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Abstract

A Legendre expansion of the scattering kernel, a conservation condition and some exact solutions are reported for the Mc-
Cormack kinetic model that is used to describe a binary mixture of rarefied gases.
0 2005 Elsevier SAS. All rights reserved.
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1. Introduction

During the past two years there has been considerable interest [1-9] in using the McCormack kinetic model [10] to describe
binary gas mixtures in the general field of rarefied gas dynamics, and so in this brief work, we report a useful Legendre expansion
of the scattering kernel, a conservation condition, and some exact solutions relevant to this model. These exact solutions are
important components of the complete solutions to such classical problems as the temperature-jump problem, Kramers’ problen
(viscous-slip), and the thermal and diffusion slip problems.

We consider that the required functiohg(x, v) for the two types of particlesu(= 1 and 2) denote perturbations from
Maxwellian distributions for each species, i.e,

fa(x,0) = foy 0 [14 he(x,v)], @
where
o) = ngGua/m)¥2e 4V 3y =y /(2K Ty). 2

Herek is the Boltzmann constant;, andn, are the mass and the equilibrium density of théh speciesx is the spatial
variable (measured, for example, in cm)is the particle velocity, andj is a reference temperature. We follow Ref. [4] and
note from McCormack’s work [10] that the perturbations satisfy (for the case of variations in only one spatial variable) the
coupled equations

d
Cl’«aha(ﬁ ¢) + oy Vaho(x, ¢) = waYa Lalhy, ho}(x,¢), a=12, 3
where we use a spherical coordinate systemu( x) to express the dimensionless velocity veetor

wy = [mg/(2kTp)]Y?, 4)
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and the collision frequencigs, are to be defined. Here we write the integral operators as

1 2 oo 127
Lo{hy, ho}(x,¢) = 32 Z ///efc/zhﬂ(x, c/)K,g’a(c/:c)c/zdx/d;/dc/, (5)
T
£=1p 110

where the kernelXg . (¢’ : ¢) are taken from Ref. [4] and listed explicitly in Appendix A of this paper. We note that in
obtaining Eq. (3) from the form given by McCormack [10], we have introduced the dimensionless veldiffgrently in

the two equations, i.e., for the case= 1 we used the transformatian= wqv, whereas for the case = 2 we used the
transformatiore = wov. As we wish to work with a dimensionless spatial variable, we introduce

T =ux/lp, (6)
where
22
lp=— 7
0="5, (7)

is the mean-free path (based on viscosity) introduced by Sharipov and Kalempa [1]. Here, following Ref. [1], we write
vo = (2kTo/m)"/2, 8)
where

nimji +npmp
m=———.
ni+ny

9)

Continuing, we express the viscosity of the mixture in terms of the partial presByr@sd the collision frequenciesg, as [1]

w=P1/y1+ P2/v2, (10)
where

% - nllfnz’ (11)

y1=[v1vz — vy ) [we + vy (12)
and

ve=[v1vz —vypup1][¥a+vpa] (13)

Here definitions given in Appendix A have been used,

3 3 4
VL= v v (14)
and
3 3 4
Uy = vé% + véi — vé% (15)

Finally, to compact our notation we introduce
Oa = Yawqlp (16)
or, more explicitly,

Oy = yaw(ma/m)l/{ (17)
ni+np

and so we rewrite Eq. (3) in terms of thevariable as

d
cugha(r, ¢) + oghy(t,c) =0qLolhy, ho}(z,c). (18)
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2. The Legendre expansion

From the explicit expressions listed in Appendix A, we see that we can write

2 n
Kap(@ )= 3" @n+1)(@~ b0, Pl () B kP (¢ ey cosm(x’ — ). (19)
n=0m=0
where
0 =14 @312 )2 -3 -2 (209
KMV o) = @3 ef2[1 - n{h] - 1y (2 + 2~ 5) + (4/5)p1(c 2 - 5/2) (2 - 5/2)}. (200)
K ) = @151 o), (20c)
KV 0 = @3y (c? - 3/2)( - 3/2), (212)
KPP0 =@ty + i34 - 5/2) + 2= 5/2]} + @I (2 - 5/2) (2~ 5/2)].  (21b)
K2V 0) = (4715 (02, (21¢)
K o) = (4/3”*”;11( —3/2)(2 - 3/2), (22a)
K2 0 = /3 cls(2n8) + i [s3(c 2 - 5/2) + ¢® = 5/2]} + @/5m) (% - 5/2) (2 - 5/2)], (220)
kM2 o) = 4155 ()%, (220)
(G20 =1+ @3- 2] 2 - 3 (- 372, (238)
K22 0 = @/3el 21— n$y] ~ a2+ 2~ 5) + ol 5/2) (P~ 5/2)) (230)
and
k£2,2) ,c)= (4/15)w2(c/c)2. (23c)
Here thenormalized Legendre functions
m _[=m)! 172 Zm/zd’”
whereP, (i) denotes one of Legendre polynomlals, are such that
! 2
m m _ ,
f P () P (1) dpu = <2n — 1)6“ : (25)

We now rewrite Eq. (18) as

oo 1271
CM%H(I,C)—I—EH(T,C) E/ /‘ef"/zK(c/:c)H(r, c/)c/zd)(/dp./dc/ (26)
0-10
where
’. ’.
neo=[o] weo=[ied ) e
and
Y =diag{o1 o92}. (27¢)

When solving basic flow problems or problems based on temperature-density effects, it is sometimes possible to work with
simplified balance equations obtained from certain moments (integrals) of Eq. (26). It is when this procedure can be used, that
we find the expansion listed in Eq. (19) especially useful.
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3. Solutions

In regard to solutions of Eq. (26), we have, first of all, the solutions that correspond to the conservation of number densities,
momentum and kinetic energy (the collisional invariants). In our notation, these solutions take the forms

Hi(t,c)= [(ﬂ . Ho(t,0)= [2] , Hs(t,c)=c? [ ﬂ , Hu(t.o)=cp [ ﬂ , (28a-d)
Hs(r, ¢) = c(1— 12)?sin(x) [ i] . and He(r,¢) =c(1— n?)Y?cosy) [ i] . (28e,f)
In addition to the solutions given in Egs. (28), we have found
H7(t,c)=1t®1(c) + cuF1(c) and Hg(tr,c)=t®P2(c) + cuF2(c), (29a,b)
whereF 1(c) and F(c) are expressed as
Fo(c)=Foo+ (> —5/2)Fy.2. (30)
HereF, o andF » are solutions of the linear systems defined by
AFy0+BFy 2= Z‘_l‘Poz,Oa (31a)
CFu0+DFy2=X"10,,, (31b)
and
[0 1Fy0=0. (31c)
We list the coefficient matrices as
€] €] @ .32
M2 M2 5| T2 2
A_[Ta) _(1):|’ B_Z[Yz <2>_(2>] (32a.b)
S21 ~M21 SN0 T2
(2 (2 (6)
1| —n rn Br1—1 7
€=3 (12)2 l(22) . and D= ® v2 ol (32¢,d)
Shp1 Th21 npy B2-1
In addition,
Bo(c) = g0+ (° —5/2) 9 2. (33)
with
_|a-1 | a _ c2 e
P10= [ o1 ] , P12= |:Cl] , P20= [62 - 1] , and @y, = [62 ] , (34a,b,c,d)
wherecy =nq/(n1 + n2). In regard to Eq. (26), we have also found two additional solutions that we write as
Ho(r,0) = c(1— 1?2 sinOE (. ¢, w) (35a)
and
21/2
Hig(t,¢) =c(1—u®) 7 cosx)E(r, c, ), (35b)
where
01T —ClL
E= . 36
[P @

4. A flow condition

We can multiply Eq. (26) by exXp-c2}c2dy du de and integrate to confirm that the (anticipated) flow condition

q oo 12
d—///e_"zH(r, o)c3pdydude =0 (37)
T

0-10

is valid.
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5. Concluding remarks

In this brief work, we have reported some exact solutions to the McCormack kinetic model equations that have been used in
numerous recent works to describe a binary mixture of dissimilar particles. Also included here is a (finite) spherical harmonics
expansion of the scattering (matrix) kernel and a verification of an anticipated flow condition. While the solutions listed as
Egs. (28) follow directly from the conservation of number, energy, and momentum, the solutions defined by Egs. (29) and (35)
were much less easily foreseen. It is our opinion that the exact solutions reported in this work are especially important if we
wish to obtain the correct asymptotic behavior when solving, say, the temperature-jump problem or Kramers’ problem, both
of which are defined for unbounded half-space media. To be clear, we note that the solutions listed as Egs. (28), (29) and (35)
do not define the complete solution for any specific physical problem, but moments (integrals) of these solutions can be used,
as in Refs. [7-9], as exact components in an otherwise (discrete-ordinates, for example) approximate solution. In this way, the
correct asymptotic behavior of the complete solution can be captured. Finally, this note is a prelude to a similar work now in
progress where we seek to obtain similar results for a binary mixture of rigid spheres described by the linearized Boltzmann
equation — a considerably more difficult task (especially in regard to the Legendre expansion of the scattering matrix).

Appendix A. Basic elements of the defining equations

Here we list some basic results that are required to define certain elements of the main text of this paper. First of all, in regard
to Eq. (5), we note that

Kpald i) =K (e 0+ KD 1)+ Ko (e r)+ Ky o), a.p=12, (A1)
where
K1 ) =1+ {21 ngy] - ni(c? = 5/2))e e, (A.2)
K 10) = /31— 270 3] ("2 — 3/2)(c? - 3/2). (A.3)
K¢ o) =2m[(c - 0)? - (1/3)c' 2], (A4)
K4 o) =[(4/5)1(c'2 - 5/2) — 03] (c? ~ 5/2)c -« (A5)
Kz s0) =r{2ngy + 5[ = 5/2) + - 5/2])c e, (A.6)
K¢ 1 0) = @/3)r*n{) (%~ 3/2)(c2 - 3/2). (A7)
K o) =2n (¢ 02 - (1/3)c' %7, (A8)
K5 ¢) = (4/5m % (c'? ~ 5/2)(c? ~ 5/2)c -c. (A.9)
K5 10 =1+ {2[1-nz})] - ny} (> = 5/2) )¢ -e. (A.10)
K5 ) = 2/3)[1- 257 n57]('2 ~ 3/2)(c? - 3/2). (A11)
K55 1 ¢) = 2m2[(c’ - ©)? — (1/3)c 27, (A12)
K35 )= [(4/5)2(c'2 ~ 5/2) — 7] (c? ~ 5/2)¢’ -« (A.13)
K1ae' o) =s{2051 + 1 [s(¢? = 5/2) + > = 5/2])e e, (A19)
K5 :0) = (435" n57 (/> = 3/2)(c? - 3/2), (A.15)
K3 o =255 - 02— 1/3)c' %), (A.16)

and

K9 10) = (45 (2~ 5/2) (2~ 5/2)¢ -e. (A.17)
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Here we used

r=(m1/mp)"? and s=(ma/mp/?, (A.18)
along with
r*:rz/(l—‘f-rz) and s*:sz/(l—i—sz). (A.19)
In addition,
4 3 3
=1+ — 1) — 0y (A.20)
4 3 3
w2—1+n() n(zé—néi, (A.21)
6 5 5
Br=1+n) — 0 — 0. (A.22)
and
6 5 5
=103 5 29
where
k k
,( ,) ,(,j) i (A.24)
Following McCormack [10], we write
@ _16map 11
Yo =3 g el (A.25)
2
@ _ 64(mq, 12 S,11
Vo p = 1_5< m ) " (9“’*“ ~ 2% ) (A.26)
2
@ _16(map\“ma (1011 Mg 22
=— — — — , A.27
o, B 5(’"01) mﬁnﬂ(s Ot,/3+ma o, ( )
2
@ _16(mgp\“mg (10 19 22
_ 1 Ma s Dell — 022, A28
= () By (i - 22 (128
3
) _64(map\ma 5
Va.p = 5( e ) mﬂnﬂro"ﬁ’ (A.29)
and
3 3/2
©® _ 64(map\”(ma ©)
Vo p = 15( e ) <m,3> ngly g (A.30)
with
G _ o2 15my | 25mp mg 12 13
= el = ) (582, 2, A.31
w.p /3+(4mﬂ+8m ap =z ) 6%~ 2up) (A-31)
and, after a correction by Pan and Storvick [11],
®) 22 95 >,12 113
Tup=—%e%+5 —2r - 52t 5% p (A.32)
In addition,
My, B =mamﬁ/(ma +mpg), (A.33)

and thes2 functions are the Chapman—Cowling integrals [12,13] which for the case of rigid-sphere interactions take the simple
forms

235 =32, Q% =1201% and Qi =201 (A.34)
with
1/ 7kTy \Y?
2l == 0 2, A.
a,B 4<2ma,ﬁ) (do +dp) (A.35)

Hered, andd, are the diameters of the two types of particles, and, as noted in the main text of thisimtke Boltzmann
constant andy is a reference temperature.
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