
considered especially easy to use, and the developedsFORTRANd code requires typically less than
a second on a 2.2 GHz Pentium 4 machine to compute all quantities of interest with at least five
figures of accuracy. ©2005 American Institute of Physics. fDOI: 10.1063/1.1845911g
tes
las

Cou
are

eed

s
lin

f lin-
ese

refe

ari-
d
-ga
e o
s

of
also
ef.
. 10

ial
d o
p
flow
ore
r
h
spe

ture
tant
de-
e to
DO

gas
ite
of

,
ts
r bi-
ture-
ane
as

ctly
nd so

m

and
l

-
c-

led
I. INTRODUCTION

The flow of a rarefied gas between two infinite pla
that are moving in parallel and opposite directions is a c
sical problem in rarefied gas dynamics known as plane
ette flow. Under the assumption that the plate velocities
small compared to the reference Maxwellian sp
s2kT0/md1/2, wherek is the Boltzmann constant,T0 is the
sunperturbedd gas temperature, andm is the mass of a ga
particle, the problem can be adequately modeled by the
earized Boltzmann equation.

There are numerous works dedicated to the study o
earized plane Couette flow of a single gas. A list of all th
works would be too lengthy to report here, and thus we
the reader to the books of Cercignani,1–3 Williams,4 and
Ferziger and Kaper,5 as well as the review papers by Sh
pov and Seleznev6 and Williams,7 for general backgroun
material and a discussion of previous works on the single
case. In regard to gas mixtures, however, the literatur
this problem is scarce. We have found only three work8–10

on linearized plane Couette flow for gas mixtures, two
which9,10 are related to the present work as they are
based on the discrete-ordinates method. The work in R
relies on space discretization and iteration, while Ref
uses the same analytical discrete-ordinatessADOd method
that we use here. These works8–10 have addressed the spec
case of purely diffuse boundary conditions and are base
the relatively limited Hamel model,11 and so here we develo
a concise and accurate ADO solution for plane Couette
of a binary gas mixture described by the physically m
consistent McCormack model.12 In addition, we conside
generalsspecular-diffused Maxwell boundary conditions wit
a free choice of the accommodation coefficient for each

cies at each confining plate.
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II. FORMULATION

In this work we base our analysis of a binary gas mix
on the McCormack model as introduced in an impor
paper12 published in 1973. While we use this model as
fined in Ref. 12, we employ a notation that is appropriat
the analysis and computations we report here. The A
method13 has been used in two recent works14,15 to solve a
collection of basic flow problems, defined for binary
mixtures in terms of the McCormack model, for semi-infin
media14 sKramers’ problem and the half-space problem
thermal creepd and plane channels15 sPoiseuille flow
thermal-creep flow, and flow driven by density gradiend.
Other recent works based on the McCormack model fo
nary gas mixtures report ADO solutions for the tempera
jump problem16 and the heat-transfer problem in a pl
channel.17 Our solution of the Couette flow problem for a g
mixture described by the McCormack model follows dire
from the general analysis reported in Refs. 14 and 15, a
our presentation here is brief.

We consider that the required functionshasx,vd for the
two types of particlessa=1 and 2d denote perturbations fro
Maxwellian distributions for each species, i.e.,

fasx,vd = fa,0svdf1 + hasx,vdg, s1d

where

fa,0svd = nasla /pd3 /2e−lav2
, la = ma /s2kT0d. s2d

Here ma and na denote, respectively, the particle mass
the equilibrium density of theath species,x is the spatia
variable smeasured, for example, in centimetersd, v, with
componentsvx,vy,vz and magnitudev, is the particle veloc
ity, andT0 is the reference temperature. It follows from M
Cormack’s work12 that the perturbations satisfy the coup

equations, fora=1,2,
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cx
]

]x
hasx,cd + vagahasx,cd = vagaLahh1,h2jsx,cd, s3d

where c, with componentscx,cy,cz and magnitudec, is a
dimensionless velocity variable,va=la

1/2, andga denotes th
collision frequency for theath species. Here we write th
integral operators as

Lahh1,h2jsx,cd =
1

p3/2o
b=1

2 E
−`

` E
−`

` E
−`

`

e−c82
hbsx,c8d

3Kb,asc8,cddcx8dcy8dcz8, s4d

where the kernelsKb,asc8 ,cd are listed explicitly in Refs. 1
and 15. As shown in detail in these works, a dimension
spatial variablet defined in terms of a viscosity-based me
free path l0, originally introduced by Sharipov an
Kalempa,18 can be used to restate the problem in a m
convenient way. Thus, following Refs. 14 and 15, we rew
Eq. s3d as

cx
]

]t
hast,cd + sahast,cd = saLahh1,h2jst,cd, s5d

wheresa=gaval0, or, more explicitly,

sa = gafsn1/g1 + n2/g2d/sn1 + n2dgsma /md1/2. s6d

Here the mass average is defined as

m= sn1m1 + n2m2d/sn1 + n2d. s7d

In this work, we consider the problem of plane Cou
flow between plates that are located att=−a and t=a and
that are moving with specified velocities in thez direction,
and so we seek solutions of Eq.s5d that are valid for al
tP s−a,ad and that satisfy the Maxwell bounda
conditions7

has− a,cx,cy,czd − s1 − aadhas− a,− cx,cy,czd − aaI−hhajs− ad

= 2aarauw,1cz s8ad

and

hasa,− cx,cy,czd − s1 − badhasa,cx,cy,czd − baI+hhajsad

= 2barauw,2cz s8bd

for cx.0 and all cy and cz. Note that hast ,cd
⇔hast ,cx,cy,czd and that we usea1 anda2 to denote the tw
accommodation coefficients basic to the plate locate
t=−a andb1 andb2 to denote the two accommodation co
ficients for the plate located att=a. In addition,
ra=sma /md1/2, and we have used

I7hhajstd =
2

p
E

−`

` E
−`

` E
0

`

e−c82
hast, 7 cx8,cy8,cz8d

3cx8dcx8dcy8dcz8 s9d

to denote the diffuse terms in Eqs.s8d. In writing Eqs.s8d we
have usedv0=s2kT0/md1/2 to express the wall velocities
dimensionless units. In other words,uw,1v0 anduw,2v0 are the
velocities sin the z directiond given to the two confinin

plates.
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If we sought to compute the complete distribution fu
tions hast ,cd, then we would have to work explicitly wi
Eqs. s5d and s8d; however, since we seek here only the
locity profiles, the heat-flow profiles and the shear-stress
files,

uastd =
1

p3/2E
−`

` E
−`

` E
−`

`

e−c2
hast,cdczdcxdcydcz, s10d

qastd =
1

p3/2E
−`

` E
−`

` E
−`

`

e−c2
hast,cdsc2 − 5/2dczdcxdcydcz,

s11d

and

pastd =
1

p3/2E
−`

` E
−`

` E
−`

`

e−c2
hast,cdcxczdcxdcydcz, s12d

we can work only with certain moments of Eqs.s5d ands8d.
Continuing to follow Refs. 14 and 15, we first multip
Eq. s5d by

f1scy,czd = s1/pde−scy
2+cz

2dcz s13d

and integrate the resulting equation over allcy and allcz. We
then repeat this procedure using

f2scy,czd = s1/pde−scy
2+cz

2dscy
2 + cz

2 − 2dcz s14d

and define, fora=1 and 2,

g2a−1st,cxd =E
−`

` E
−`

`

f1scy,czdhast,cddcydcz s15ad

and

g2ast,cxd =E
−`

` E
−`

`

f2scy,czdhast,cddcydcz s15bd

to find from these projections four coupled balance equa
that we can write in matrix notation as

j
]

]t
Gst,jd + SGst,jd = SE

−`

`

csj8dK sj8,jdGst,j8ddj8.

s16d

Here the components ofGst ,jd aregast ,jd, for a=1, 2, 3,
and 4, and we now usej in place ofcx. In addition, we defin

S = diaghs1,s1,s2,s2j s17d

and

csjd = p−1/2e−j2
, s18d

and we note that the elements of the kernelK sj8 ,jd are
given explicitly in Refs. 14 and 15. To deduce the boun
conditions relevant to Eq.s16d, we project Eqs.s8d agains
f1scy,czd andf2scy,czd to find

Gs− a,jd − S1Gs− a,− jd = uw,1fa1r1 0 a2r2 0gT s19ad
and
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Gsa,− jd − S2Gsa,jd = uw,2fb1r1 0 b2r2 0gT s19bd

for j.0. Here,T denotes the transpose operation,

S1 = diagh1 − a1,1 −a1,1 −a2,1 −a2j s20ad

and

S2 = diagh1 − b1,1 −b1,1 −b2,1 −b2j. s20bd

To close this section we note that the McCormack m
sfor rigid-sphere interactionsd requires only the ratio of th
two particle massesm1/m2, the ratio of the number densiti
n1/n2, and the ratio of the particle diametersd1/d2. Once
these parameters are specified we seek to find the pr
listed in Eqs. s10d–s12d for selected values of the ha
distance between platesa measured in mean-free paths,
two plate velocitiesuw,1 anduw,2, and the four accommod
tion coefficientsa1,a2,b1,b2. Using Eqs.s13d–s15d, we find
we can write these profiles as

uastd =E
−`

`

csjdg2a−1st,jddj, s21d

qastd =E
−`

`

csjdfsj2 − 1/2dg2a−1st,jd + g2ast,jdgdj, s22d

and

pastd =E
−`

`

csjdg2a−1st,jdjdj. s23d

Therefore, once Eq.s16d subject to Eqs.s19d is solved, we
can find the desired profiles from Eqs.s21d–s23d.

III. AN ANALYTICAL DISCRETE-ORDINATES
SOLUTION

A general ADO solution to Eq.s16d has been fully de
veloped and documented in Ref. 14, and so we omit
details of the derivation in this presentation. To start, we
the integral in Eq.s16d into two half-range integrals—on
overs0,̀ d and the other overs−` ,0d—and we then changej
to −j in the latter. Doing this, we only have to deal with o
half-range integration interval,s0,̀ d. Next, using a Gaussia
quadrature set of orderN with nodeshjij and weightshwij to
approximate integrals overs0,̀ d, we can follow Ref. 14 an
express our approximate solution forGst ,jd at the discret
ordinates ±ji, i =1,2, . . . ,N, as

Gst, ± jid = A1G+ + B1G−st, ± jid + o
j=2

4N

fAjFsn j, ± jid

3e−sa+td/n j + BjFsn j, 7 jide−sa−td/n jg, s24d

where the separation constantshn jj and the elementary sol
tions hFsn j , ±jidj are determined14 from the solution of a
eigensystem of order 4N. Since one of the eigenvalues
that eigensystem approaches zero asN is increased, the co
responding elementary solutions are replaced with the

solutions

Downloaded 02 Mar 2005 to 152.1.30.58. Redistribution subject to AIP li
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G+ = 3
1

0

s

0
4 s25ad

and

G−st,jd = 3
s1t − j

0

ss1st − j /s2d
0

4 , s25bd

where s=sm2/m1d1/2. Finally, the constantsA1,B1,hAj ,Bjj
can be determined by solving the 8N38N system of linea
algebraic equations that is obtained when Eq.s24d is substi-
tuted into discrete-ordinates versions of the boundary c
tions. Once these constants are available, we can com
the velocity, heat-flow and shear-stress profiles f
discrete-ordinates approximations of Eqs.s21d–s23d. On de-
fining the vector-valued functionsustd, qstd, andpstd with
uastd, qastd, and pastd for a=1 and 2 as components,
spectively, we can write our discrete-ordinates approx
tions to the desired profiles as

ustd = sA1 + B1s1tdF1

s
G + o

j=2

4N

Xsn jdfAje
−sa+td/n j + Bje

−sa−td/n jg,

s26d

qstd = o
j=2

4N

Ysn jdfAje
−sa+td/n j + Bje

−sa−td/n jg, s27d

and

pstd = −
1

2
B1F 1

ss1/s2
G + o

j=2

4N

Zsn jdfAje
−sa+td/n j − Bje

−sa−td/n jg,

s28d

where

Xsn jd = o
k=1

N

wkcsjkdF1 0 0 0

0 0 0 1
GfFsn j,jkd + Fsn j,− jkdg,

s29d

Ysn jd = o
k=1

N

wkcsjkdFjk
2 − 1/2 1 0 0

0 0 jk
2 − 1/2 1

GfFsn j,jkd

+ Fsn j,− jkdg s30d

and

Zsn jd = o
k=1

N

wkjkcsjkdF1 0 0 0

0 0 0 1
GfFsn j,jkd − Fsn j,− jkdg.
s31d

cense or copyright, see http://pof.aip.org/pof/copyright.jsp
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IV. NUMERICAL RESULTS

In order to demonstrate that our ADO solution for
problem of plane Couette flow yields highly accurate res
with modest computational effort, we report detailed num
cal results for a specific case based on the McCorm
model for rigid-sphere interactions in a mixture of He and
and plates made of different materialssMo for the plate lo
cated att=−a and Ta for the plate located att=ad. Thus, the
gas parameters are

m1 = 4.0026, m2 = 39.948, d2 /d1 = 1.665, c1 = 0.3,

where ca=na /n, with n=n1+n2, whereas the plate para
eters are

a1 = 0.20, a2 = 0.67, b1 = 0.46, b2 = 0.78,

uw,1 = 1.0, uw,2 = − 1.0, a = 1.5.

We note that the accommodation coefficients used in
calculation are the accommodation coefficients for tange
momentum, which we consider a natural choice for
problem. Specifically, we are using here the results of m
surements performed by Lord19 for He and Ar particles re
flecting from Mo and Ta surfaces.

We report in Table I our converged numerical results
the velocity, heat-flow, and shear-stress profiles. We note
these results were generated with a quadrature scheme
on the transformationvsjd=e−j to map jP f0,`d onto
vP f0,1g and a linear mapping of the Gauss–Legen
scheme onto the intervalf0, 1g. In regard to numerical linea
algebra, we have used theEISPACK package20 to solve the
eigensystem that determines the separation constants a
elementary solutions, andLINPACK

21 to solve the linear sys
tem for the 8N unknownsA1,B1,hAj ,Bjj.

To establish some confidence in our results, we h
observed numerical stability in all entries of Table I, as
order of the quadratureN was varied between 40 and 100
increments of 20. Moreover, as a measure of the correc
of our computational implementation, we have verified

TABLE I. The velocity, heat-flow, and shear-stre

h u1s−a+2had u2s−a+2had q1s−a+2

0.0 9.784 79s−2d 5.836 80s−1d −1.970 3

0.1 7.553 62s−2d 3.948 04s−1d −1.403 1

0.2 5.057 28s−2d 2.608 44s−1d −1.044 7

0.3 2.348 20s−2d 1.395 72s−1d −7.338 9

0.4 −4.885 65s−3d 2.395 09s−2d −4.469 4

0.5 −3.401 90s−2d −8.916 35s−2d −1.701 6

0.6 −6.358 21s−2d −2.018 27s−1d 1.088 7

0.7 −9.333 07s−2d −3.159 95s−1d 4.047 1

0.8 −1.230 85s−1d −4.344 32s−1d 7.392 2

0.9 −1.528 42s−1d −5.631 11s−1d 1.159 3

1.0 −1.858 83s−1d −7.377 66s−1d 1.963 2
the tabulated shear-stress profiles satisfy the identity

Downloaded 02 Mar 2005 to 152.1.30.58. Redistribution subject to AIP li
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c1p1std + c2p2std = p, s32d

where the constantp is what we call total shear stress.
note that Eq.s32d can be formally deduced by taking ze
order momentsfwith csjd as the weighting functiong of the
first and third rows of Eq.s16d, combining the resultin
equations and integrating over space.

In addition to the velocity, heat-flow, and shear-st
profiles, we have computed in this work the particle-flow
heat-flow rates per unit area, defined for each sp
sa=1,2d as

Ua =
1

2a
E

−a

a

uastddt s33d

and

Qa =
1

2a
E

−a

a

qastddt. s34d

Thus, we have used the discrete-ordinates approximati

U = A1F1

s
G +

1

2a
o
j=2

4N

n jXsn jdsAj + Bjdf1 − e−2a/n jg s35d

and

Q =
1

2a
o
j=2

4N

n jYsn jdsAj + Bjdf1 − e−2a/n jg, s36d

where the vectorsU andQ have, respectively,Ua andQa for
a=1 and 2 as components, to compute the particle-flow
heat-flow rates shown in Table II for several values of
half-distance between platesa.

In a recent work22 the McCormack model was used
study the problem of Couette flow for a binary gas mixtur
a plane channel for the special case of purely diffuse re
tion at the walls. In that work22 two interaction laws wer
used: one based on the rigid-sphere model and the othe
“so-called” realistic potential. It is interesting to note tha
is reported,22 in regard to the total shear stress, that the
ference between the results for the two interaction poten
is very slight. On the other hand, we have found in this w

ofiles for a He–Ar mixture.

q2s−a+2had p1s−a+2had p2s−a+2had

−7.587 29s−2d 1.939 26s−2d 1.909 91s−1d
−3.632 40s−2d 3.133 42s−2d 1.858 73s−1d
−2.169 30s−2d 3.881 78s−2d 1.826 66s−1d
−1.254 12s−2d 4.371 67s−2d 1.805 67s−1d
−5.730 45s−3d 4.681 84s−2d 1.792 37s−1d

1.104 35s−4d 4.852 60s−2d 1.785 06s−1d
5.866 70s−3d 4.902 59s−2d 1.782 91s−1d
1.238 50s−2d 4.834 10s−2d 1.785 85s−1d
2.088 65s−2d 4.632 41s−2d 1.794 49s−1d
3.405 69s−2d 4.257 33s−2d 1.810 57s−1d
6.825 49s−2d 3.602 32s−2d 1.838 64s−1d
ss pr

had

8s−2d
8s−2d
5s−2d
7s−3d
6s−3d
3s−3d
2s−3d
5s−3d
9s−3d
4s−2d
8s−2d
that our results, all based on rigid-sphere interactions, can be

cense or copyright, see http://pof.aip.org/pof/copyright.jsp
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greatly affected by the accommodation coefficients use
define combinations of specular and diffuse reflection bo
ary conditions. For this reason, we use the results report
Table III for the ratio between the total shear stressp defined
in Eq. s32d and the free-molecular total shear stress

pfm =
1

2p1/2suw,1 − uw,2dFc1r1
a1b1

a1 + b1 − a1b1

+ c2r2
a2b2

a2 + b2 − a2b2
G s37d

for the specified He–Ar mixture to illustrate just how imp
tant the use of a generalsspecular/diffused boundary condi
tion is. In regard to the numerical results reported in Tab
of Ref. 22 for the total shear stress, we were able to con
the four-digit results listed there.

As a final check of our work, we note that we ha
found agreement for the case of a single-species gas, a
iting case in this work that can be realized by taking ei
c1=0 or c2=0 or m1=m2 and d1=d2, with S-model6 results
obtained from a special case of the code written to esta
the results based on the linearized Boltzmann equationsfor
rigid-sphere interactionsd that are reported in Ref. 23. A
noted,17 the McCormack model reduces, for the special c

TABLE II. The particle-flow and heat-flow ratessper unit aread for a He–Ar
mixture with various choices of the half-distance between plates.

a −U1 −U2 −Q1 −Q2

0.001 1.674 31s−1d 1.387 39s−1d 6.341 88s−5d 4.193 70s−5d
0.01 1.566 94s−1d 1.383 03s−1d 9.839 20s−5d 2.020 99s−4d
0.1 1.144 48s−1d 1.337 20s−1d 7.404 89s−4d 7.927 37s−4d
0.5 6.508 88s−2d 1.151 67s−1d 1.942 00s−3d 1.109 28s−3d
1.0 4.596 74s−2d 9.866 80s−2d 1.779 15s−3d 8.110 98s−4d
2.0 3.053 86s−2d 7.699 56s−2d 1.135 38s−3d 4.190 33s−4d
5.0 1.609 15s−2d 4.620 30s−2d 3.440 38s−4d 1.115 66s−4d
10.0 9.156 07s−3d 2.756 42s−2d 1.035 30s−4d 3.314 95s−5d
20.0 4.936 13s−3d 1.522 12s−2d 2.838 31s−5d 9.083 89s−6d
50.0 2.074 37s−3d 6.490 03s−3d 4.818 17s−6d 1.542 03s−6d

TABLE III. The ratio p/pfm for a He–Ar mixture with various choices of t
accommodation coefficients and the half-distance between plates.

a
a1=b1=0.4
a2=b2=0.7

a1=b1=0.6
a2=b2=0.8

a1=b1=0.8
a2=b2=0.9

a1=b1=1.0
a2=b2=1.0

0.001 9.991 19s−1d 9.989 15s−1d 9.986 66s−1d 9.983 54s−1d
0.01 9.914 33s−1d 9.894 88s−1d 9.871 34s−1d 9.842 22s−1d
0.1 9.268 38s−1d 9.120 05s−1d 8.947 34s−1d 8.743 24s−1d
0.5 7.454 41s−1d 7.052 02s−1d 6.620 39s−1d 6.155 59s−1d
1.0 6.122 45s−1d 5.618 15s−1d 5.109 08s−1d 4.594 58s−1d
2.0 4.582 11s−1d 4.050 35s−1d 3.551 86s−1d 3.082 73s−1d
5.0 2.646 43s−1d 2.228 51s−1d 1.871 60s−1d 1.562 36s−1d
10.0 1.556 46s−1d 1.275 84s−1d 1.047 86s−1d 8.583 55s−2d
20.0 8.535 27s−2d 6.878 37s−2d 5.573 25s−2d 4.514 96s−2d
50.0 3.624 53s−2d 2.886 89s−2d 2.317 95s−2d 1.864 15s−2d
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of a single-species gas and for the explicit choices o
collision frequenciesga used in this and other works,14–17 to
the S model, not the BGK model.

V. CONCLUDING REMARKS

In conclusion, we note that we regard our solution to
considered problem of plane Couette flow for a binary
mixture as especially concise and easy to use. We hav
lized in our formulation a general form of the Maxw
boundary condition at each plate, and we have reported
we believe to be highly accurate species-specific result
the velocity, heat-flow, and shear-stress profiles for a ty
case. It should be noted that our formulas are continuo
the t variable and thus are valid anywhere in the gas.

Since our solution requires only a matrix eigenva
eigenvector routine and a solver of linear algebraic e
tions, the algorithm is especially efficient, fast, and eas
implement. In fact, the developedsFORTRANd code require
typically less than a secondson a 2.2 GHz mobile Pentium
machined to yield all quantities of interest with what we b
lieve to be five or six figures of accuracy.

Finally, we would like to mention the two reasons w
in our opinion, the ADO method that we have used in
work is so effective:sid the half-range quadrature sche
allows a better treatment of the boundary conditions th
full-range scheme, andsii d the eigenvalue problem is form
lated in a particularly useful way.
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