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The linearized Boltzmann equation: Sound-wave propagation
in a rarefied gas
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Abstract. An analytical version of the discrete-ordinates method (the ADO method) is used to
establish concise and particularly accurate solutions to the problem of sound-wave propagation
in a rarefied gas. The analysis and the numerical work are based on a rigorous form of the
linearized Boltzmann equation (for rigid-sphere interactions), and in contrast to many other
works formulated (for an infinite medium) without a boundary condition, the solution reported
here satisfies a boundary condition that models a diffusely-reflecting vibrating plate. In addition
and in order to investigate the effect of kinetic models, solutions are developed for the BGK
model, the S model, the Gross–Jackson model, as well as for the (newly defined) MRS model and
the CES model. While the developed numerical results are compared to available experimental
data, emphasis in this work is placed on the solutions of the problem of sound-wave propagation
as described by the linearized Boltzmann equation and the five considered kinetic models.
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1. Introduction

Sound-wave propagation in a gas is known to be adequately described by classical
(Navier-Stokes) theory, provided the mean-free path between particle collisions in
the gas is much smaller than the sound wavelength and the distance between the
transmitter and the receiver. For wavelengths of the order of a mean-free path, a
reasonable physical description can still be obtained using simplified kinetic-theory
approaches developed by Wang Chang and Uhlenbeck (the so-called Burnett [1]
and super-Burnett [2] theories). However, for wavelengths shorter than a mean-
free path and/or small distances between transmitter and receiver, these theories
fail, and a rigorous kinetic-theory approach based on the Boltzmann equation is
required [3–5].

Earlier attempts at getting better theoretical predictions for short wavelengths
based on polynomial-expansion solutions of the Boltzmann equation [6, 7] were not
successful (see a detailed discussion by Cercignani [4, 5]) until a work by Sirovich
and Thurber [8] reported (in graphical form) good agreement between theory and
experiments for mean-free path to wavelength ratios as high as 10. These authors
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[8] used kinetic models to represent the collision term in the linearized Boltzmann
equation for Maxwell and rigid-sphere gases and analytic continuation of the dis-
persion relation to determine “effective” sound modes for frequencies beyond the
critical frequency for which no discrete mode exists. However, since only the dis-
persion relation for a plane wave was analyzed (i.e., no boundary condition was
considered in Ref. 8), a question was raised as to the adequacy of such description
[9, 10].

Improved problem formulations that include a boundary condition at the trans-
mitter (usually modeled as a fixed vibrating plate) are available in the literature.
Buckner and Ferziger [11] used the method of elementary solutions [12, 13] to solve
a kinetic model for a Maxwell gas in a half space bounded by a diffusely reflect-
ing, vibrating plate. Good agreement with experimental results was reported in
graphical form over a wide range of frequency, despite the fact that these authors
did not use the correct boundary condition to generate their numerical results
(see footnote on p. 2320 of Ref. 11). Thomas and Siewert [14] and Loyalka and
Cheng [15] have solved the half-space linearized problem for the BGK model [16]
of the Boltzmann equation using the correct diffuse boundary condition. The
work in Ref. 14 was based on the method of elementary solutions [12, 13, 17, 18],
whereas in Ref. 15 the problem was reformulated in terms of a system of linear
integral equations which was solved by a numerical differencing technique. While
we consider that Thomas and Siewert [14] provided the first rigorous solution to a
correctly formulated version of the sound-wave problem based on the BGK model,
two following papers [19, 20] must also be mentioned. It was reported [15] that the
results [14, 15] based on the correct boundary condition are in better agreement
with experimental results than the BGK results of Sirovich and Thurber [8] and
those of Buckner and Ferziger [11]. The method of Ref. 15 has also been applied to
(what was called) a Gross–Jackson kinetic model [21] for Maxwell molecules [22].
In a following work, Banankhah and Loyalka [23] reported a study of sound-wave
propagation in a polyatomic gas.

In this work, we use a modern version [24] of the discrete-ordinates method
[25] to solve the problem of sound-wave propagation as described by the linearized
Boltzmann equation (for rigid-sphere interactions). The considered problem is
modeled as a half space that is bounded by a vibrating plate. In addition to
a solution defined by a rigorous description based on the linearized Boltzmann
equation, we pay special attention in this work to the predictions of various kinetic
models, so we report solutions and numerical results derived from the classical
BGK model [16], the S model [26], the Gross–Jackson model [21], the MRS model,
and the CES model [27]. The results found from the five kinetic models and the
LBE are also compared to the experiments of Schotter [28].
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2. A formulation of the problem

To begin, we consider that the particle distribution function we seek is a solution
of the Boltzmann equation written as

( 1
v0

∂

∂t
+ cx

∂

∂x

)
f(x, c, t) = J(f)(x, c, t), (2.1)

where the spatial variable x is measured (for example) in cm, t is the time variable,
and

c = v/v0, with v0 = (2kT0/m)1/2, (2.2a,b)

is a dimensionless velocity vector. Here, v is the velocity variable, k is the Boltz-
mann constant, m is the mass of a gas particle, and T0 is a reference temperature.
The term J(f) in Eq. (2.1) is used to denote the collision operator that (at this
point, at least) can be nonlinear in f . We consider that the gas occupies a one-
dimensional half-space x > 0, and so we seek a solution of Eq. (2.1) that satisfies
a boundary condition at x = 0 and that is bounded as x tends to infinity.

We note that x is the distance from a plate that is vibrating with a frequency
ω and a velocity in the x direction the maximum magnitude of which is u0 (in
units of v0). And so assuming diffuse reflection at the plate, we follow Loyalka
and Cheng [15] and express the required boundary condition as

f(0, cx, cy, cz, t) = nmπ−3/2exp{−[c2 − 2w(t)cx + w2(t)]}, cx > 0, (2.3)

where cx, cy, and cz are the components and c the magnitude of c, and

w(t) = u0eiωt. (2.4)

Here, since there is no loss of particles as they collide with the plate, the constant
nm is to be defined by the conservation condition [15]∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
[cx − w(t)]f(0, c, t)dcxdcydcz = 0. (2.5)

We can now use Eq. (2.3) in Eq. (2.5) to find

nmπ−3/2e−w2(t) =
2
π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

[cx + w(t)]f(0,−cx, cy, cz, t)dcxdcydcz, (2.6)

and we can use nm from Eq. (2.6) in Eq. (2.3) to obtain the boundary condition

f(0, cx, cy, cz, t) =
2
π

exp{−c2 + 2w(t)cx}D{f}(0, t), (2.7)

for cx > 0. Here

D{f}(0, t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

[c′x + w(t)]f(0,−c′x, c′y, c′z, t)dc′xdc′ydc′z. (2.8)

We next use the expansions

exp{2w(t)cx} =
∞∑

n=0

[2w(t)cx]n

n!
(2.9)
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and

f(x, c, t) = n0π
−3/2e−c2[

1 + h(x, c)w(t) +
∞∑

n=2

hn(x, c)wn(t)
]

(2.10)

to find from Eq. (2.7) the boundary condition for the first Fourier mode of the
perturbation from the Maxwellian distribution, viz.

h(0, cx, cy, cz) − 2
π

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

e−c′2h(0,−c′x, c′y, c′z)c
′
xdc′xdc′ydc′z = R(cx),

(2.11)
for cx > 0 and all cy and cz. Here

R(cx) = 2cx + π1/2. (2.12)

Note that n0 is used in Eq. (2.10) to denote the equilibrium number density. If we
now take note of Eq. (2.10) and replace the collision term in Eq. (2.1) by a linear
form (basic to rigid-sphere interactions), then we can write the resulting equation
for h(x, c) as [29, 30]

(
cµ

∂

∂x
+ iω/v0

)
h(x, c) = σ2

0n0π
1/2L{h}(x, c), (2.13)

where σ0 is the scattering diameter of a gas particle, and where

L{h}(x, c) = −ν(c)h(x, c) +
∫ ∞

0

∫ 1

−1

∫ 2π

0

e−c′2K(c′ : c)h(x, c′)c′2dχ′dµ′dc′.

(2.14)
Here

ν(c) =
2c2 + 1

c

∫ c

0

e−x2
dx + e−c2

(2.15)

is the collision frequency, and we express the scattering kernel in the Pekeris form
[29], viz.

K(c′ : c) =
1
4π

∞∑
l=0

l∑
m=0

(2l + 1)(2 − δ0,m)Pm
l (µ′)Pm

l (µ)kl(c′, c) cos m(χ′ − χ),

(2.16)
where the component functions kl(c′, c) are available from the paper of Pekeris and
Alterman [30], and where the normalized Legendre functions are given (in terms
of the Legendre polynomials) by

Pm
l (µ) =

[
(l − m) !
(l + m) !

]1/2

(1 − µ2)
m/2 dm

dµm
Pl(µ), l ≥ m. (2.17)

Note that we now express the dimensionless velocity vectors c and c′ in spherical
coordinates {c, µ, χ} and {c′, µ′, χ′}. While explicit forms for the scattering func-
tions kl(c′, c) are available for some values of l, we can follow Pekeris and Alterman
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[30] and write (in our notation)

kl(c′, c) = 2
∫ π

0

[(2/R)er2 − R]Pl(cos θ) sin θdθ, (2.18)

where R = |c′ − c|, r = (1/R)c′c sin θ and θ is the angle between c′ and c.
Now, if we let l0 denote a mean-free path, we can introduce a dimensionless

spatial variable and rewrite Eq. (2.13) as
(

cµ
∂

∂τ
+ s

)
h(τ, c) = ε0L{h}(τ, c), (2.19)

where
τ = x/l0, ε0 = σ2

0n0π
1/2l0, and s = iωl0/v0. (2.20a,b, c)

We choose to use a mean-free path based on viscosity, and so we take

l0 = lp =
v0µ∗
P0

, (2.21)

where µ∗ is the viscosity and P0 = n0kT0 is the reference pressure. With this
choice of a mean-free path, it follows from Pekeris and Alterman [30] that we
should use ε0 = εp, where

εp =
16

15π1/2

∫ ∞

0

e−c2
B(c)c4dc. (2.22)

Here B(c) is the solution of the integral equation

ν(c)B(c) −
∫ ∞

0

e−c′2B(c′)k2(c′, c)c′
2dc′ = c2, (2.23)

for c ∈ [0,∞). Thus, for a given value of s, we seek a bounded (as τ tends to
infinity) solution of Eq. (2.19) that satisfies the boundary condition

h(0, c, µ, χ) − 2
π

∫ ∞

0

∫ 1

0

∫ 2π

0

e−c′2h(0, c′,−µ′, χ′)µ′c′3dχ′dµ′dc′ = R(cµ), (2.24)

for µ ∈ (0, 1], all c, and all χ.
In this work, we seek the xx-component of the pressure tensor expressed as

Pxx(τ, t) = m

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(τ,v, t)vx

2dvxdvydvz, (2.25)

and so, making use of Eq. (2.10), we find, to first order in w(t), that we can rewrite
Eq. (2.25) as

Pxx(τ, t) = P0[1 + P(τ)w(t)], (2.26)

where (again) P0 = n0kT0, and where

P(τ) =
2

π3/2

∫ ∞

0

∫ 1

−1

∫ 2π

0

e−c2
h(τ, c)µ2c4dχdµdc. (2.27)



Vol. 57 (2006) The linearized Boltzmann equation 99

As we wish to compute P(τ), we rewrite Eq. (2.27) as

P(τ) =
4

π1/2

∫ ∞

0

∫ 1

−1

e−c2
φ(τ, c, µ)µ2c4dµdc, (2.28)

where

φ(τ, c, µ) =
1
2π

∫ 2π

0

h(τ, c)dχ (2.29)

is an azimuthal average. We find the defining equations for φ(τ, c, µ) from Eqs.
(2.19) and (2.24). Thus, for a given value of s, we must solve

[
cµ

∂

∂τ
+σ(c)

]
φ(τ, c, µ) = εp

∫ ∞

0

∫ 1

−1

e−c′2k(c′, µ′ : c, µ)φ(τ, c′, µ′)c′2dµ′dc′ (2.30)

subject to

φ(0, c, µ) − 4
∫ ∞

0

∫ 1

0

e−c′2φ(0, c′,−µ′)µ′c′3dµ′dc′ = 2cµ + π1/2, (2.31)

for µ ∈ (0, 1] and all c. To obtain Eq. (2.30) we have defined

σ(c) = s + εpν(c) (2.32)

and

k(c′, µ′ : c, µ) =
∫ 2π

0

K(c′ : c)dχ. (2.33)

It follows that

k(c′, µ′ : c, µ) =
1
2

∞∑
l=0

(2l + 1)Pl(µ′)Pl(µ)kl(c′, c). (2.34)

We note that Eq. (2.26) is written in terms of the true time variable t; however
it is convenient now to introduce a dimensionless time variable

t∗ = v0t/lp (2.35)

and rewrite Eq. (2.26) as

Pxx(τ, t∗) = P0[1 + P(τ)u0eiω∗t∗ ], (2.36)

where
ω∗ = ωlp/v0 and s = iω∗. (2.37a,b)

And so we seek P(τ) for specified values of ω∗.

3. Kinetic models

In this section we discuss the various kinetic models for which we develop our
(ADO) solutions and for which we report numerical results. As these models can
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all be obtained by approximating the kernel functions kl(c′, c), we note first of all
three identities that must be satisfied for any model in order to accommodate the
conservation laws: mass, energy, and momentum. Thus we must have:

ν(c) =
∫ ∞

0

e−c′2k0(c′, c)c′
2dc′, (3.1a)

ν(c)c =
∫ ∞

0

e−c′2k1(c′, c)c′
3dc′, (3.1b)

and

ν(c)c2 =
∫ ∞

0

e−c′2k0(c′, c)c′
4dc′, (3.1c)

for c ∈ [0,∞). In addition to basic quantities already defined in the previous
section of this work, we also report here, for the various models considered, values
of A(c) and

εt =
16

15π1/2

∫ ∞

0

e−c2
A(c)c5dc, (3.2)

where A(c) is the solution of the integral equation

ν(c)A(c) −
∫ ∞

0

e−c′2A(c′)k1(c′, c)c′
2dc′ = c(c2 − 5/2), (3.3a)

for c ∈ [0,∞), subject to the constraint
∫ ∞

0

e−c2
A(c)c3dc = 0. (3.3b)

As noted previously [30, 31], should we wish to use a mean-free path based on
thermal conductivity, rather than viscosity, then we should use in the previous
section εt in place of εp.

3.1. The BGK model

The often used BGK model [16] can be obtained from our general form of the lin-
earized Boltzmann equation simply by approximating the kernel functions kl(c′, c).
Thus here we use

k0(c′, c) =
4

π1/2
[1 + (2/3)(c′2 − 3/2)(c2 − 3/2)], (3.4)

k1(c′, c) =
8c′c

3π1/2
, (3.5)

and kl(c′, c) = 0, l > 1, to find

ν(c) = 1, εt = 1, εp = 1, and εp/εt = 1. (3.6a,b,c,d)
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3.2. The S model

The S model [26] has

k0(c′, c) =
4

π1/2
[1 + (2/3)(c′2 − 3/2)(c2 − 3/2)], (3.7)

k1(c′, c) =
8c′c

3π1/2
[1 + (2/15)(c′2 − 5/2)(c2 − 5/2)], (3.8)

and kl(c′, c) = 0, l > 1, with

ν(c) = 1, εt = 3/2, εp = 1, and εp/εt = 2/3. (3.9a,b,c,d)

3.3. The GJ model

The GJ model, defined in an important paper by Gross and Jackson [21], has

k0(c′, c) =
4

π1/2
[1 + (2/3)(c′2 − 3/2)(c2 − 3/2)], (3.10)

k1(c′, c) =
8c′c

3π1/2
[1 + (2/9)(c′2 − 5/2)(c2 − 5/2)], (3.11)

k2(c′, c) =
16c′2c2

45π1/2
, (3.12)

and kl(c′, c) = 0, l > 2, with

ν(c) = 1, εt = 9/4, εp = 3/2, and εp/εt = 2/3. (3.13a,b,c,d)

3.4. The MRS model

The MRS model has been obtained (as discussed in Appendix A of this work) from
a special case of the McCormack model [32] (restricted to a single-species gas of
rigid spheres). Here

k0(c′, c) =
4

π1/2
[1 + (2/3)(c′2 − 3/2)(c2 − 3/2)], (3.14)

k1(c′, c) =
8c′c

3π1/2
[1 + (2β/5)(c′2 − 5/2)(c2 − 5/2)], (3.15)

k2(c′, c) =
16c′2c2

15π1/2
, (3.16)

and kl(c′, c) = 0, l > 2, with

ν(c) = 1, εt = (15/32)21/2, εp = (5/16)21/2, and εp/εt = 2/3.
(3.17a,b,c,d)

In addition

 = 1 − (8/5)21/2 and β = 1 − (16/15)21/2. (3.18a,b)
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3.5. The CES model

The CES model, introduced (within the context of rigid-sphere interactions) by
Barichello and Siewert [27], has

k0(c′, c) = ν(c′)ν(c)[01 + 02(c′
2 − 7/4)(c2 − 7/4)], (3.19)

k1(c′, c) = 11c
′ν(c′)cν(c) + 12∆1(c′)∆1(c), (3.20)

k2(c′, c) = 2∆2(c′)∆2(c), (3.21)

and kl(c′, c) = 0, l > 2, with ν(c) given by Eq. (2.15) and

εt = 0.679630049... , εp = 0.449027806... , and εp/εt = 0.660694457... .
(3.22a,b,c)

We note that the values of εt and εp used in the CES model are the exact values
as defined by the linearized Boltzmann equation (for rigid-sphere interactions). In
addition,

∆1(c) = ν(c)[a∗c − A(c)] + c(c2 − 5/2), ∆2(c) = c2 − ν(c)B(c), (3.23a,b)

01 = 0.797884561... , 02 = 0.425538432... , 11 = 0.455934035... ,
(3.23c,d,e)

12 = 0.586873122... , a∗ = 0.221880745... , and 2 = 2.16400346... .
(3.23f,g,h)

To conclude this section, we note that for the BGK model, the S model, the GJ
model and the MRS model, the Chapman–Enskog functions are given by

A(c) = εtc(c2 − 5/2) and B(c) = εpc
2, (3.24a,b)

where appropriate values of εt and εp should be used for each model. On the
other hand, for the CES model, as for the linearized Boltzmann equation, the
Chapman–Enskog functions A(c) and B(c) are solutions of Eqs. (2.23) and (3.3)
in which the true rigid-sphere kernels are used. Computations of these functions
and the resulting values of εt and εp have been discussed, for example, in Refs. 33
and 34.

4. A discrete-ordinates solution of the linearized Boltzmann equa-
tion

For our work with the linearized Boltzmann equation, we truncate the summation
in Eq. (2.34) after L + 1 terms, and we then use the exact rigid-sphere kernel
functions kl(c′, c) for l = 0, 1, ..., L. It therefore follows that ν(c) is as listed in
Eq. (2.15) and that εp is as given in Eq. (3.22b). Restating our problem, we note
that, for a given value of s = iω∗, we require a solution of[

cµ
∂

∂τ
+ σ(c)

]
φ(τ, c, µ) = εp

∫ ∞

0

∫ 1

−1

e−c′2k(c′, µ′ : c, µ)φ(τ, c′, µ′)c′2dµ′dc′

(4.1)
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subject to the boundary condition

φ(0, c, µ) − 4
∫ ∞

0

∫ 1

0

e−c′2φ(0, c′,−µ′)µ′c′3dµ′dc′ = 2cµ + π1/2, (4.2)

for µ ∈ (0, 1] and all c, so that we can compute

P(τ) =
4

π1/2

∫ ∞

0

∫ 1

−1

e−c2
φ(τ, c, µ)µ2c4dµdc (4.3)

in order to complete Eq. (2.36). Here

σ(c) = s + εpν(c) (4.4)

and

k(c′, µ′ : c, µ) =
1
2

L∑
l=0

(2l + 1)Pl(µ′)Pl(µ)kl(c′, c). (4.5)

In regard to our numerical work with the linearized Boltzmann equation, we have
used L = 8 in Eq. (4.5).

While the five (BGK, S, GJ, MRS, CES) kinetic models we consider in this work
can all be solved well [35, 36] in ways that do not require any approximation in
the (dimensionless) speed variable c, we will use a Legendre expansion (truncated
after K + 1 terms) of the form

φ(τ, c, µ) =
K∑

k=0

Pk(2e−c − 1)gk(τ, µ) (4.6)

for our work with the linearized Boltzmann equation. We note that in proposing
a solution of the form given by Eq. (4.6), we are able to deal with the linearized
Boltzmann equation, but by using the relevant approximations required to define
the kinetic models, we can also include these models in the solution developed
here. However, since the model equations can be solved without using Eq. (4.6),
we include in Appendix A of this work some details about what can be considered
faster and more accurate solutions for the BGK, S, GJ, and MRS models. A similar
approach [36] could be used for the CES model [27], but it was not pursued in this
work.

To find defining equations for the functions gk(τ, µ) required in Eq. (4.6), we
substitute that expression into Eq. (4.1), multiply the resulting equation by

Wi(c) = c2e−c2
Pi(2e−c − 1), i = 0, 1, 2, ..,K, (4.7)

and integrate over all c to obtain the coupled system

µ
∂

∂τ
AG(τ, µ)+(sF +εpS)G(τ, µ) = εp

L∑
l=0

BlPl(µ)
∫ 1

−1

Pl(µ′)G(τ, µ′)dµ′. (4.8)
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Here the K + 1 vector-valued function G(τ, µ) has components gk(τ, µ), and the
constant matrices are given by

A =
∫ ∞

0

e−c2
P T (c)P (c)c3dc, (4.9)

F =
∫ ∞

0

e−c2
P T (c)P (c)c2dc, (4.10)

S =
∫ ∞

0

e−c2
P T (c)P (c)ν(c)c2dc, (4.11)

and

Bl =
2l + 1

2

∫ ∞

0

∫ ∞

0

e−c′2e−c2
kl(c′, c)P T (c′)P (c)c′2c2dc′dc, (4.12)

where the superscript T is used to denote the transpose operation, and where

P (c) =
[
P0(2e−c − 1), P1(2e−c − 1), · · · , PK(2e−c − 1)

]
. (4.13)

Now in regard to the boundary condition subject to which we must solve Eq. (4.8),
we use Eq. (4.6) in Eq. (4.2), multiply the resulting equation by Wi(c), and inte-
grate over all c to obtain

FG(0, µ) − 4J

∫ 1

0

G(0,−µ′)µ′dµ′ = 2µP T
1 + π1/2P T

0 , (4.14)

for µ ∈ (0, 1]. Here
J = P T

0 P 1, (4.15)

where, in general,

P n =
∫ ∞

0

e−c2
P (c)cn+2dc. (4.16)

And so, we now must solve Eq. (4.8) subject to the boundary condition given as
Eq. (4.14); however, in order to make use of a previous work [31], we multiply
Eq. (4.8) by A−1 and Eq. (4.14) by F−1 to obtain the final forms we solve, viz.

µ
∂

∂τ
G(τ, µ) + εpΣG(τ, µ) = εp

L∑
l=0

ClPl(µ)
∫ 1

−1

Pl(µ′)G(τ, µ′)dµ′ (4.17)

and

G(0, µ) − 4D

∫ 1

0

G(0,−µ′)µ′dµ′ = 2µQ1 + π1/2Q0, (4.18)

for µ ∈ (0, 1]. Here
Σ = A−1[(s/εp)F + S], (4.19)

Cl = A−1Bl, D = F−1J , and Qn = F−1P T
n . (4.20a,b,c)

And so now we continue by developing our analytical discrete-ordinates solution
of the transport problem defined by Eqs. (4.17) and (4.18).
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Since the boundary condition listed as Eq. (4.18) is defined only over the “half
range,” µ ∈ [0, 1], and since an integration over this same half range is required in
Eq. (4.18), we base our discrete-ordinates solution on a quadrature defined for this
half range. We let {µn, wn} denote the nodes and weights of such a quadrature
scheme, so that we can approximate Eq. (4.17) by

µ
∂

∂τ
G(τ, µ) + εpΣG(τ, µ) = εp

L∑
l=0

Pl(µ)Cl

N∑
n=1

wnGl,n(τ), (4.21)

where to compact our notation we have introduced

Gl,n(τ) = Pl(µn)[G(τ, µn) + (−1)lG(τ,−µn)] . (4.22)

Following Ref. 31 and seeking solutions of Eq. (4.21) of the form

G(τ, µ) = Φ(ν, µ)e−εpτ/ν , (4.23)

we find ultimately that we can express our discrete-ordinates solution of a collo-
cated version of Eq. (4.21) as

G(τ,±µi) =
J∑

j=1

[
AjΦ(νj ,±µi)e−εpτ/νj + BjΦ(νj ,∓µi)eεpτ/νj

]
, (4.24)

for i = 1, 2, ..., N , and where J = N(K + 1). Here the elementary solutions
Φ(νj ,±µi) and the separation constants νj (where νj is taken to have a positive
real part) are, in general, complex. These elementary solutions and separation
constants are as defined in Ref. 31 after we note that the Σ matrix listed in
Eq. (4.19) has an imaginary component that is not present in Ref. 31. The Σ
matrix in Ref. 31 is as given in Eq. (4.19) for the case s = 0. In addition, the
arbitrary constants Aj and Bj are to be determined from the boundary conditions
of our problem. Now since our solution is to be bounded as τ tends to infinity, we
take the constants Bj to be zero so that we have

G(τ,±µi) =
J∑

j=1

AjΦ(νj ,±µi)e−εpτ/νj . (4.25)

At this point we substitute Eq. (4.25) into the boundary condition written as

G(0, µi) − 4D

N∑
n=1

wnµnG(0,−µn) = 2µiQ1 + π1/2Q0, (4.26)

for i = 1, 2, ..., N , and solve the resulting system of linear algebraic equations to
find the constants Aj . In this way the solution G(τ,±µi), for i = 1, 2, ..., N , is
established.

To complete our work in this section, we use Eqs. (4.6) and (4.25) in Eq. (4.3)
to find our final result, viz.

P(τ) =
4

π1/2

J∑
j=1

AjXje−εpτ/νj , (4.27)
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Table 1. The amplitude |P(τ)| for the case ω∗ = 0.5

τ BGK S GJ MRS CES LBE

0.0 1.822 1.816 1.813 1.823 1.820 1.826
0.2 1.802 1.796 1.793 1.804 1.800 1.806
0.4 1.778 1.771 1.768 1.779 1.774 1.781
0.6 1.750 1.744 1.740 1.752 1.746 1.752
0.8 1.721 1.714 1.709 1.723 1.715 1.722
1.0 1.691 1.682 1.677 1.692 1.682 1.690
1.2 1.659 1.649 1.644 1.660 1.649 1.657
1.4 1.627 1.616 1.610 1.628 1.614 1.624
1.6 1.595 1.582 1.575 1.595 1.580 1.590
1.8 1.563 1.548 1.541 1.562 1.545 1.556
2.0 1.531 1.515 1.506 1.529 1.510 1.522
3.0 1.378 1.350 1.337 1.370 1.341 1.359
5.0 1.110 1.061 1.042 1.087 1.048 1.075

where

Xj = P 2

N∑
n=1

wnµ2
n[Φ(νj , µn) + Φ(νj ,−µn)]. (4.28)

5. Numerical results

Having completed our analysis of the considered sound-wave problem, we are ready
to report the results obtained from a numerical implementation of our solutions for
the linearized Boltzmann equation and for the five kinetic models, viz, the BGK,
the S, the GJ, the MRS and the CES models. First of all, we list in Tables 1–8
our numerical results for the amplitude

|P(τ)| =
[P2

R(τ) + P2
I (τ)

]1/2
(5.1)

and (the negative of) the phase

ϑ(τ) = argP(τ) = tan−1 PI(τ)
PR(τ)

(5.2)

of the pressure perturbation at various positions, for selected values of the reduced
frequency ω∗. Here PR(τ) and PI(τ) stand, respectively, for the real and imaginary
parts of P(τ), and we use continuous values of the arctan function. We note that
our results are thought to be accurate in all figures shown and were obtained using
19 ≤ K ≤ 29 and 30 ≤ N ≤ 40 in the ADO solution for the linearized Boltzmann
equation that was developed in Section 4. The numerical results for the BGK, S,
GJ and MRS models were confirmed using N = 100 in the ADO solution for the
(projected) balance equations reported in Appendix A.

As no model emerges as the best from a comparison with the LBE results in
Tables 1–8, we decided to perform an additional comparison with experimental
results available in the literature for the sound attenuation and dispersion. Earlier
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Table 2. The negative of the phase ϑ(τ) for the case ω∗ = 0.5

τ BGK S GJ MRS CES LBE

0.0 –8.318(–2) –8.594(–2) –8.565(–2) –8.517(–2) –8.770(–2) –8.688(–2)
0.2 2.608(–2) 2.367(–2) 2.418(–2) 2.407(–2) 2.170(–2) 2.215(–2)
0.4 1.346(–1) 1.326(–1) 1.334(–1) 1.327(–1) 1.305(–1) 1.305(–1)
0.6 2.420(–1) 2.407(–1) 2.416(–1) 2.406(–1) 2.383(–1) 2.380(–1)
0.8 3.485(–1) 3.478(–1) 3.489(–1) 3.475(–1) 3.452(–1) 3.446(–1)
1.0 4.540(–1) 4.540(–1) 4.553(–1) 4.536(–1) 4.512(–1) 4.502(–1)
1.2 5.586(–1) 5.593(–1) 5.607(–1) 5.588(–1) 5.562(–1) 5.549(–1)
1.4 6.624(–1) 6.638(–1) 6.653(–1) 6.633(–1) 6.603(–1) 6.588(–1)
1.6 7.656(–1) 7.676(–1) 7.690(–1) 7.671(–1) 7.636(–1) 7.619(–1)
1.8 8.680(–1) 8.706(–1) 8.720(–1) 8.704(–1) 8.661(–1) 8.643(–1)
2.0 9.699(–1) 9.730(–1) 9.743(–1) 9.730(–1) 9.678(–1) 9.660(–1)
3.0 1.473 1.477 1.477 1.480 1.467 1.466
5.0 2.463 2.460 2.450 2.477 2.430 2.441

Table 3. The amplitude |P(τ)| for the case ω∗ = 1.0

τ BGK S GJ MRS CES LBE

0.0 1.923 1.920 1.916 1.925 1.925 1.928
0.2 1.880 1.876 1.872 1.882 1.881 1.885
0.4 1.821 1.816 1.811 1.823 1.820 1.825
0.6 1.753 1.746 1.741 1.754 1.750 1.756
0.8 1.681 1.672 1.665 1.681 1.675 1.682
1.0 1.607 1.595 1.588 1.605 1.598 1.607
1.2 1.533 1.518 1.510 1.529 1.520 1.531
1.4 1.460 1.442 1.433 1.454 1.444 1.457
1.6 1.389 1.368 1.358 1.380 1.370 1.384
1.8 1.320 1.295 1.285 1.308 1.298 1.313
2.0 1.253 1.225 1.215 1.238 1.228 1.245
3.0 9.583(–1) 9.174(–1) 9.080(–1) 9.271(–1) 9.278(–1) 9.461(–1)
5.0 5.448(–1) 4.959(–1) 4.990(–1) 4.915(–1) 5.322(–1) 5.347(–1)

works by Greenspan [37, 38] and Meyer and Sessler [39] deduce these parameters
from measurements, performing linear fits in plots of the logarithm of the am-
plitude and the phase over a range of distances between the transmitter and the
receiver, but do not give information on the ranges of distances that were used
in their experiments (the work of Meyer and Sessler gives the ranges in graphical
form only for the measurements made in air). Since the attenuation and dispersion
become more and more dependent on the distance between the transmitter and
the receiver as ω∗ is increased past one, we believe that the point-wise definitions
of these quantities adopted by Schotter [28] are more meaningful and provide a
more adequate basis for comparisons between theoretical models and experiments.
So, in this work, we define the attenuation as

η(τ) = − (5/6)1/2

ω∗
d
dτ

ln |P(τ)| (5.3)
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Table 4. The negative of the phase ϑ(τ) for the case ω∗ = 1.0

τ BGK S GJ MRS CES LBE

0.0 –7.426(–2) –7.660(–2) –7.709(–2) –7.471(–2) –7.604(–2) –7.423(–2)
0.2 1.321(–1) 1.301(–1) 1.299(–1) 1.318(–1) 1.301(–1) 1.316(–1)
0.4 3.343(–1) 3.330(–1) 3.327(–1) 3.348(–1) 3.322(–1) 3.335(–1)
0.6 5.322(–1) 5.315(–1) 5.311(–1) 5.336(–1) 5.297(–1) 5.310(–1)
0.8 7.261(–1) 7.261(–1) 7.253(–1) 7.288(–1) 7.231(–1) 7.245(–1)
1.0 9.168(–1) 9.172(–1) 9.158(–1) 9.208(–1) 9.126(–1) 9.144(–1)
1.2 1.105 1.105 1.103 1.110 1.099 1.101
1.4 1.290 1.291 1.287 1.297 1.282 1.286
1.6 1.474 1.473 1.469 1.482 1.462 1.467
1.8 1.655 1.654 1.648 1.665 1.640 1.647
2.0 1.836 1.833 1.825 1.847 1.816 1.825
3.0 2.724 2.708 2.683 2.741 2.666 2.695
5.0 4.474 4.399 4.323 4.506 4.283 4.378

Table 5. The amplitude |P(τ)| for the case ω∗ = 2.0

τ BGK S GJ MRS CES LBE

0.0 1.984 1.983 1.981 1.985 1.985 1.986
0.2 1.898 1.896 1.893 1.899 1.898 1.900
0.4 1.765 1.760 1.756 1.764 1.763 1.766
0.6 1.617 1.609 1.605 1.613 1.613 1.618
0.8 1.469 1.457 1.453 1.461 1.464 1.470
1.0 1.328 1.311 1.308 1.314 1.320 1.328
1.2 1.195 1.175 1.172 1.176 1.187 1.195
1.4 1.072 1.048 1.048 1.047 1.065 1.072
1.6 9.583(–1) 9.327(–1) 9.345(–1) 9.286(–1) 9.546(–1) 9.600(–1)
1.8 8.549(–1) 8.279(–1) 8.324(–1) 8.203(–1) 8.550(–1) 8.580(–1)
2.0 7.609(–1) 7.331(–1) 7.409(–1) 7.218(–1) 7.660(–1) 7.657(–1)
3.0 4.117(–1) 3.884(–1) 4.123(–1) 3.587(–1) 4.477(–1) 4.262(–1)
5.0 1.041(–1) 9.649(–2) 1.289(–1) 5.939(–2) 1.657(–1) 1.240(–1)

and the dispersion as
V0

V (τ)
= − (5/6)1/2

ω∗
d
dτ

ϑ(τ), (5.4)

where the factor (5/6)1/2 is the ratio between the velocity of sound at high pres-
sures V0 and the reference velocity v0 defined by Eq. (2.2b). Explicit expressions
that are more convenient for computing these quantities are

η(τ) = − (5/6)1/2

ω∗|P(τ)|2
[
PR(τ)

d
dτ

PR(τ) + PI(τ)
d
dτ

PI(τ)
]

(5.5)

and
V0

V (τ)
= − (5/6)1/2

ω∗|P(τ)|2
[
PR(τ)

d
dτ

PI(τ) − PI(τ)
d
dτ

PR(τ)
]

. (5.6)

We show in Tables 9–12 the attenuation and the dispersion as computed by
Eqs. (5.5) and (5.6) for the five considered models and for the LBE with the rigid-
sphere kernel. Our calculations were performed for 13 values of ω∗ that cover the
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Table 6. The negative of the phase ϑ(τ) for the case ω∗ = 2.0

τ BGK S GJ MRS CES LBE

0.0 –4.748(–2) –4.900(–2) –5.001(–2) –4.732(–2) –4.780(–2) –4.661(–2)
0.2 3.476(–1) 3.465(–1) 3.454(–1) 3.484(–1) 3.469(–1) 3.481(–1)
0.4 7.225(–1) 7.220(–1) 7.203(–1) 7.247(–1) 7.211(–1) 7.226(–1)
0.6 1.080 1.080 1.077 1.084 1.077 1.080
0.8 1.425 1.424 1.419 1.430 1.418 1.423
1.0 1.759 1.756 1.749 1.766 1.747 1.755
1.2 2.085 2.079 2.069 2.092 2.066 2.078
1.4 2.405 2.394 2.380 2.412 2.376 2.394
1.6 2.719 2.702 2.683 2.726 2.679 2.704
1.8 3.029 3.005 2.980 3.034 2.975 3.008
2.0 3.336 3.302 3.271 3.338 3.266 3.308
3.0 4.831 4.730 4.667 4.812 4.661 4.757
5.0 7.771 7.425 7.317 7.700 7.341 7.520

Table 7. The amplitude |P(τ)| for the case ω∗ = 5.2

τ BGK S GJ MRS CES LBE

0.0 2.010 2.009 2.009 2.010 2.010 2.010
0.2 1.742 1.740 1.739 1.741 1.742 1.743
0.4 1.383 1.376 1.376 1.375 1.383 1.385
0.6 1.070 1.059 1.062 1.055 1.072 1.072
0.8 8.161(–1) 8.044(–1) 8.121(–1) 7.950(–1) 8.253(–1) 8.214(–1)
1.0 6.170(–1) 6.069(–1) 6.196(–1) 5.920(–1) 6.359(–1) 6.255(–1)
1.2 4.628(–1) 4.559(–1) 4.732(–1) 4.360(–1) 4.921(–1) 4.746(–1)
1.4 3.445(–1) 3.415(–1) 3.621(–1) 3.179(–1) 3.832(–1) 3.590(–1)
1.6 2.544(–1) 2.552(–1) 2.777(–1) 2.296(–1) 3.002(–1) 2.709(–1)
1.8 1.862(–1) 1.903(–1) 2.135(–1) 1.643(–1) 2.366(–1) 2.040(–1)
2.0 1.351(–1) 1.417(–1) 1.642(–1) 1.167(–1) 1.873(–1) 1.532(–1)
3.0 2.282(–2) 3.140(–2) 4.368(–2) 2.195(–2) 6.030(–2) 3.541(–2)
5.0 7.618(–4) 1.245(–3) 2.428(–3) 3.222(–3) 6.242(–3) 1.541(–3)

entire ω∗ range in helium studied by Schotter [28]. In addition, as done by Schotter
[28], for each value of ω∗ we have considered two different values of the distance
between the transmitter and the receiver which are specified as 10/(π1/2ω∗) and
20/(π1/2ω∗) in our notation. All of our results are thought to be accurate in the
three figures shown. The entries labeled as “Experimental” were extracted from
the graph in Fig. 4 of Ref. 28 and are expected to represent the plotted points with
a maximum error of ±2 in the last reported figure. Our results for the BGK, S, GJ
and MRS models were obtained with the ADO solution reported in Appendix A,
using 100 ≤ N ≤ 200 for ω∗ ≤ 5.19, 200 ≤ N ≤ 400 for 11.1 ≤ ω∗ ≤ 41.9 and
400 ≤ N ≤ 800 for ω∗ = 83.9. To generate the results reported in Tables 9–12
for the CES model, we have used the ADO solution of Section 4 with K = 19
and N = 30 for ω∗ ≤ 5.19 and K = 49 and N = 60 for ω∗ ≥ 11.1. The ADO
solution of Section 4 was also used to generate the LBE (rigid-sphere) results. For
this purpose, we have used K = 19 and N = 30 for ω∗ ≤ 2.72 and K = 39 and
N = 50 for ω∗ = 5.19 and 11.1. In regard to three largest values of ω∗ in Tables
9–12, our LBE results were generated with K = 49 and N = 60 in a postprocessed
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Table 8. The negative of phase ϑ(τ) for the case ω∗ = 5.2

τ BGK S GJ MRS CES LBE

0.0 –1.997(–2) –2.061(–2) –2.128(–2) –1.981(–2) –2.001(–2) –1.955(–2)
0.2 9.449(–1) 9.445(–1) 9.431(–1) 9.462(–1) 9.441(–1) 9.450(–1)
0.4 1.789 1.787 1.784 1.791 1.785 1.788
0.6 2.560 2.552 2.546 2.560 2.547 2.557
0.8 3.281 3.263 3.253 3.274 3.256 3.274
1.0 3.966 3.933 3.920 3.948 3.926 3.955
1.2 4.623 4.571 4.557 4.586 4.568 4.608
1.4 5.257 5.181 5.171 5.192 5.189 5.237
1.6 5.870 5.769 5.767 5.768 5.795 5.847
1.8 6.465 6.337 6.350 6.313 6.391 6.440
2.0 7.044 6.887 6.923 6.827 6.981 7.019
3.0 9.689 9.422 9.698 8.855 9.892 9.745
5.0 1.249(1) 1.356(1) 1.519(1) 1.217(1) 1.571(1) 1.458(1)

Table 9. The attenuation η(τ) at τ = 10/(π1/2ω∗)

ω∗ BGK S GJ MRS CES LBE Experimental [28]

4.50(–2) 2.68(–2) 3.13(–2) 3.13(–2) 3.11(–2) 3.14(–2) 3.14(–2) 3.24(–2)
7.00(–2) 4.13(–2) 4.81(–2) 4.83(–2) 4.77(–2) 4.84(–2) 4.82(–2) 4.84(–2)
1.10(–1) 6.36(–2) 7.38(–2) 7.43(–2) 7.25(–2) 7.42(–2) 7.38(–2) 7.46(–2)
1.70(–1) 9.39(–2) 1.09(–1) 1.10(–1) 1.05(–1) 1.09(–1) 1.08(–1) 1.11(–1)
3.00(–1) 1.46(–1) 1.68(–1) 1.70(–1) 1.61(–1) 1.66(–1) 1.64(–1) 1.65(–1)
6.70(–1) 2.30(–1) 2.59(–1) 2.53(–1) 2.58(–1) 2.31(–1) 2.42(–1) 2.25(–1)
1.34 2.84(–1) 3.02(–1) 2.76(–1) 3.35(–1) 2.45(–1) 2.74(–1) 2.82(–1)
2.72 2.79(–1) 2.82(–1) 2.57(–1) 3.14(–1) 2.36(–1) 2.63(–1) 2.89(–1)
5.19 2.52(–1) 2.51(–1) 2.37(–1) 2.68(–1) 2.25(–1) 2.42(–1) 2.36(–1)
1.11(1) 2.29(–1) 2.28(–1) 2.22(–1) 2.35(–1) 2.16(–1) 2.25(–1) 2.28(–1)
2.16(1) 2.18(–1) 2.17(–1) 2.14(–1) 2.21(–1) 2.12(–1) 2.16(–1) 2.09(–1)
4.19(1) 2.12(–1) 2.12(–1) 2.10(–1) 2.14(–1) 2.09(–1) 2.11(–1) 2.08(–1)
8.39(1) 2.09(–1) 2.09(–1) 2.08(–1) 2.10(–1) 2.08(–1) 2.09(–1) 2.00(–1)

version of the ADO solution of Section 4 that was developed to overcome the slow
convergence rate observed in the standard ADO solution for large values of the
reduced frequency.

The postprocessed formulas for P(τ) were derived by using the standard ADO
solution on the right-hand side of Eq. (4.1), approximating the integral over µ′

with the half-range quadrature scheme and solving the resulting equation, viz.

[
cµ

∂

∂τ
+ σ(c)

]
φ(τ, c, µ)

=
εp

2

L∑
l=0

(2l + 1)Pl(µ)
∫ ∞

0

e−c′2kl(c′, c)P (c′)c′2dc′
N∑

n=1

wnGl,n(τ), (5.7)

and its counterpart with µ changed to −µ. The resulting expressions for φ(τ, c, µ)
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Table 10. The dispersion V0/V (τ) at τ = 10/(π1/2ω∗)

ω∗ BGK S GJ MRS CES LBE Experimental [28]

4.50(–2) 0.998 0.998 0.998 0.998 0.998 0.998 0.994
7.00(–2) 0.996 0.995 0.995 0.995 0.994 0.994 0.989
1.10(–1) 0.990 0.988 0.988 0.989 0.986 0.987 0.973
1.70(–1) 0.979 0.974 0.972 0.977 0.969 0.971 0.937
3.00(–1) 0.947 0.935 0.929 0.948 0.922 0.929 0.898
6.70(–1) 0.859 0.832 0.806 0.874 0.793 0.821 0.784
1.34 0.745 0.706 0.679 0.750 0.674 0.707 0.691
2.72 0.633 0.604 0.596 0.614 0.599 0.618 0.588
5.19 0.578 0.561 0.561 0.562 0.565 0.574 0.536
1.11(1) 0.550 0.542 0.543 0.542 0.546 0.550 0.496
2.16(1) 0.540 0.536 0.536 0.535 0.538 0.540 0.482
4.19(1) 0.535 0.533 0.533 0.533 0.534 0.535 0.458
8.39(1) 0.533 0.532 0.532 0.531 0.532 0.533 0.462

Table 11. The attenuation η(τ) at τ = 20/(π1/2ω∗)

ω∗ BGK S GJ MRS CES LBE Experimental [28]

4.50(–2) 2.68(–2) 3.13(–2) 3.13(–2) 3.11(–2) 3.14(–2) 3.14(–2) 3.24(–2)
7.00(–2) 4.13(–2) 4.81(–2) 4.83(–2) 4.77(–2) 4.84(–2) 4.82(–2) 4.84(–2)
1.10(–1) 6.36(–2) 7.38(–2) 7.43(–2) 7.25(–2) 7.42(–2) 7.38(–2) 7.46(–2)
1.70(–1) 9.39(–2) 1.09(–1) 1.10(–1) 1.05(–1) 1.09(–1) 1.08(–1) 1.11(–1)
3.00(–1) 1.46(–1) 1.68(–1) 1.70(–1) 1.61(–1) 1.66(–1) 1.64(–1) 1.65(–1)
6.70(–1) 2.29(–1) 2.60(–1) 2.52(–1) 2.48(–1) 2.27(–1) 2.44(–1) 2.25(–1)
1.34 2.94(–1) 3.32(–1) 2.73(–1) 3.12(–1) 2.27(–1) 2.89(–1) 2.82(–1)
2.72 3.54(–1) 3.26(–1) 2.54(–1) 5.42(–1) 2.10(–1) 2.87(–1) 2.89(–1)
5.19 2.94(–1) 2.61(–1) 2.30(–1) 3.07(–1) 2.01(–1) 2.54(–1) 2.48(–1)
1.11(1) 2.38(–1) 2.22(–1) 2.11(–1) 2.36(–1) 1.96(–1) 2.23(–1) 2.28(–1)
2.16(1) 2.15(–1) 2.07(–1) 2.02(–1) 2.13(–1) 1.94(–1) 2.09(–1) 2.18(–1)
4.19(1) 2.04(–1) 2.00(–1) 1.97(–1) 2.03(–1) 1.93(–1) 2.01(–1) 1.99(–1)
8.39(1) 1.98(–1) 1.96(–1) 1.95(–1) 1.97(–1) 1.93(–1) 1.96(–1) 1.92(–1)

and φ(τ, c,−µ), µ > 0, were then used in Eq. (4.3) to yield

P(τ) =
4

π1/2

{ ∫ ∞

0

e−c2
∫ 1

0

(2cµ+π1/2+κ) e−σ(c)τ/(cµ)µ2dµ c4dc+
L∑

l=0

N∑
n=1

wnPl(µn)

×
J∑

j=1

νjAj [Xl,j(τ) + (−1)lΥl,je−εpτ/νj ][Φ(νj , µn) + (−1)lΦ(νj ,−µn)]
}

, (5.8)

where

κ = 4
L∑

l=0

(−1)l
N∑

n=1

wnPl(µn)
J∑

j=1

νjAjΓl,j [Φ(νj , µn) + (−1)lΦ(νj ,−µn)], (5.9)
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Table 12. The dispersion V0/V (τ) at τ = 20/(π1/2ω∗)

ω∗ BGK S GJ MRS CES LBE Experimental [28]

4.50(–2) 0.998 0.998 0.998 0.998 0.998 0.998 0.994
7.00(–2) 0.996 0.995 0.995 0.995 0.994 0.994 0.989
1.10(–1) 0.990 0.988 0.988 0.989 0.986 0.987 0.973
1.70(–1) 0.979 0.974 0.972 0.977 0.969 0.971 0.937
3.00(–1) 0.947 0.935 0.929 0.948 0.922 0.929 0.898
6.70(–1) 0.860 0.833 0.805 0.875 0.794 0.818 0.784
1.34 0.763 0.706 0.665 0.854 0.668 0.692 0.651
2.72 0.605 0.530 0.554 0.480 0.572 0.564 0.571
5.19 0.489 0.464 0.494 0.411 0.513 0.494 0.509
1.11(1) 0.451 0.443 0.460 0.422 0.472 0.458 0.428
2.16(1) 0.441 0.437 0.446 0.427 0.453 0.445 0.402
4.19(1) 0.436 0.435 0.439 0.430 0.443 0.438 0.414
8.39(1) 0.434 0.434 0.436 0.431 0.438 0.436 0.407

Xl,j(τ) =
2l + 1

2

∫ ∞

0

e−c2
[

1
σ(c)

∫ 1

0

µ2Pl(µ)C(τ : cµ/σ(c), νj/εp)dµ

]

×
∫ ∞

0

e−c′2kl(c′, c)P (c′)c′2dc′c4dc (5.10)

and

Υl,j =
2l + 1

2

∫ ∞

0

e−c2
[

1
σ(c)

∫ 1

0

µ2Pl(µ)
dµ

cµ/σ(c) + νj/εp

]

×
∫ ∞

0

e−c′2kl(c′, c)P (c′)c′2dc′c4dc. (5.11)

Here we define

Γl,j =
2l + 1

2

∫ ∞

0

e−c2
[

1
σ(c)

∫ 1

0

µPl(µ)
dµ

cµ/σ(c) + νj/εp

]

×
∫ ∞

0

e−c′2kl(c′, c)P (c′)c′2dc′c3dc (5.12)

and

C(τ : x, y) =
e−τ/x − e−τ/y

x − y
. (5.13)

We now record some observations made in regard to the numerical results
displayed in Tables 9–12. First of all, we can see that the agreement between theory
and experiment is in general better for the attenuation than for the dispersion
(more about this is said in the next paragraph), and that, among all results based
on theory, the LBE results are those that show the best agreement with experiment
when the complete frequency range is considered. Concerning the models, we first
note that in the classical (low-frequency) regime the attenuation computed with
the BGK model is not as good as that from the other models, perhaps reflecting
the fact that this model does not have the correct Prandtl number (εp/εt ratio).
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Nevertheless, in the transition and near free-molecular (high-frequency) regimes,
the BGK results look reasonable. In regard to the other models, we note that all of
them agree well with the LBE in the classical and the near free-molecular regimes.
In the transition regime, the MRS model tends to overestimate the attenuation and
dispersion (especially the attenuation), the CES model slightly underestimates the
attenuation, the S model slightly overestimates the attenuation and the GJ model
seems to be the one that gives the results that are closest to the LBE results.

As mentioned above, the agreement between theory and experiment is not
as good for the dispersion as for the attenuation, and the differences become
more apparent as the near free-molecular regime is approached. We attribute
this to the fact that we have modeled the problem as a half space and so we are
unable to consider the effect of the presence of the receiver on the pressure field,
something that may be important in the near free-molecular regime, especially
when the separation between the transmitter and the receiver is small, as is the
case here. That this may indeed be the case is substantiated by the fact that
our numerical results for the amplitude |P(τ)|, the phase ϑ(τ), the attenuation
η(τ), and the dispersion V0/V (τ) at τ = 0, obtained with ω∗ = 200.0 and any
model, match very well the free-molecular limiting values of these quantities as
τ → 0 that are reported in Ref. 40 for the case without receiver. Our results
are also in qualitative agreement with the plots displayed in Figs. 1–4 of Ref. 40
for the case without receiver. We should mention that, in these comparisons, we
have taken into account that the phase in Ref. 40 is equivalent to the negative of
the phase in this work, that the amplitude in Ref. 40 is normalized as 1/2 of the
amplitude in this work and that the labels “1” and “2” in Fig. 4 of Ref. 40 should be
interchanged. As the differences between the results in the free-molecular regime
for the cases with and without receiver are shown in Ref. 40 to be more significant
as τ → 0, we believe this should also be true in the near free-molecular regime.

We have also compared numerical results of our work with those reported by
other authors for a couple of models that are studied in this paper. We have been
able to confirm all (four) figures of the BGK results for the real and imaginary parts
of the pressure perturbation reported by Thomas and Siewert [14] for ω∗ = 0.5
and 1.0. However, for ω∗ = 5.2, we have observed a progressive deterioration in
the accuracy of their results as τ is increased past 5.6, so that for τ > 8 some
of the entries in Table II of Ref. 14 are good only to two figures. Note that the
pressure perturbation is normalized in a different way in that work, so our results
need to be multiplied by 1/4 to be appropriately compared with the results of
Ref. 14. The discrepancies observed in Ref. 14 were resolved when Thomas [41]
re-evaluated the solution of Ref. 14 with an increased number of quadrature points
and found perfect agreement with our results for ω∗ = 5.2. In regard to similar
BGK results reported by Loyalka and Cheng [15] for ω∗ = 5.2, we believe that
they are accurate to two (sometimes three) figures, but only when the distances
from the plate are not large, say τ < 2. For larger distances, the accuracy of their
results deteriorates, and there are points for which no correct figure in the real and
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imaginary parts of the pressure perturbation is given. The BGK results reported
by Cheng and Loyalka [22] for ω∗ = 2.0 have a degree of accuracy similar to that
of the results of Ref. 15. The situation is worse for the results based on the model
they [22] call “Gross–Jackson (N=5).” These results [22] disagree completely from
results of our S model which, in principle, we believe should be equivalent.

Finally, to give the reader an idea of the CPU time required to run our FOR-
TRAN programs, we note that our implementation of the ADO solution described
in Section 4 takes about 25 s on a AMD Athlon 64 3500+ computer for a rigid-
sphere case with K = 19 and N = 30, using a quadrature of order 200 to calculate
integrals over the c variable. As the computational effort associated with our
calculation is, in great part, demanded by the eigensystem that has to be solved
in order to determine the separation constants νj and the elementary solutions
Φ(νj ,±µi), the CPU time scales approximately as J3, where J = N(K +1). This
is without the postprocessing step defined by Eqs. (5.8) through (5.13). When
postprocessing is required, the same case (K = 19 and N = 30) takes about 15
min, using a quadrature of order 100 to represent integrals over µ in the post-
processing step, and the CPU time scales approximately as NJp, with p varying
between 1 and 2. In addition, we note that our implementation of the ADO solu-
tion described in Appendix A takes about 1 s on the AMD computer to run any
of the BGK, S, GJ or MRS cases with N = 100. The CPU time for this program
scales somewhat faster than N3.

6. Final comments

In this work we have solved (we believe well) the half-space version of the classical
problem of sound-wave propagation in a rarefied gas. In contrast to older works on
this subject, our (semi-analytical) solution of this problem is based on a rigorous
form of the linearized Boltzmann equation for rigid-sphere interactions, and for
the first time (and as opposed to log-log graphical presentations that are often
used), the theoretical results have been compared to experimental measurements
in a definitive way. In addition to reporting our solution based on the linearized
Boltzmann equation for rigid-sphere scattering, we have carried out a systematic
study of the BGK, the S, what we called the GJ (for Gross–Jackson), a newly
defined MRS (for McCormack rigid spheres) and the CES kinetic models.

Since our solution requires only a matrix eigenvalue/eigenvector routine and a
solver of linear algebraic equations, the algorithm is, in general, especially efficient,
fast and easy to implement. However, since some of the experimental data was
taken at very large values of the reduced frequency, we found it necessary to im-
plement a form of “post processing” that we used along with our ADO (analytical
discrete ordinates) method. While this post processing step increases the required
computational time, we believe this procedure will prove to be of significant im-
portance also for other rarefied-gas problems defined by dimensions that are very
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small (in terms of the mean-free path), but not small enough that “free molecular”
equations can be used.

Finally, we would like to mention three reasons why, in our opinion, the ADO
method that we have used in this work is so effective: (i) the half-range quadrature
scheme allows a better treatment of the boundary conditions than a full-range
scheme, (ii) the eigenvalue problem is formulated in a particularly useful way, and
(iii) our results are continuous in the τ variable and thus are valid anywhere in
the gas. This last point is especially important in this work since the definitions
of “attenuation” and “dispersion” require a spatial derivative which is available at
once from our solution.
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Appendix A. The McCormack model and special cases

In an important paper [32] published in 1973, McCormack used a method suggested
by Gross and Jackson [21] to define a model for a mixture of two gases. While
the McCormack model has been used recently [42,43] to solve several half-space
problems for binary gas mixtures, we find it interesting to note here that when
reduced to the special case of a single-species gas, the McCormack model contains
a free parameter γ that can be defined so as to yield the S model or the GJ model,
as well as other kinetic models. And so in this Appendix we investigate some
choices of γ, and we develop an ADO solution that can be used for any choice of
this free parameter. In discussing our ADO solution here, we find it convenient to
work with the velocity vector written in rectangular coordinates rather than the
spherical coordinate system used in the main body of this work. And so, looking
to Ref. 42, we express the McCormack model, for a single-species gas, as(

cx
∂

∂τ
+ s

)
h(τ, c) = σL∗{h}(τ, c), (A.1)

where s is given by Eq. (2.37b) and

L∗{h}(τ, c) = −h(τ, c) +
1

π3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−c′2h(τ, c′)K(c′, c)dc′xdc′ydc′z.

(A.2)
We continue to use τ to measure distances in terms of the mean-free path lp given
by Eq. (2.21), and

σ = γ
µ∗
P0

, (A.3)

where γ is the free parameter in the model. In addition, the scattering kernel is
given as

K(c′, c) = K(1)(c′, c) + K(2)(c′, c) + K(3)(c′, c), (A.4)
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where
K(1)(c′, c) = 1 + 2c′ · c + (2/3)(c′2 − 3/2)(c2 − 3/2), (A.5a)

K(2)(c′, c) = 2[(c′ · c)2 − (1/3)c′2c2], (A.5b)

and
K(3)(c′, c) = (4/5)β(c′2 − 5/2)(c2 − 5/2)c′ · c. (A.5c)

The constants β and  are given as

β = 1 − (16/15)n0Ω22/γ and  = 1 − (8/5)n0Ω22/γ, (A.6a,b)

where Ω22 is an “Ω integral” from Chapman and Cowling [44]. And so here we
find that

ν(c) = 1, εt =
1

1 − β
, εp =

1
1 − 

, εp/εt = 2/3, (A.7a,b,c,d)

A(c) = εtc(c2 − 5/2), and B(c) = εpc
2. (A.7e,f)

We see that if we use
γ = (8/5)n0Ω22 (A.8)

we obtain

 = 0, β = 1/3, εt = 3/2, σ = εp, and εp = 1, (A.9a,b,c,d,e)

which define the S model. On the other hand, if we use

γ = (12/5)n0Ω22 (A.10)

we obtain

 = 1/3, β = 5/9, εt = 9/4, σ = εp, and εp = 3/2, (A.11a,b,c,d,e)

which define the GJ model.
While there is no choice of the parameter γ that will yield the BGK model,

basic data for this model can be obtained from Eqs. (A.1–A.7f), with the exception
of Eq. (A.7d), by taking σ = 1,  = 0 and β = 0.

Continuing with our discussion of the McCormack model for the case of a single
species gas, we note that: (i) there is one free parameter γ that is not specified
and (ii) the physics of the scattering interaction is to be defined by the choice of
the omega integral Ω22. For the case of rigid-sphere interactions we can write [44]

Ω22 = (2π)1/2v0σ
2
0 , (A.12)

where v0 is given by Eq. (2.2b) and, as used elsewhere in this work, σ0 is the
diameter of a gas particle. We can now use Eq. (A.12) with Eqs. (2.20b) and
(2.21) to conclude that, for the case of rigid-sphere interactions,

εp = 2−1/2n0Ω22 µ∗
P0

. (A.13)
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Now, in order to have Eq. (A.1) consistent with Eq. (2.21) for the case of rigid-
sphere interactions, we must use

γ = 2−1/2n0Ω22 (A.14)

so that we can have
σ = εp. (A.15)

It is clear, for the case of rigid-sphere interactions, that the use of γ as defined
by Eq. (A.14) yields a model that is consistent with the LBE. As this model is
derived as a special case of the McCormack model, and since this model is based
on the rigid-sphere interaction law, we choose to refer to this as the MRS model.
So here we have

 = 1 − (8/5)21/2, β = 1 − (16/15)21/2, εt = (15/32)21/2, and εp = (5/16)21/2.
(A.16a,b,c,d)

Our focus in this work is on computing the xx component of the pressure tensor,
and this quantity we can obtain from certain moments (integrals) of Eq. (A.1).
And so, as was done in Ref. 43, we first multiply Eq. (A.1) by

φ1(cy, cz) = (1/π)e−(c2
y+c2

z) (A.17)

and integrate over all cy and all cz. We then repeat this procedure using

φ2(cy, cz) = (1/π)e−(c2
y+c2

z)(c2
y + c2

z − 1). (A.18)

Defining

g1(τ, cx) =
∫ ∞

−∞

∫ ∞

−∞
φ1(cy, cz)h(τ, c)dcydcz (A.19)

and
g2(τ, cx) =

∫ ∞

−∞

∫ ∞

−∞
φ2(cy, cz)h(τ, c)dcydcz, (A.20)

we find from these projections two coupled balance equations which we write (in
matrix notation) as

ξ
∂

∂τ
G(τ, ξ) + (s + σ)G(τ, ξ) = σ

∫ ∞

−∞
ψ(ξ′)K(ξ′, ξ)G(τ, ξ′)dξ′, (A.21)

where the components of G(τ, ξ) are g1(τ, ξ) and g2(τ, ξ), where we now use ξ in
place of cx, and where

ψ(ξ) = π−1/2e−ξ2
. (A.22)

It follows from Ref. 43 that (for the one-gas case) we can express the elements of
K(ξ′, ξ) as

k1,1(ξ′, ξ) = 1 + f1,1(ξ′, ξ)ξ′ξ + (2/3)(1 + 2)(ξ′2 − 1/2)(ξ2 − 1/2), (A.23)

k1,2(ξ′, ξ) = (4/5)β(ξ2 − 3/2)ξ′ξ + (2/3)(1 − )(ξ2 − 1/2), (A.24)

k2,1(ξ′, ξ) = (4/5)β(ξ′2 − 3/2)ξ′ξ + (2/3)(1 − )(ξ′2 − 1/2), (A.25)
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and
k2,2(ξ′, ξ) = (1/3)(2 + ) + (4/5)βξ′ξ. (A.26)

Here
f1,1(ξ′, ξ) = 2 + (4/5)β(ξ′2 − 3/2)(ξ2 − 3/2). (A.27)

The boundary condition we require here can be found by projecting Eq. (2.11)
against Eqs. (A.17) and (A.18). In this way we find

G(0, ξ) − 2D

∫ ∞

0

e−ξ′2
G(0,−ξ′)ξ′dξ′ = (2ξ + π1/2)R (A.28)

for ξ > 0. Here
D = diag

{
1, 0

}
and R =

[
1 0

]T
. (A.29a,b)

To complete our solution of the considered problem of sound-wave propagation
we seek a bounded (as τ tends to infinity) solution of Eq. (A.21) that satisfies
the boundary condition listed as Eq. (A.28), and so to start we seek solutions of
Eq. (A.21) of the form

G(τ, ξ) = Φ(ν, ξ)e−(s+σ)τ/ν (A.30)

where the separation constants ν and the elementary solutions Φ(ν, ξ) are to be
determined. Substituting Eq. (A.30) into Eq. (A.21), we find

(ν − ξ)Φ(ν, ξ) = ζν

∫ ∞

0

ψ(ξ′)[K(ξ′, ξ)Φ(ν, ξ′) + K(−ξ′, ξ)Φ(ν,−ξ′)]dξ′ (A.31)

and

(ν + ξ)Φ(ν,−ξ) = ζν

∫ ∞

0

ψ(ξ′)[K(ξ′,−ξ)Φ(ν, ξ′) + K(−ξ′,−ξ)Φ(ν,−ξ′)]dξ′,

(A.32)
where

ζ = σ/(s + σ). (A.33)

Now, since
K(ξ′,−ξ) = K(−ξ′, ξ), (A.34)

we conclude that
Φ(ν, ξ) = Φ(−ν,−ξ), (A.35)

and so adding and subtracting Eqs. (A.31) and (A.32), one from the other, we find
that

(1/ξ2)
[
V (ν, ξ) − ζ

∫ ∞

0

ψ(ξ′)K(ξ′, ξ)V (ν, ξ′)dξ′
]

= λV (ν, ξ) (A.36)

and

U(ν, ξ) = (ν/ξ)
[
V (ν, ξ) − ζ

∫ ∞

0

ψ(ξ′)K−(ξ′, ξ)V (ν, ξ′)dξ′
]

, (A.37)
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where
U(ν, ξ) = Φ(ν, ξ) + Φ(ν,−ξ) (A.38)

and
V (ν, ξ) = Φ(ν, ξ) − Φ(ν,−ξ). (A.39)

Here
λ = 1/ν2 (A.40)

and

K(ξ′, ξ) = (ξ/ξ′)K+(ξ′, ξ)+K−(ξ′, ξ)−ζ

∫ ∞

0

ψ(ξ′′)(ξ/ξ′′)K+(ξ′′, ξ)K−(ξ′, ξ′′)dξ′′

(A.41)
where

K+(ξ′, ξ) = K(ξ′, ξ) + K(−ξ′, ξ) (A.42)

and
K−(ξ′, ξ) = K(ξ′, ξ) − K(−ξ′, ξ). (A.43)

We now introduce a “half-range” quadrature scheme with weights and nodes
{wk,ξk} and rewrite Eqs. (A.36) and (A.37) evaluated at the quadrature points as

(1/ξ2
i )

[
V (νj , ξi) − ζ

N∑
k=1

wkψ(ξk)K(ξk, ξi)V (νj , ξk)

]
= λjV (νj , ξi) (A.44)

and

U(νj , ξi) = (νj/ξi)

[
V (νj , ξi) − ζ

N∑
k=1

wkψ(ξk)K−(ξk, ξi)V (νj , ξk)

]
, (A.45)

for i = 1, 2, ..., N . Equation (A.44) defines our eigenvalue problem, to which we
have added the subscript j to label the eigenvalues and eigenvectors. Once this
eigenvalue problem is solved, we have the elementary solutions from

Φ(νj , ξi) = (1/2)[U (νj , ξi) + V (νj , ξi)] (A.46)

and
Φ(νj ,−ξi) = (1/2)[U (νj , ξi) − V (νj , ξi)]. (A.47)

Note that the separation constants defined by

νj = ±λ
−1/2
j (A.48)

occur in ± pairs. From this point, we take νj to be the root (that has a positive
real part) listed in Eq. (A.48). Once we have solved the eigenvalue problem defined
by Eq. (A.44), we can write our general (discrete ordinates) solution to Eq. (A.21)
as

G(τ,±ξi) =
2N∑
j=1

[
AjΦ(νj ,±ξi)e−(s+σ)τ/νj + BjΦ(νj ,∓ξi)e(s+σ)τ/νj

]
, (A.49)
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for i = 1, 2, ..., N . Here the arbitrary constants {Aj} and {Bj} are to be deter-
mined. Since the solution must be bounded as τ tends to infinity, we take all {Bj}
to be zero to obtain

G(τ,±ξi) =
2N∑
j=1

AjΦ(νj ,±ξi)e−(s+σ)τ/νj (A.50)

for i = 1, 2, ..., N . To complete the solution we substitute Eq. (A.50) into a
discrete-ordinates version of Eq. (A.28) to establish a system of linear algebraic
equations we solve to find the constants {Aj}. Finally, we use Eq. (A.50) and
write our result as

P(τ) = 2
J∑

j=1

AjXje−(s+σ)τ/νj , (A.51)

where

Xj =
[
1 0

] N∑
n=1

wnψ(ξn)ξ2
n[Φ(νj , ξn) + Φ(νj ,−ξn)]. (A.52)
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