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Abstract

A Legendre expansion of the scattering kernel, a conservation condition and some exact solutions are reported fo
Cormack kinetic model that is used to describe a binary mixture of rarefied gases.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

During the past two years there has been considerable interest [1–9] in using the McCormack kinetic model [10] to
binary gas mixtures in the general field of rarefied gas dynamics, and so in this brief work, we report a useful Legendre e
of the scattering kernel, a conservation condition, and some exact solutions relevant to this model. These exact sol
important components of the complete solutions to such classical problems as the temperature-jump problem, Kramers
(viscous-slip), and the thermal and diffusion slip problems.

We consider that the required functionshα(x,v) for the two types of particles (α = 1 and 2) denote perturbations fro
Maxwellian distributions for each species, i.e,

fα(x,v) = fα,0(v)
[
1+ hα(x,v)

]
, (1)

where

fα,0(v) = nα(λα/π)3/2 e−λαv2
, λα = mα/(2kT0). (2)

Herek is the Boltzmann constant,mα andnα are the mass and the equilibrium density of theα-th species,x is the spatial
variable (measured, for example, in cm),v is the particle velocity, andT0 is a reference temperature. We follow Ref. [4] a
note from McCormack’s work [10] that the perturbations satisfy (for the case of variations in only one spatial variab
coupled equations

cµ
∂

∂x
hα(x, c) + ωαγαhα(x, c) = ωαγαLα{h1, h2}(x, c), α = 1,2, (3)

where we use a spherical coordinate system (c,µ,χ ) to express the dimensionless velocity vectorc,

ωα = [
mα/(2kT0)

]1/2
, (4)
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t in
and the collision frequenciesγα are to be defined. Here we write the integral operators as

Lα{h1, h2}(x, c) = 1

π3/2

2∑
β=1

∞∫
0

1∫
−1

2π∫
0

e−c′2
hβ(x, c′)Kβ,α(c′ : c)c′2 dχ ′ dµ′ dc′, (5)

where the kernelsKβ,α(c′ : c) are taken from Ref. [4] and listed explicitly in Appendix A of this paper. We note tha
obtaining Eq. (3) from the form given by McCormack [10], we have introduced the dimensionless velocityc differently in
the two equations, i.e., for the caseα = 1 we used the transformationc = ω1v, whereas for the caseα = 2 we used the
transformationc = ω2v. As we wish to work with a dimensionless spatial variable, we introduce

τ = x/l0, (6)

where

l0 = µv0

P0
(7)

is the mean-free path (based on viscosity) introduced by Sharipov and Kalempa [1]. Here, following Ref. [1], we write

v0 = (2kT0/m)1/2, (8)

where

m = n1m1 + n2m2

n1 + n2
. (9)

Continuing, we express the viscosity of the mixture in terms of the partial pressuresPα and the collision frequenciesγα as [1]

µ = P1/γ1 + P2/γ2, (10)

where

Pα

P0
= nα

n1 + n2
, (11)

γ1 = [
Ψ1Ψ2 − ν

(4)
1,2ν

(4)
2,1

][
Ψ2 + ν

(4)
1,2

]−1
, (12)

and

γ2 = [
Ψ1Ψ2 − ν

(4)
1,2ν

(4)
2,1

][
Ψ1 + ν

(4)
2,1

]−1
. (13)

Here definitions given in Appendix A have been used,

Ψ1 = ν
(3)
1,1 + ν

(3)
1,2 − ν

(4)
1,1, (14)

and

Ψ2 = ν
(3)
2,2 + ν

(3)
2,1 − ν

(4)
2,2. (15)

Finally, to compact our notation we introduce

σα = γαωαl0 (16)

or, more explicitly,

σα = γα
n1/γ1 + n2/γ2

n1 + n2
(mα/m)1/2, (17)

and so we rewrite Eq. (3) in terms of theτ variable as

cµ
∂

∂τ
hα(τ, c) + σαhα(τ, c) = σαLα{h1, h2}(τ, c). (18)
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2. The Legendre expansion

From the explicit expressions listed in Appendix A, we see that we can write

Kα,β(c′ : c) =
2∑

n=0

n∑
m=0

(2n + 1)(2− δ0,m)Pm
n (µ′)Pm

n (µ)k
(α,β)
n (c′, c)cosm(χ ′ − χ), (19)

where

k
(1,1)
0 (c′, c) = 1+ (2/3)

[
1− 2r∗η

(1)
1,2

](
c′2 − 3/2

)(
c2 − 3/2

)
, (20a)

k
(1,1)
1 (c′, c) = (1/3)c′c

{
2
[
1− η

(1)
1,2

] − η
(2)
1,2

(
c′2 + c2 − 5

) + (4/5)β1
(
c′2 − 5/2

)(
c2 − 5/2

)}
, (20b)

k
(1,1)
2 (c′, c) = (4/15)�1(c′c)2, (20c)

k
(2,1)
0 (c′, c) = (4/3)r∗η

(1)
1,2

(
c′2 − 3/2

)(
c2 − 3/2

)
, (21a)

k
(2,1)
1 (c′, c) = (1/3)c′c

[
r
{
2η

(1)
1,2 + η

(2)
1,2

[
r2(

c′2 − 5/2
) + c2 − 5/2

]} + (4/5)η
(6)
1,2

(
c′2 − 5/2

)(
c2 − 5/2

)]
, (21b)

k
(2,1)
2 (c′, c) = (4/15)η(4)

1,2(c′c)2, (21c)

k
(1,2)
0 (c′, c) = (4/3)s∗η

(1)
2,1

(
c′2 − 3/2

)(
c2 − 3/2

)
, (22a)

k
(1,2)
1 (c′, c) = (1/3)c′c

[
s
{
2η

(1)
2,1 + η

(2)
2,1

[
s2(

c′2 − 5/2
) + c2 − 5/2

]} + (4/5)η
(6)
2,1

(
c′2 − 5/2

)(
c2 − 5/2

)]
, (22b)

k
(1,2)
2 (c′, c) = (4/15)η(4)

2,1(c′c)2, (22c)

k
(2,2)
0 (c′, c) = 1+ (2/3)

[
1− 2s∗η

(1)
2,1

](
c′2 − 3/2

)(
c2 − 3/2

)
, (23a)

k
(2,2)
1 (c′, c) = (1/3)c′c

{
2
[
1− η

(1)
2,1

] − η
(2)
2,1

(
c′2 + c2 − 5

) + (4/5)β2
(
c′2 − 5/2

)(
c2 − 5/2

)}
, (23b)

and

k
(2,2)
2 (c′, c) = (4/15)�2(c′c)2. (23c)

Here thenormalized Legendre functions

Pm
n (µ) =

[
(n − m)!
(n + m)!

]1/2(
1− µ2)m/2 dm

dµm
Pn(µ), n � m, (24)

wherePn(µ) denotes one of Legendre polynomials, are such that

1∫
−1

Pm
n (µ)Pm

n′ (µ)dµ =
(

2

2n + 1

)
δn,n′ . (25)

We now rewrite Eq. (18) as

cµ
∂

∂τ
H (τ, c) + ΣH (τ, c) = 1

π3/2
Σ

∞∫
0

1∫
−1

2π∫
0

e−c′2
K(c′ : c)H (τ, c′)c′2 dχ ′ dµ′ dc′ (26)

where

H (τ, c) =
[

h1(τ, c)

h2(τ, c)

]
, K(c′ : c) =

[
K1,1(c′ : c) K2,1(c′ : c)
K1,2(c′ : c) K2,2(c′ : c)

]
, (27a,b)

and

Σ = diag{σ1 σ2}. (27c)

When solving basic flow problems or problems based on temperature-density effects, it is sometimes possible to w
simplified balance equations obtained from certain moments (integrals) of Eq. (26). It is when this procedure can be u
we find the expansion listed in Eq. (19) especially useful.
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ensities,
3. Solutions

In regard to solutions of Eq. (26), we have, first of all, the solutions that correspond to the conservation of number d
momentum and kinetic energy (the collisional invariants). In our notation, these solutions take the forms

H1(τ, c) =
[

1
0

]
, H2(τ, c) =

[
0
1

]
, H3(τ, c) = c2

[
1
1

]
, H4(τ, c) = cµ

[
1
s

]
, (28a–d)

H5(τ, c) = c
(
1− µ2)1/2 sin(χ)

[
1
s

]
, and H6(τ, c) = c

(
1− µ2)1/2 cos(χ)

[
1
s

]
. (28e,f)

In addition to the solutions given in Eqs. (28), we have found

H7(τ, c) = τΦ1(c) + cµF1(c) and H8(τ, c) = τΦ2(c) + cµF2(c), (29a,b)

whereF 1(c) andF2(c) are expressed as

Fα(c) = Fα,0 + (
c2 − 5/2

)
Fα,2. (30)

HereFα,0 andFα,2 are solutions of the linear systems defined by

AFα,0 + BFα,2 = Σ−1Φα,0, (31a)

CFα,0 + DFα,2 = Σ−1Φα,2, (31b)

and

[0 1]Fα,0 = 0. (31c)

We list the coefficient matrices as

A =

 −η

(1)
1,2 rη

(1)
1,2

sη
(1)
2,1 −η

(1)
2,1


 , B = 5

4


 −η

(2)
1,2 r3η

(2)
1,2

s3η
(2)
2,1 −η

(2)
2,1


 , (32a,b)

C = 1

2


 −η

(2)
1,2 rη

(2)
1,2

sη
(2)
2,1 −η

(2)
2,1


 , and D =


 β1 − 1 η

(6)
1,2

η
(6)
2,1 β2 − 1


 . (32c,d)

In addition,

Φα(c) = Φα,0 + (
c2 − 5/2

)
Φα,2, (33)

with

Φ1,0 =
[

c1 − 1
c1

]
, Φ1,2 =

[
c1
c1

]
, Φ2,0 =

[
c2

c2 − 1

]
, and Φ2,2 =

[
c2
c2

]
, (34a,b,c,d)

wherecα = nα/(n1 + n2). In regard to Eq. (26), we have also found two additional solutions that we write as

H9(τ, c) = c
(
1− µ2)1/2 sin(χ)E(τ, c,µ) (35a)

and

H10(τ, c) = c
(
1− µ2)1/2 cos(χ)E(τ, c,µ), (35b)

where

E =
[

σ1τ − cµ

sσ1(τ − cµ/σ2)

]
. (36)

4. A flow condition

We can multiply Eq. (26) by exp{−c2}c2 dχ dµdc and integrate to confirm that the (anticipated) flow condition

d

dτ

∞∫
0

1∫
−1

2π∫
0

e−c2
H (τ, c)c3µdχ dµdc = 0 (37)

is valid.
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5. Concluding remarks

In this brief work, we have reported some exact solutions to the McCormack kinetic model equations that have bee
numerous recent works to describe a binary mixture of dissimilar particles. Also included here is a (finite) spherical ha
expansion of the scattering (matrix) kernel and a verification of an anticipated flow condition. While the solutions li
Eqs. (28) follow directly from the conservation of number, energy, and momentum, the solutions defined by Eqs. (29)
were much less easily foreseen. It is our opinion that the exact solutions reported in this work are especially import
wish to obtain the correct asymptotic behavior when solving, say, the temperature-jump problem or Kramers’ proble
of which are defined for unbounded half-space media. To be clear, we note that the solutions listed as Eqs. (28), (29
do not define the complete solution for any specific physical problem, but moments (integrals) of these solutions can
as in Refs. [7–9], as exact components in an otherwise (discrete-ordinates, for example) approximate solution. In this
correct asymptotic behavior of the complete solution can be captured. Finally, this note is a prelude to a similar work
progress where we seek to obtain similar results for a binary mixture of rigid spheres described by the linearized Bo
equation — a considerably more difficult task (especially in regard to the Legendre expansion of the scattering matrix

Appendix A. Basic elements of the defining equations

Here we list some basic results that are required to define certain elements of the main text of this paper. First of all,
to Eq. (5), we note that

Kβ,α(c′ : c) = K
(1)
β,α(c′ : c) + K

(2)
β,α(c′ : c) + K

(3)
β,α(c′ : c) + K

(4)
β,α(c′ : c), α,β = 1,2, (A.1)

where

K
(1)
1,1(c′ : c) = 1+ {

2
[
1− η

(1)
1,2

] − η
(2)
1,2

(
c′2 − 5/2

)}
c′ · c, (A.2)

K
(2)
1,1(c′ : c) = (2/3)

[
1− 2r∗η

(1)
1,2

](
c′2 − 3/2

)(
c2 − 3/2

)
, (A.3)

K
(3)
1,1(c′ : c) = 2�1

[
(c′ · c)2 − (1/3)c′2c2]

, (A.4)

K
(4)
1,1(c′ : c) = [

(4/5)β1
(
c′2 − 5/2

) − η
(2)
1,2

](
c2 − 5/2

)
c′ · c, (A.5)

K
(1)
2,1(c′ : c) = r

{
2η

(1)
1,2 + η

(2)
1,2

[
r2(

c′2 − 5/2
) + c2 − 5/2

]}
c′ · c, (A.6)

K
(2)
2,1(c′ : c) = (4/3)r∗η

(1)
1,2

(
c′2 − 3/2

)(
c2 − 3/2

)
, (A.7)

K
(3)
2,1(c′ : c) = 2η

(4)
1,2

[
(c′ · c)2 − (1/3)c′2c2]

, (A.8)

K
(4)
2,1(c′ : c) = (4/5)η

(6)
1,2

(
c′2 − 5/2

)(
c2 − 5/2

)
c′ · c, (A.9)

K
(1)
2,2(c′ : c) = 1+ {

2
[
1− η

(1)
2,1

] − η
(2)
2,1

(
c′2 − 5/2

)}
c′ · c, (A.10)

K
(2)
2,2(c′ : c) = (2/3)

[
1− 2s∗η

(1)
2,1

](
c′2 − 3/2

)(
c2 − 3/2

)
, (A.11)

K
(3)
2,2(c′ : c) = 2�2

[
(c′ · c)2 − (1/3)c′2c2]

, (A.12)

K
(4)
2,2(c′ : c) = [

(4/5)β2
(
c′2 − 5/2

) − η
(2)
2,1

](
c2 − 5/2

)
c′ · c, (A.13)

K
(1)
1,2(c′ : c) = s

{
2η

(1)
2,1 + η

(2)
2,1

[
s2(

c′2 − 5/2
) + c2 − 5/2

]}
c′ · c, (A.14)

K
(2)
1,2(c′ : c) = (4/3)s∗η

(1)
2,1

(
c′2 − 3/2

)(
c2 − 3/2

)
, (A.15)

K
(3)
1,2(c′ : c) = 2η

(4)
2,1

[
(c′ · c)2 − (1/3)c′2c2]

, (A.16)

and

K
(4)

(c′ : c) = (4/5)η
(6)(

c′2 − 5/2
)(

c2 − 5/2
)
c′ · c. (A.17)
1,2 2,1
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simple
Here we used

r = (m1/m2)1/2 and s = (m2/m1)1/2, (A.18)

along with

r∗ = r2/
(
1+ r2)

and s∗ = s2/
(
1+ s2)

. (A.19)

In addition,

�1 = 1+ η
(4)
1,1 − η

(3)
1,1 − η

(3)
1,2, (A.20)

�2 = 1+ η
(4)
2,2 − η

(3)
2,2 − η

(3)
2,1, (A.21)

β1 = 1+ η
(6)
1,1 − η

(5)
1,1 − η

(5)
1,2, (A.22)

and

β2 = 1+ η
(6)
2,2 − η

(5)
2,2 − η

(5)
2,1, (A.23)

where

η
(k)
i,j

= ν
(k)
i,j

/γi . (A.24)

Following McCormack [10], we write

ν
(1)
α,β = 16

3

mα,β

mα
nβΩ11

α,β , (A.25)

ν
(2)
α,β = 64

15

(
mα,β

mα

)2
nβ

(
Ω12

α,β − 5

2
Ω11

α,β

)
, (A.26)

ν
(3)
α,β = 16

5

(
mα,β

mα

)2 mα

mβ
nβ

(
10

3
Ω11

α,β + mβ

mα
Ω22

α,β

)
, (A.27)

ν
(4)
α,β = 16

5

(
mα,β

mα

)2 mα

mβ
nβ

(
10

3
Ω11

α,β − Ω22
α,β

)
, (A.28)

ν
(5)
α,β = 64

15

(
mα,β

mα

)3 mα

mβ
nβΓ

(5)
α,β , (A.29)

and

ν
(6)
α,β = 64

15

(
mα,β

mα

)3(
mα

mβ

)3/2
nβΓ

(6)
α,β , (A.30)

with

Γ
(5)
α,β = Ω22

α,β +
(

15mα

4mβ
+ 25mβ

8mα

)
Ω11

α,β −
(

mβ

2mα

)(
5Ω12

α,β − Ω13
α,β

)
(A.31)

and, after a correction by Pan and Storvick [11],

Γ
(6)
α,β = −Ω22

α,β + 55

8
Ω11

α,β − 5

2
Ω12

α,β + 1

2
Ω13

α,β . (A.32)

In addition,

mα,β = mαmβ/(mα + mβ), (A.33)

and theΩ functions are the Chapman–Cowling integrals [12,13] which for the case of rigid-sphere interactions take the
forms

Ω12
α,β = 3Ω11

α,β , Ω13
α,β = 12Ω11

α,β and Ω22
α,β = 2Ω11

α,β (A.34)

with

Ω11
α,β = 1

4

(
πkT0

2mα,β

)1/2
(dα + dβ)2. (A.35)

Hered1 andd2 are the diameters of the two types of particles, and, as noted in the main text of this work,k is the Boltzmann
constant andT0 is a reference temperature.
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