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Abstract

Concise and explicit forms of the collision operators required to establish the linearized Boltzmann equations for
mixture of rigid spheres are reported for the case of isotropic scattering in the center-of-mass system.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

In a fundamental paper [1] published in 1976, one of the authors (MMRW) of this work developed explicit express
the collision operators that are required in the linearized Boltzmann equations for a binary mixture of (somewhat)
particles. In that first work the differential-scattering cross sections were left arbitrary, and so the expressions used to
collision operators were reported in explicit, but not very simple, forms. Here, as we wish to direct our attention to the sc
of rigid-sphere particles in the area of rarefied gas dynamics, we assume that the differential-scattering cross sections
are constants so that Williams’ previous results can now be reduced to more concise forms.

To start, we write the (coupled) linearized Boltzmann equations for a mixture of particles (labeled with subscriptα = 1
and 2) in the form reported in Ref. [1], viz.

v · ∇rGα(r,v) + Sα(v)Gα(r,v) =
∫

Sα(v′ : v)Gα(r,v′)d3v′ +
2∑

β=1

∫
Sα,β(v′ : v)Gβ(r,v′)d3v′. (1)

Here the particle distribution functions have been expressed as

fα(r,v) = fα,0(v) + Gα(r,v), (2)

where

fα,0(v) = nα(λα/π)3/2 e−λαv2
, with λα = mα/(2kT0), (3)
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is the Maxwellian distribution fornα particles of massmα in equilibrium at temperatureT0, and whereGα(r,v) is used to
denote the perturbation of the distribution function from equilibrium. In addition,k is the Boltzmann constant,r is the spatial
variable,v is the velocity variable, andv = |v|. Continuing, we letσα,β denote the constant differential-scattering cross sect
and deduce from Ref. [1] that

Sα(v) = n1σ
(1)
α (v) + n2σ

(2)
α (v), (4)

Sα(v′ : v) = n1σ
α,1
I (v′ : v) + n2σ

α,2
I (v′ : v), (5)

and

Sα,β(v′ : v) = nα

[
σ

α,β
II (v′ : v) − σ

α,β
III (v′ : v)

]
, (6)

where

σ
(β)
α (v) = 4σα,β

(
π/λβ

)1/2
ν
(
λ

1/2
β v

)
, (7)

σ
α,β
I (v′ : v) = σα,β

8π1/2

(mα + mβ)4

m4
β

λ
3/2
β |v′ − v|

× exp

{
−λβv′2 − (mα + mβ)2

8kT0mβ
|v′ − v|2 − (λα + λβ)v′ · (v − v′)

} π∫
0

sinθ

sin4(θ/2)

× exp

{
− (mα + mβ)2

8kT0mβ
|v′ − v|2 cot2(θ/2)

}
I0

{
(λα + λβ)|v × v′|cot(θ/2)

}
dθ, (8)

σ
α,β
II (v′ : v) = 2σα,β

π1/2
(mα + mβ)4λ

3/2
α |v′ − v|exp

{−λαv′2} π∫
0

sinθ

D2
α,β(θ)

× exp

{−λα(mα + mβ)

Dα,β(θ)

[
(mα + mβ)|v′ − v|2 + 2(mα − mβ cosθ)v′ · (v − v′)

]}

× I0

{
2λα |v′ × v|(mα + mβ)mβ sinθ

Dα,β(θ)

}
dθ, (9)

and

σ
α,β
III (v′ : v) = 4σα,β

π1/2
λ

3/2
α |v′ − v|exp

{−λαv2}
. (10)

HereI0(x) is used to denote the modified Bessel function,

Dα,β(θ) = m2
α + m2

β − 2mαmβ cosθ, (11)

and

ν(c) = 2c2 + 1

c

c∫
0

e−x2
dx + e−c2

. (12)

2. Alternative forms for the coupled Boltzmann equations

Having made the assumption that the differential-scattering cross sections are constants, we are now able to ev
integrals in Eqs. (8) and (9) to obtain more concise forms for those expressions. However, before reporting the new ex
we introduce some variable changes. First of all, we rewrite Eq. (2) as

fα(r,v) = fα,0(v)
[
1+ Hα(r,v)

]
, (13)

so that

G (r,v) = f (v)H (r,v), (14)
α α,0 α
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and in order to introduce a dimensionless velocity variable, we let

v = c/ωα (15)

and

Hα(r, c/ωα) = hα(r, c), (16)

where

ωα = λ
1/2
α . (17)

It follows that we can now rewrite Eq. (1) as

c · ∇rhα(r, c) + 	α(c)hα(r, c) = Lα(r, c), (18)

where

	α(c) = 	
(1)
α (c) + 	

(2)
α (c), (19)

with

	
(β)
α (c) = 4π1/2nβσα,β(mα/mβ)1/2ν

[
(mβ/mα)1/2c

]
. (20)

In addition,

Lα(r, c) =
∫

e−c′2
fα(c′ : c)hα(r, c′)d3c′ +

2∑
β=1

∫
e−c′2

fα,β(c′ : c)hβ(r, c′)d3c′, (21)

where

fα(c′ : c) = ω−2
α ec2[

n1σ
α,1
I (c′/ωα : c/ωα) + n2σ

α,2
I (c′/ωα : c/ωα)

]
(22)

and

fα,β(c′ : c) = ω−2
α ec2

nβ

[
σ

α,β
II (c′/ωβ : c/ωα) − σ

α,β
III (c′/ωβ : c/ωα)

]
. (23)

Evaluating the integral in Eq. (8), we find we can rewrite Eq. (22) as

fα(c′ : c) = f
(1)
α (c′ : c) + f

(2)
α (c′ : c), (24)

where

f
(β)
α (c′ : c) = nβσα,β

π1/2

(
mβ

mα

)1/2(
mα + mβ

mβ

)2 1

|c′ − c|Eα,β(c′ : c), (25)

with

Eα,β(c′ : c) = exp

{
mβ

mα

|c′ × c|2
|c′ − c|2 − (mα − mβ)2

4mαmβ
(c′2 + c2) −

m2
β − m2

α

2mαmβ
c′ · c

}
. (26)

Considering Eqs. (9) and (10), we find can write

fα,β(c′ : c) = f
(1)
α,β(c′ : c) − f

(2)
α,β(c′ : c), (27)

where, in general,

f
(1)
α,β(c′ : c) = 4nβσα,β

π1/2

∣∣(mα/mβ)1/2c′ − c
∣∣Jα,β(c′ : c) (28)

and

f
(2)
α,β(c′ : c) = 4nβσα,β

π1/2

∣∣(mα/mβ)1/2c′ − c
∣∣. (29)

Here

Jα,β(c′ : c) = 2

R2

uα,β∫
exp

{−Cα,β(c′ : c)u2}
I0

{
2u|c′ × c|[1− (u/uα,β)2

]1/2}
udu, (30)
α,β 0
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ported by
where

Cα,β(c′ : c) = c′2 + c2 − 2c′ · c/Rα,β , (31)

uα,β = 2(mαmβ)1/2/|mα − mβ |, (32)

and

Rα,β = 2(mαmβ)1/2/(mα + mβ). (33)

Following the discussion given in the Appendix, we find we can evaluate the integral in Eq. (30) to obtain

Jα,β(c′ : c) = (mα + mβ)2

2Vα,β(c′ : c) exp

{−2mαmβCα,β(c′ : c)
(mα − mβ)2

}
sinh

[
2Vα,β(c′ : c)/(mα − mβ)2

]
, (34)

where

Vα,β(c′ : c) = {
(mαmβ)2C2

α,β(c′ : c) + mαmβ(mα − mβ)2|c′ × c|2}1/2
. (35)

For the special case ofα = β, we can evaluate the integral defined by Eq. (30) (or use Eq. (34)) to find from Eq. (28) tha

f
(1)
α,α(c′ : c) = 4nασα,α

π1/2

1

|c′ − c| exp

{ |c′ × c|2
|c′ − c|2

}
. (36)

Continuing, we let

K1,1(c′ : c) = f1(c′ : c) + f
(1)
1,1(c′ : c) − f

(2)
1,1(c′ : c), (37)

K1,2(c′ : c) = f
(1)
1,2(c′ : c) − f

(2)
1,2(c′ : c), (38)

K2,1(c′ : c) = f
(1)
2,1(c′ : c) − f

(2)
2,1(c′ : c), (39)

and

K2,2(c′ : c) = f2(c′ : c) + f
(1)
2,2(c′ : c) − f

(2)
2,2(c′ : c), (40)

so that we can rewrite Eq. (18) as

c · ∇rhα(r, c) + 	α(c)hα(r, c) =
2∑

β=1

∫
e−c′2

Kα,β(c′ : c)hβ(r, c′)d3c′. (41)

Making use of the explicit forms, we can now write

K1,1(c′ : c) = 4n1σ1,1π1/2P(c′ : c) + n2σ1,2π1/2F1,2(c′ : c), (42)

K1,2(c′ : c) = 4n2σ1,2π1/2G1,2(c′ : c), (43)

K2,1(c′ : c) = 4n1σ2,1π1/2G2,1(c′ : c), (44)

and

K2,2(c′ : c) = 4n2σ2,2π1/2P(c′ : c) + n1σ2,1π1/2F2,1(c′ : c). (45)

Here

P(c′ : c) = 1

π

(
2

|c′ − c| exp

{ |c′ × c|2
|c′ − c|2

}
− |c′ − c|

)
(46)

is the basic kernel for the single-species gas, the spherical harmonics expansion of which has already been re
Pekeris [2]. The additional (new) quantities we require here for the considered binary mixture of rigid spheres are

Fα,β(c′ : c) = 1

π

(
mβ

mα

)1/2(
m1 + m2

mβ

)2 1

|c′ − c| exp

{
mβ |c′ × c|2
mα |c′ − c|2 − (m1 − m2)2

4m1m2
(c′2 + c2) −

m2
β − m2

α

2m1m2
c′ · c

}
(47)

and

G (c′ : c) = 1 ∣∣(m /m )1/2c′ − c
∣∣[J (c′ : c) − 1

]
. (48)
α,β

π
α β α,β
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SinceJα,β(c′ : c), for α �= β, is independent ofα andβ, we can rewrite Eq. (48) as

Gα,β(c′ : c) = 1

π

∣∣(mα/mβ)1/2c′ − c
∣∣[J (c′ : c) − 1

]
. (49)

Here

J (c′ : c) = (m1 + m2)2

2V (c′ : c) exp

{−2m1m2C(c′ : c)
(m1 − m2)2

}
sinh

[
2V (c′ : c)/(m1 − m2)2

]
, (50)

where

V (c′ : c) = {
(m1m2)2C2(c′ : c) + m1m2(m1 − m2)2|c′ × c|2}1/2

, (51)

C(c′ : c) = c′2 + c2 − 2c′ · c/R, (52)

and

R = 2(m1m2)1/2/(m1 + m2). (53)

We consider that to obtain spherical harmonics expansions, in the manner of Pekeris [2], for the expressions listed as
and (49) will require a major effort.

Finally, and to be clear, we note that we have usedσα,β to denote the differential-scattering cross section used in Ref
however, since we intend to continue this work within the context of a binary gas mixture (rigid-sphere collisions) we ca
Chapman and Cowling [3] and write, for this application,

σα,β = 1

4

(
dα + dβ

2

)2
, (54)

whered1 andd2 are the atomic diameters of the two types of gas particles.

3. Concluding remarks

Given that we now have explicit forms for the collision operators for the coupled linearized Boltzmann equation
binary mixture of rigid spheres, we intend next to investigate the possibility of obtaining spherical harmonics expan
the scattering kernels that could be important generalizations of the work done by Pekeris [2] for the case of a singl
gas. We consider that such a generalization would be of significant value as we proceed to solve basic problems in ra
dynamics for binary mixtures of rigid spheres.

In reviewing Refs. [1] and [4], we found that an error in the normalization of a certain form of the scattering kern
made in both of those works, but a compensating error in later sections of those works rendered the normalization e
consequential. In addition, we note that an alternative derivation of Williams’ basic results [1] has been reported [5]
have concluded that an error (in a basic definition) was made in the final steps of that work [5].

There are three ways in which the linearized Boltzmann equation for a binary mixture can be reduced to the single
case: (1) the particles have equal masses and diameters, or (2)n2 = 0, or (3)n1 = 0. We can see that our results reduce
the correct forms for each of these three special cases. First, consider the casem1 = m2 = m andd1 = d2 = d . We find from
Eqs. (47) and (49)

Fα,β(c′ : c) = 2P(c′ : c) + 2

π
|c′ − c|, m1 = m2, (55)

and

Gα,β(c′ : c) = 1

2
P(c′ : c) − 1

2π
|c′ − c|, m1 = m2. (56)

Sinceh1(r, c) andh2(r, c) can be replaced byh(r, c), each component of Eq. (41) reduces, after we note Eq. (54), to

c · ∇rh(r, c) + ε0ν(c)h(r, c) = ε0

∫
e−c′2P(c′ : c)h(r, c′)d3c′, (57)

whereε0 = nπ1/2d2, with n = n1 + n2. Eq. (57) is precisely the form [6] of the linearized Boltzmann equation for a collec
of identical rigid spheres. For the casen2 = 0, it is easy to see that Eq. (41) forα = 1 reduces to the form of Eq. (57) fo
h1(r, c) and Eq. (41) forα = 2 is irrelevant. Similarly, for the casen1 = 0, Eq. (41) forα = 2 reduces to the form of Eq. (57
for h (r, c).
2
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Finally, it is our opinion that the compact and explicit forms (that contain no integrals) for the scattering kernels de
in this work are a significant improvement over the representations in terms of multi-dimensional integrals (that also
elliptic integrals) that are listed in Appendix B of Ref. [7] — especially for workers who employ some mathematical a
before implementing a numerical code. We note also that the expressions in Ref. [5] that correspond to our Eqs. (47)
were left as integrals (that contain a Bessel function), and thus they were not reduced to the compact forms we found
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Appendix. An integral

In this appendix we report the transformations used to obtain Eq. (34) from Eq. (30). We first let

u2 = (1/2)u2
α,β

[
1− (1− τ2)1/2]

, for u ∈ [0,2−1/2uα,β ], (A.1a)

and

u2 = (1/2)u2
α,β

[
1+ (1− τ2)1/2]

, for u ∈ [2−1/2uα,β ,uα,β ], (A.1b)

so that we can rewrite Eq. (30) as

Jα,β(c′ : c) =
u2
α,β e−η

R2
α,β

1∫
0

cosh
[
η(1− τ2)1/2]

I0(uα,β |c′ × c|τ )
τ dτ

(1− τ2)1/2
, (A.2)

where

η = (u2
α,β/2)Cα,β(c′ : c). (A.3)

We next let

aτ = x, (A.4)

with

a = uα,β |c′ × c|, (A.5)

and use integration by parts to rewrite Eq. (A.2) as

Jα,β(c′ : c) = 2e−η

R2
α,βCα,β(c′ : c)

{
sinh(η) +

a∫
0

sinh
[
(η/a)(a2 − x2)1/2]

I1(x)dx

}
. (A.6)

Now, in an often used table of integrals [8] there is listed (as # 6.667.1) the expression (for the caseν = 1/2)

a∫
0

(a2 − x2)−1/2 cosh
[
sinh(t)(a2 − x2)1/2]

I1(x)dx = (π/2)I1/2
[
(a/2)et

]
I1/2

[
(a/2)e−t

]
, (A.7)

which we can differentiate with respect tot to obtain

a∫
0

sinh
[
sinh(t)(a2 − x2)1/2]

I1(x)dx = f ′(t)
cosh(t)

, (A.8)

where

f (t) = (π/2)I1/2
[
(a/2)et

]
I1/2

[
(a/2)e−t

]
(A.9)

or

f (t) = (2/a)sinh
[
(a/2)et

]
sinh

[
(a/2)e−t

]
. (A.10)
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8–1616.
-sphere
We find we can write

f ′(t) = sinh(t)sinh
[
a cosh(t)

] − cosh(t)sinh
[
a sinh(t)

]
, (A.11)

which we can use with Eq. (A.8) to find from Eq. (A.6), with sinh(t) = η/a, our final result:

Jα,β(c′ : c) = (mα + mβ)2

2Vα,β(c′ : c) exp

{−2mαmβCα,β(c′ : c)
(mα − mβ)2

}
sinh

[
2Vα,β(c′ : c)/(mα − mβ)2

]
. (A.12)
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