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The McCormack model for gas mixtures: Plane Couette flow
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An analytical version of the discrete-ordinates method is used to establish a concise and particularly
accurate solution to the problem of plane Couette flow for a binary gas mixture described by the
McCormack kinetic model. The solution yields, for the genésalecular-diffusgcase of Maxwell
boundary conditions for each of the two species, the velocity, heat-flow, and shear-stress profiles for
both types of particles, as well as the particle-flow and heat-flow rates associated with each of the
two species of gas particles. Highly accurate numerical results are reported for the case of a
helium—argon mixture confined between molybdenum and tantalum plates. The algorithm is
considered especially easy to use, and the develf@RTRAN) code requires typically less than

a second on a 2.2 GHz Pentium 4 machine to compute all quantities of interest with at least five
figures of accuracy. @005 American Institute of PhysidDOI: 10.1063/1.184591]1

I. INTRODUCTION II. FORMULATION

' L In this work we base our analysis of a binary gas mixture
The ﬂOW_ of _a rarefied gas betwgen t_WO |.nf|n|t.e plateson the McCormack model as introduced in an important
that are moving in parallel and opposite directions is a Clasbapeilz published in 1973. While we use this model as de-
sical problem in rarefied gas dynamics known as plane Colined in Ref. 12, we employ a notation that is appropriate to
ette flow. Under the assumption that the plate velocities arghe analysis and computations we report here. The ADO
small compared to the reference Maxwellian speedmethod® has been used in two recent work® to solve a
(2kT,/m)Y2, wherek is the Boltzmann constant,, is the  collection of basic flow problems, defined for binary gas
(unperturbedl gas temperature, anu is the mass of a gas mixtures in terms of the McCormack model, for semi-infinite
particle, the problem can be adequately modeled by the linhedid” (Kramers' problem and the half-space problem of
earized Boltzmann equation. thermal creep and plane channéfs (Poiseuille flow,

There are numerous works dedicated to the study of "nghermal-creep flow, and flow driven by density gradignts

. . . Other recent works based on the McCormack model for bi-
earized plane Couette flow of a single gas. A list of all these : .
nary gas mixtures report ADO solutions for the temperature-

works would be too lengthy to report here, and thus we refe[ump problenJIG and the heat-transfer problem in a plane

the reader to the books of Cercignafi, Williams,* and  channel’” Our solution of the Couette flow problem for a gas
Ferziger and Kapetas well as the review papers by Shari- mixture described by the McCormack model follows directly
pov and Seleznévand Williams! for general background from the general analysis reported in Refs. 14 and 15, and so
material and a discussion of previous works on the single-gasur presentation here is brief.

case. In regard to gas mixtures, however, the literature on We consider that the required functiohg(x,v) for the

this problem is scarce. We have found only three wbids  two types of particlega=1 and 2 denote perturbations from

on linearized plane Couette flow for gas mixtures, two ofMaxwellian distributions for each species, i.e.,

which®? are related to the present work as they are also

based on the discrete-ordinates method. The work in Ref. 9 fa(V) = fao)[1 +ha(x,V)], (1)
relies on space discretization and iteration, while Ref. 10
uses the same analytical discrete-ording#®&®B®0O) method where
that we use here. These wofk¥ have addressed the special N
fo00) =Ny /)32 N, =m,/(2KTy). (2

case of purely diffuse boundary conditions and are based on
the relatively limited Hamel modét,and so here we develop

a concise and accurate ADO solution for plane Couette ﬂOVYhe equilibrium density of therth speciesx is the spatial

of a binary gas mixture described by the physically more, 4 iaple (measured, for example, in centimeters, with

generalspecular-difuseMaxwell boundary conditions with ity and T, is the reference temperature. It follows from Mc-
a free choice of the accommodation coefficient for each specormack’s work? that the perturbations satisfy the coupled
cies at each confining plate. equations, forw=1,2,

Here m, and n, denote, respectively, the particle mass and
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9 If we sought to compute the complete distribution func-
cxa—xha(x,c) + 0, Yaha(X,0) = 07, Loty Nok(X,0), () tions h,(r,c), then we would have to work explicitly with

Egs. (5) and(8); however, since we seek here only the ve-
where ¢, with components,,c,,c, and magnitudec, is a locity profiles, the heat-flow profiles and the shear-stress pro-
dimensionless velocity variable,,=\? andy, denotes the files,

a

collision frequency for thexth species. Here we write the

. 1 oo o0 ee]
integral operators as w9 =— f f f Ch.(n.0c, dedede, 10

2w o oo ™ -0 J o

1 ,
canmdeo=53 [ [ | ehme)
B=1lJ -0 J -0 J - 1 © o © )
A7) = 5 f f f e “h,(r,0)(c? - 5/2c,dcdede,,
XK g (¢’ c)dc,dc)de, @) w2) ). AGAG

where the kernel& ,(c’,c) are listed explicitly in Refs. 14 11

and 15. As shown in detail in these works, a dimensionlesg, q

spatial variabler defined in terms of a viscosity-based mean-

free path |y, originally introduced by Sharipov and R A A e

Kalempa®® can be used to restate the problem in a more pa(T)_T,TIZ ) _Oce ha(r.0)ccdedede, (12)
convenient way. Thus, following Refs. 14 and 15, we rewrite

Eqg. (3) as we can work only with certain moments of EqS) and(8).
3 Continuing to follow Refs. 14 and 15, we first multiply
Cx(g—ha(r, 0) + 0,h(7,€) = 0, L {1, hy}(7,0), (5) Eq.(5 by
T
$i(ey. ) = (Ume &', (13

whereo,=v,w,lq Or, more explicitly,
— N/ ve 4 Nofvs) (e + 1) 1(m. /m) Y2, 6 and integrate t_he resulting eqL_Jation overcgland allc,. We
7= Yol y1+ Nl )/ (M + 1) J(m, /m) © then repeat this procedure using

Here the mass average is defined as oo P CZ)( o ) "
,C,) =(1/me” ytCs +c2-2)c 14
m= (n;my + nomy)/(ng + Nny). 7) bo(cy 2+ c? :

. . and define, forw=1 and 2,
In this work, we consider the problem of plane Couette

flow between plates that are locatedrat—a and r=a and e

that are moving with specified velocities in tkedirection, G20-1(7,Cx) = f » f_w $a(cy, Ihy(7,c)dgdc; (153
and so we seek solutions of E(p) that are valid for all

re(-a,a) and that satisfy the Maxwell boundary and

conditiong o
ha(= 8,6, ¢, C) = (1 —ag)h,(-a,~ ¢,,¢,,C,) -~ a,Z{h,}(- a) U24(7,Cx) = f ] J ] ¢a(cy,c)h,(7,0)de,dc, (15b)

= 28l oGy (83 to find from these projections four coupled balance equations
and that we can write in matrix notation as
ha(ai_ C !C !CZ) - (1 - ba)ha(alc ’ 1CZ) - baI+{ha}(a) (? *

o ne £-G(r,8) +3G(r,§ =3 f YEK(E,HG(r,¢)de".

= ZbarauW,ZCZ (Sb) or -

for ¢,>0 and all ¢, and c, Note that h,(7,c) (16)

= h,(7,¢,,¢y,¢,) and that we use; anda, to denote the two  Here the components @(7,¢&) areg,(r,é), for =1, 2, 3,

accommodation coefficients basic to the plate located alnq 4 and we now usin place ofc,. In addition, we define
r=—a andb; andb, to denote the two accommodation coef-

ficients for the plate located atr=a. In addition, 2 = diagoy, 01,05, 05} (17)

r,=(m,/m*2 and we have used
and

2 ee] o] o] ,
TeAhob(n) = = f f f & (7, F ¢,C),C)) W =71t (18)
—o0 J =0 J(Q
. and we note that the elements of the kerKek’,¢) are
xcdedgdc, ) given explicitly in Refs. 14 and 15. To deduce the boundary

to denote the diffuse terms in Ed8). In writing Egs.(8) we ~ conditions relevant to Eq16), we project Eqs(8) against
have usedy=(2kTy/m)*2 to express the wall velocities in  $1(Cy,C;) and ¢s(cy,c,) to find

dimensionless units. In other words, ;v andu,, ,v, are the Gl-a.d-SGa-8=u.lar 0anr, 0l 19
velocities (in the z direction given to the two confining (8,8 =SiG(-a~ 9 =tuilairs 03 0] (199
plates. and
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G(a,— &) - S,G(a,&) = uy [ bary 0 byr, 0 (19b)
for £>0. Here, T denotes the transpose operation, G,=

Slz d|aq1 _al,l _al,l _az,l _az} (203)

(253

o n O Bk

and
S,=diagl-b;,1-b;,1 -by, 1 -h,}. (20b)

and

To close this section we note that the McCormack model 017 ¢

(for rigid-sphere interactionsrequires only the ratio of the 0

two particle massesy /m,, the ratio of the number densities G-(1.6) = - '
1/ My, soy (7= &loy)

n,/ny,, and the ratio of the particle diametedls/d,. Once 0

these parameters are specified we seek to find the profiles

listed in Egs.(10—(12) for selected values of the half-

distance between platesmeasured in mean-free paths, the

two plate velocitiea, ; andu,,,, and the four accommoda-

tion coefficientsa;,a,, by, b,. Using Eqs.(13)—(15), we find

we can write these profiles as

(25b)

where s=(my/my)*2. Finally, the constant#\;,B;,{A;,B;}
can be determined by solving thé&N& 8N system of linear
algebraic equations that is obtained when &4) is substi-
tuted into discrete-ordinates versions of the boundary condi-
tions. Once these constants are available, we can compute
® the velocity, heat-flow and shear-stress profiles from
Uq(7) :f () Goa-1(7, §)dE, (21)  discrete-ordinates approximations of E¢&1)—(23). On de-
> fining the vector-valued functions(7), q(7), andp(7) with
u,(7), gu(7), andp,(7) for «=1 and 2 as components, re-

- 21120 1(1.6) + - 9)7de, 29 spectively, we can write our discrete-ordinates approxima-
qal7) J_w VEIINES )G20-1(T,€) + Goo(7,€) ]dE (22 tions to the desired profiles as

and 1] N

* u(7) = (Ap + Byoy7) o > X(wp[Ajg @ + gigr@ ],
Pu(7) = f (&) Ga-1(7,6)€dE. (23) =

- (26)
Therefore, once Eq.16) subject to Eqs(19) is solved, we
can find the desired profiles from Eq&1)—(23). i et e

q(7) = ZZY(VJ-)[A,-e i+ Bye @], (27)
J:

I1l. AN ANALYTICAL DISCRETE-ORDINATES and
SOLUTION

4N
A general ADO solution to Eq(16) has been fully de- p(7)=- }51{ ! ] + z(,,j)[Aje—<a+T)/Vj - Bje—(a—f)/yj]l
veloped and documented in Ref. 14, and so we omit the 2 "lsofop ] s

details of the derivation in this presentation. To start, we split (28)
the integral in Eq.(16) into two half-range integrals—one

over (0,) and the other ovef-=~,0)—and we then changé  where

to —¢ in the latter. Doing this, we only have to deal with one

half-range integration intervalD,). Next, using a Gaussian N
quadrature set of ordét with nodes{¢} and weightgw;} to ~ X(1) =2 Wk¢(§k)[
approximate integrals ovéd,«), we can follow Ref. 14 and k=1
express our approximate solution féi(7, &) at the discrete (29
ordinates £, i1=1,2,... N, as

1000

000 1:|[(I)(Vja§k)+(l)(7/jr_§k)]y

aN N 2 _
G(r, £ &) = AG, +BiG(7, £ &) + X [A®(y, £ &) Y(v-)=2ww(§){§k vl O][cb(v- &)
7, 26) = A6, +BG (T, £ g il Vi =i Ve TSk 0 0 &-1/2 1 g
W@ (@i 4 Bd (v, + £)e@E, (24) +®(v;,— §)] (30

where the separation constamt§} and the elementary solu- and
tions {®(v;, &)} are determineld from the solution of an

eigensystem of orderNl Since one of the eigenvalues of N 0

that eigensystem approaches zerd\ds increased, the cor- Z(v) = >, kak'/’(§k)|:o 0 0 J [®(v}, &) — P(v},— &I ]
responding elementary solutions are replaced with the exact k=1

solutions (32

Downloaded 02 Mar 2005 to 152.1.30.58. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



037102-4 R. D. M. Garcia and C. E. Siewert Phys. Fluids 17, 037102 (2005)

TABLE I. The velocity, heat-flow, and shear-stress profiles for a He—Ar mixture.

] uy(—a+27a) Uy(—a+27a) Gu(-a+27a) Ox(—a+27a) pi(-a+27a)  py(-a+27a)

00 09784792  5.836801-1) -1.97038-2) -7.58729-2) 1.93926-2) 1.90991-1)
01  7.55362-2)  3.94804-1) -1.40318-2) -3.63240-2) 3.13342-2) 1.85873-1)
02 5057282  2.60844-1) -1.0447%-2) -2.16930-2) 3.88178-2) 1.82666-1)
0.3  2.34820-2)  1.39572-1) -7.33897-3) -1.25412-2) 4.37167-2) 1.80567-1)
0.4 -488566-3)  2.39509-2) -4.46946-3) -5.7304%-3) 4.68184-2) 1.79237-1)
05 -3.40190-2) -8.9163%-2) -1.70163-3)  1.1043%-4) 4.85260-2) 1.78506-1)
0.6 -6.35821-2) -2.01827-1)  1.08872-3)  5.86670-3) 4.90259-2) 1.78291-1)
0.7 -9.33307%-2) -3.1599%-1)  4.0471%5-3)  1.23850-2) 4.83410-2) 1.78585%-1)
0.8 -1.23086-1) -4.34432-1)  7.39229-3)  2.0886%-2) 4.63241-2) 1.79449-1)
0.9 -15284p-1) -563111-1)  1.15934-2)  3.40569-2) 4.25733-2) 1.81057-1)
1.0 -1.85888-1) -7.37766-1)  1.96328-2)  6.82549-2) 3.60237-2) 1.83864-1)

IV. NUMERICAL RESULTS C1P1(7) + Copo(7) = p, (32)

In order to demonstrate that our ADO solution for the where the constar is what we call total shear stress. We
problem of plane Couette flow yields highly accurate resultsote that Eq(32) can be formally deduced by taking zero-
with modest computational effort, we report detailed numeri-order momentgwith (¢) as the weighting functighof the
cal results for a specific case based on the McCormackirst and third rows of Eq.(16), combining the resulting
model for rigid-sphere interactions in a mixture of He and Arequations and integrating over space.

and plates made of different materidMo for the plate lo- In addition to the velocity, heat-flow, and shear-stress
cated atr=-a and Ta for the plate located ata). Thus, the profiles, we have computed in this work the particle-flow and
gas parameters are heat-flow rates per unit area, defined for each species
(a=1,2) as
m, =4.0026, m,=39.948, d,/d;=1.665, ¢,=0.3, 1 (2
: U,= —f Uy(7dr (33
where c,=n,/n, with n=n;+n,, whereas the plate param- 2a)_,
eters are
and
a;=0.20, a,=0.67, b;=0.46, b,=0.78, 1 (2
Qu=7, f du(7)d7. (34
a —a

u,1=10, u,,=-1.0, a=15. . ) o
’ ’ Thus, we have used the discrete-ordinates approximations

We note that the accommodation coefficients used in our o
calculation are the accommodation coefficients for tangential U = Al{ } > X () (A +B)[1 —e 2] (35)
momentum, which we consider a natural choice for this 2aj=,
problem. Specifically, we are using here the results of meay |
surements performed by Lortifor He and Ar particles re-
flecting from Mo and Ta surfaces. el

We report in Table | our converged numerical results for Q= 52 Y () (A +By[1 —e =], (36)
the velocity, heat-flow, and shear-stress profiles. We note that =2
these results were generated with a quadrature scheme baselere the vectortl andQ have, respectively), andQ,, for
on the transformationv(¢§)=e¢ to map £é€[0,%) onto  «=1 and 2 as components, to compute the particle-flow and
ve[0,1] and a linear mapping of the Gauss—Legendreheat-flow rates shown in Table Il for several values of the
scheme onto the intervfd, 1]. In regard to numerical linear half-distance between plates
algebra, we have used thmSPACK packagé0 to solve the In a recent work the McCormack model was used to
eigensystem that determines the separation constants and ttedy the problem of Couette flow for a binary gas mixture in
elementary solutions, andnpack? to solve the linear sys- a plane channel for the special case of purely diffuse reflec-
tem for the & unknownsA,,B;,{A;,Bj}. tion at the walls. In that wof€ two interaction laws were

To establish some confidence in our results, we haveised: one based on the rigid-sphere model and the other on a
observed numerical stability in all entries of Table |, as the"so-called” realistic potential. It is interesting to note that it
order of the quadraturd was varied between 40 and 100, in is reporteoe,2 in regard to the total shear stress, that the dif-
increments of 20. Moreover, as a measure of the correctne$srence between the results for the two interaction potentials
of our computational implementation, we have verified thatis very slight. On the other hand, we have found in this work
the tabulated shear-stress profiles satisfy the identity that our results, all based on rigid-sphere interactions, can be

4N
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TABLE II. The particle-flow and heat-flow ratéper unit areafor a He—Ar of a single-species gas and for the explicit choices of the
mixture with various choices of the half-distance between plates. collision frequencieSya used in this and other worl%é,‘”to
the S model, not the BGK model.

a -U; -U, -Q -Q2

0.001 1.6743t1) 1.3873%9-1) 6.34188-5  4.1937Q-5)
0.01 1.56694-1) 1.38303-1) 9.8392Q-5 2.02099-4)

V. CONCLUDING REMARKS

0.1 1.14448-1) 1.33720-1) 7.40489-4) 7.927371-4) In conclusion, we note that we regard our solution to the
0.5 6.50888-2) 1.15167-1) 1.94200-3) 1.10928-3) considered problem of plane Couette flow for a binary gas
1.0 4596 74-2) 9.86680-2) 1.7791%-3) 8.11098-4) mixture as especially concise and easy to use. We have uti-
2.0 3.05386-2) 7.69956-2) 1.13538-3) 4.19033-4) lized in our formulation a general form of the Maxwell
5.0 1.60916-2) 4.62030-2) 3.44038-4) 1.11566-4) boundary condition at each plate, and we have reported what

10.0 9.1560%F3) 2.75642-2) 1.03530-4
20.0 4.93618-3) 1.52212-2) 2.83831-5
50.0 2.0743F3) 6.49003-3) 4.81817-6

3.3149%-5) we believe to be highly accurate species-specific results for
9.083 89-6) the velocity, heat-flow, and shear-stress profiles for a typical
1.54203-6) case. It should be noted that our formulas are continuous in
the 7 variable and thus are valid anywhere in the gas.

Since our solution requires only a matrix eigenvalue/
eigenvector routine and a solver of linear algebraic equa-
greatly affected by the accommodation coefficients used t§ons, the algorithm is especially efficient, fast, and easy to
define combinations of specular and diffuse reflection boundimplement. In fact, the develop¢BORTRAN) code requires
ary conditions. For this reason, we use the results reported fiypically less than a secor(dn a 2.2 GHz mobile Pentium 4
Table 1l for the ratio between the total shear strpstefined ~ Maching to yield all quantities of interest with what we be-

in Eq. (32) and the free-molecular total shear stress lieve to be five or six figures of accuracy.
Finally, we would like to mention the two reasons why,

NN NN NN

_ L( —Uy.) _ab in our opinion, the ADO method that we have used in this
Prm 2 1/2 uW,l uw,2 Cily _ . . .
™ a,+by—ab; work is so effective:(i) the half-range quadrature scheme
b, allows a better treatment of the boundary conditions than a
Coly (37 full-range scheme, an(i) the eigenvalue problem is formu-
a, + by — asb,

lated in a particularly useful way.
for the specified He—Ar mixture to illustrate just how impor-
tant the use of a gener(aetpecular/diffus)eboundary condi- . CercignaniMathematical Methods in Kinetic Theolenum, New

. . . . York, 1969.
tion is. In regard to the numerical results reported in Table 2 Cercignani, Theory and Application of the Bokzmann Equation

of Ref. 22 for the total shear stress, we were able to confirm (gisevier, New York, 1975
the four-digit results listed there. 3C. CercignaniRarefied Gas Dynamics: From Basic Concepts to Actual

As a final check of our work, we note that we have Calculanons(Cambrldge University Press, Cambridge, 2000

f d t for th f | l “M. M. R. Williams, Mathematical Methods in Particle Transport Theory
ouna agreement 10r the case or a smg e- speC|es gas, a 'm(Butterworth London, 1971

iting case in this work that can be realized by taking either®). H. Ferziger and H. G. Kapeklathematical Theory of Transport Pro-
¢;=0 orc,=0 or my=m, and d;=d,, with S-mode? results 6u:esses in Gasddorth-Holland, Amsterdam, 1972
obtained from a special case of the code written to establlsh': Sharipov and V. Seleznev, “Data on internal rarefied gas flows,” J. Phys.

. . . Chem. Ref. Data27, 657 (1998.
the results based on the linearized Boltzmann equdfam 7y, v R. williams, “A review of the rarefied gas dynamics theory asso-

rigid-sphere interactionsthat are reported in Ref. 23. As ciated with some classical problems in flow and heat transfer,” ZAB2P
noted’’ the McCormack model reduces, for the special case,>00 (2001
Y. Onishi, “On the behavior of a slightly rarefied gas mixture over plane
boundanes " ZAMP37, 573(1986.
°D. Valougeorgis, “Couette flow of a binary gas mixture,” Phys. Flutds
521 (1988.

TABLE I1l. The ratio p/pyy, for a He—Ar mixture with various choices of the 105 £ giewert. “Couette flow for a binary gas mixture,” J. Quant. Spec-

accommodation coefficients and the half-distance between plates. trosc. Radiat. Transf70, 321 (2001).
1B, B. Hamel, “Kinetic model for binary gas mixtures,” Phys. Fluigis418
a,=b,=0.4 a,=b;=0.6 a,=b;=0.8 a,=b;=1.0 (1965.
a a,=b,=0.7 a,=b,=0.8 =b,=0.9  a=b,=1.0 2F 3. McCormack, “Construction of linearized kinetic models for gaseous
mixtures and molecular gases,” Phys. Fluit 2095(1973.
0.001 9.99116-1) 9.9891%-1) 9.9866@-1) 9.98354-1) 13, B. Barichello and C. E. Siewert, “A discrete-ordinates solution for a
0.01 9.9143B3-1) 9.89488-1) 9.87134-1) 9.84222-1) non-grey model with complete frequency redistribution,” J. Quant. Spec-
0.1 9.26838-1) 9.12005-1) 8.94734-1) 8.74324-1) 14tcf°SEC- ';ad'at-tTfagsszv 6?5<1999_- Concise and © solutions
_ _ _ . E. Siewert and D. Valougeorgis, “Concise and accurate solutions to
05 7.45441-1)  7.05202-1)  6.62033-1)  6.1555¢-1) half-space binary-gas flow problems defined by the McCormack model
1.0 6.1224%-1) 56181%-1) 5.10908-1) 4.59458-1) and specular-diffuse wall conditions,” Eur. J. Mech. B/Flui@8, 709
2.0 458211-1) 4.0503%-1) 3.55186-1) 3.08273-1) 15(2004). _ _
5.0 2.646 48-1) 2.22851-1) 1.87160-1) 1.562 36-1) g E. fslek\)/\_lert and D. _Vtalou%e_orglst,) “'[he McCtormack model: gh;mnetl
ow of a binary gas mixture driven by temperature, pressure and density
10.0 1.556 46-1) 1.27584-1) 1.047 86-1) 8.58355%-2) gradients,” Eur. J. Mech. B/Fluidg3, 645 (2004.
20.0 8.5352(-2) 6.878371-2) 5.5732%-2) 4.51496-2) 16C. E. Siewert, “The McCormack model for gas mixtures: The temperature-
50.0 3.62458-2) 2.8868%-2) 2.3179%-2) 1.8641%-2) jump problem,” ZAMP 56, 273 (2005.

YR. D. M. Garcia and C. E. Siewert, “The McCormack model for gas

Downloaded 02 Mar 2005 to 152.1.30.58. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



037102-6 R. D. M. Garcia and C. E. Siewert Phys. Fluids 17, 037102 (2005)
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