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Some exact results basic to the linearized Boltzmann
equations for a binary mixture of rigid spheres
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Abstract. Six exact solutions (related to the conservation of number, energy and momentum)
of the linearized Boltzmann equations for a binary mixture of rigid spheres, for the case of
isotropic scattering in the center-of-mass system, are reported. The verification of the reported
exact solutions (collisional invariants) is based on a recently reported explicit formulation of the
linearized Boltzmann equation for a binary mixture of rigid spheres. Elementary analysis is used
also to establish a basic flow condition.
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1. Introduction

In a recent work, Garcia, Siewert and Williams [1] reported explicit forms of the
collision operators required to establish the linearized Boltzmann equation for a
binary mixture of rigid spheres that are assumed to scatter isotropically in the
center-of-mass system. And so here we report the way in which we have verified
that six exact solutions (corresponding to conservation of number, energy and
momentum) and a flow condition are valid. While the established results are
exactly what could have been foreseen, we have found that considerable work was
required to show explicitly that the expected results are correct. In the process of
establishing the results reported herein, we have also gained more confidence that
the explicit, but complicated, forms for the collision operators reported in Ref. [1]
are correct.

To start this work, we write the coupled, linearized Boltzmann equations, for
the considered binary mixture of rigid spheres, in the form reported by Garcia,
Siewert and Williams [1], viz.

c · ∇rhα(r, c) + $α(c)hα(r, c) =
2∑

β=1

∫
e−c′2

Kα,β(c′ : c)hβ(r, c′)d3c′, α = 1, 2,

(1)
where r, with Cartesian coordinates {x, y, z}, is the spatial variable and c, with

abdu
Text Box
2006

abdu
Text Box
2006



1000 R. D. M. Garcia and C. E. Siewert ZAMP

coordinates {cx, cy, cz} and magnitude c, denotes the dimensionless velocity vector.
In addition

K1,1(c′ : c) = 4n1σ1,1π
1/2P(c′ : c) + n2σ1,2π

1/2F1,2(c′ : c), (2)

K1,2(c′ : c) = 4n2σ1,2π
1/2G1,2(c′ : c), (3)

K2,1(c′ : c) = 4n1σ2,1π
1/2G2,1(c′ : c), (4)

and
K2,2(c′ : c) = 4n2σ2,2π

1/2P(c′ : c) + n1σ2,1π
1/2F2,1(c′ : c). (5)

Here

P(c′ : c) =
1
π

( 2
|c′ − c|exp

{ |c′ × c|2
|c′ − c|2

}
− |c′ − c|

)
(6)

is the basic kernel for a single-species gas used by Pekeris [2],

Fα,β(c′ : c) = F(aα,β ; c′ : c), (7)

and
Gα,β(c′ : c) = G(aα,β ; c′ : c), (8)

where
aα,β = (mβ/mα)1/2, (9)

F(a; c′ : c) =
(a2 + 1)2

a3π|c′ − c|exp
{

a2 |c′ × c|2
|c′ − c|2 −

(1− a2)2(c′2 + c2)
4a2

− (a4 − 1)c′ · c
2a2

}
,

(10)
and

G(a; c′ : c) =
1
aπ

∣∣c′ − ac
∣∣[J(a; c′ : c)− 1]. (11)

In addition,
$α(c) = $(1)

α (c) + $(2)
α (c), (12)

with
$(β)

α (c) = 4π1/2nβσα,βaβ,αν(aα,βc) (13)

and

ν(c) =
2c2 + 1

c

∫ c

0

e−x2
dx + e−c2

. (14)

Since Eq. (1) is written in terms of a dimensionless velocity variable c, we note
that the basic velocity distribution functions are available from

fα(r,v) = fα,0(v)[1 + hα(r, λ1/2
α v)], (15)

where λα = mα/(2kT0) and where

fα,0(v) = nα(λα/π)3/2e−λαv2
(16)
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is the Maxwellian distribution for nα particles of mass mα in equilibrium at tem-
perature T0. Note that k is the Boltzmann constant. To complete our starting
equations, we note from Ref. [1] that

J(a; c′ : c) =
(a + 1/a)2

2∆(a; c′ : c)
exp

{−2C(a; c′ : c)
(a− 1/a)2

}
sinh

{2∆(a; c′ : c)
(a− 1/a)2

}
, a 6= 1,

(17a)
and

J(a; c′ : c) =
1

|c′ − c|2 exp
{ |c′ × c|2
|c′ − c|2

}
, a = 1, (17b)

where, to write Eq. (17a), we have used the definitions [1]

∆(a; c′ : c) =
{
C2(a; c′ : c) + (a− 1/a)2|c′ × c|2}1/2 (18)

and
C(a; c′ : c) = c′2 + c2 − (a + 1/a)c′ · c. (19)

Finally, and to be clear, we note that we use σα,β to denote the differential-
scattering cross section, which for the case of rigid-sphere scattering that is isotropic
in the center-of-mass system, we write, after consultation with Chapman and Cowl-
ing [3], as

σα,β =
1
4

(dα + dβ

2

)2

, (20)

where d1 and d2 are the atomic diameters of the two types of gas particles.

2. Exact solutions

To start this section, we first rewrite Eq. (1) as

c · ∇rH(r, c) + Σ(c)H(r, c) =
∫

e−c′2
K(c′ : c)H(r, c′)d3c′, (21)

where

H(r, c) =
[

h1(r, c)
h2(r, c)

]
(22)

and

K(c′ : c) =
[

K1,1(c′ : c) K1,2(c′ : c)
K2,1(c′ : c) K2,2(c′ : c)

]
. (23)

Here the elements of the scattering matrix K(c′ : c) are given by Eqs. (2–5), and

Σ(c) =
[

$1(c) 0
0 $2(c)

]
. (24)

In a recent work [4] in which the McCormack model [5] was used to describe a
binary mixture of rigid spheres, six exact solutions related to the conservation of
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number, energy and momentum were reported (in our current notation) as

H1(r, c) = H1 =
[

1
0

]
, H2(r, c) = H2 =

[
0
1

]
, (25a,b)

H3(r, c) = H3(c) = c2

[
1
1

]
, H4(r, c) = H4(c) = cµ

[
1

a1,2

]
, (25c,d)

H5(r, c) = H5(c) = c(1− µ2)1/2 cos φ

[
1

a1,2

]
, (25e)

and

H6(r, c) = H6(c) = c(1− µ2)1/2 sin φ

[
1

a1,2

]
. (25f)

Here we use the spherical coordinates {c, θ, φ}, with µ = cos θ, to define the
dimensionless vector c so that cz = cµ, cx = c(1 − µ2)1/2 cos φ and
cy = c(1 − µ2)1/2 sinφ. In the following section, we proceed to show that these
equations define solutions also for the linearized Boltzmann equations considered
in this work.

3. Proofs

While it may not be difficult to anticipate that the expressions listed as Eqs. (25)
define exact solutions of Eq. (21), we have found that considerable work is required
in order to prove (by direct substitution) that these solutions are correct.

3.1 Conservation of number and a flow condition

We wish to show that Eqs. (25a) and (25b) define valid solutions (that can be
related to the conservation of number) of Eq. (21), and so we first define

P(0)(c) =
∫

e−c′2P(c′ : c)d3c′, (26)

F (0)
α,β(c) =

∫
e−c′2Fα,β(c′ : c)d3c′, (27)

and

G(0)
α,β(c) =

∫
e−c′2Gα,β(c′ : c)d3c′, (28)

where Eqs. (6–11) and (17–19) are to be used. And so to verify that H1(r, c) and
H2(r, c) are valid solutions, we must show that

$1(c) = π1/2[4n1σ1,1P(0)(c) + n2σ1,2F (0)
1,2 (c)] (29a)
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and
$2(c) = π1/2[4n2σ2,2P(0)(c) + n1σ2,1F (0)

2,1 (c)]. (29b)

If we use c as a reference direction and change the integration variable from c′ to
w = c′− c, with d3c′ = d3w, then we can easily find from Eqs. (26) and (27) that

P(0)(c) = ν(c) (30)

and
F (0)

α,β(c) = 4aβ,αν(aα,βc), (31)

where ν(c) is given by Eq. (14). We can now use Eqs. (30) and (31) to show that
Eqs. (29) are valid and thus that H1(r, c) and H2(r, c) are solutions of Eq. (21).

Now, considering Eqs. (8) and (11), we write

Gα,β(c′ : c) = Xα,β(c′ : c)− 1
π

∣∣aβ,αc′ − c
∣∣, (32)

where
Xα,β(c′ : c) =

1
π

∣∣aβ,αc′ − c
∣∣J(aα,β ; c′ : c). (33)

To evaluate Eq. (28) we again use c as a reference direction, but this time we
change the integration variable from c′ to w = aβ,αc′ − c, with d3c′ = a3

α,βd3w,
so that we can write, after we have integrated the second term in Eq. (32),

G(0)
α,β(c) = X (0)

α,β(c)− aβ,αν(aα,βc), (34)

where
X (0)

α,β(c) =
∫

e−c′2Xα,β(c′ : c)d3c′. (35)

If we define w, relative to the vector c, in terms of the spherical coordinates
{w, θw, φw}, with µw = cos θw, then we find we can write, after an integration
over the azimuthal angle φw,

X (0)
α,β(c) = (1/2)aα,β(1 + a2

α,β)2
∫ ∞

0

∫ 1

−1

E[B(c, w, µw), w]
w2

B(c, w, µw)
dµwdw,

(36)
where

E(x,w) = exp{−A(x− w)2} − exp{−A(x + w)2}, (37)

with

A =
a2

α,β

(1− a2
α,β)2

, (38)

and

B(c, w, µw) = {a4
α,βw2 + 2a2

α,β(a2
α,β − 1)cwµw + (1− a2

α,β)2c2}1/2. (39)

In order to avoid especially heavy notation we suppress, when convenient, some
{α, β} dependence of our intermediate expressions. After changing the variable of
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integration µw to B(c, w, µw) in Eq. (36) and then putting B(c, w, µw) = x in the
resulting equation , we can rewrite Eq. (36) as

X (0)
α,β(c) =

(1 + a2
α,β)2

2aα,βc(a2
α,β − 1)

∫ ∞

0

F (c, w)wdw, (40)

where

F (c, w) =
∫ a2

α,βw+(a2
α,β−1)c

a2
α,βw−(a2

α,β−1)c

E(x,w)dx. (41)

At this point we can use “integration by parts” [with dv = wdw and u = F (c, w)]
to deduce from Eq. (40) that

X (0)
α,β(c) = aβ,αν(aα,βc) (42)

so that, finally,
G(0)

α,β(c) = 0. (43)

We can now use Eqs. (30), (31) and (43) to prove a desired flow condition. And
so, we multiply Eq. (1) by exp{−c2}d3c and integrate over all c to find, after we
interchange c and c′ in the resulting term with the repeated integrals,∫

e−c2
c · ∇rhα(r, c)d3c = 0, α = 1, 2. (44)

In obtaining Eq. (44), we have used, in addition to Eqs. (30), (31) and (43), the
facts that

Kα,α(c′ : c) = Kα,α(c : c′) (45)

and
Gα,β(c′ : c) = aβ,αGβ,α(c : c′). (46)

3.2 Conservation of energy

To show, by direct substitution, that H3(r, c) is a solution of Eq. (21) some
additional integrals must be evaluated. First of all, we define

P(2)(c) =
∫

e−c′2P(c′ : c)c′2d3c′ (47)

and
F (2)

α,β(c) =
∫

e−c′2Fα,β(c′ : c)c′2d3c′, (48)

which we can integrate to find

P(2)(c) = c2ν(c) (49)

and

F (2)
α,β(c) = 2[π1/2erf(aα,βc)p1(c) + e−(aα,βc)2p2(c)]/[ca2

α,β(a2
α,β + 1)2], (50)
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where

p1(c) = 2a2
α,β(a4

α,β + 1)c4 + (9a4
α,β − 2a2

α,β + 1)c2 + 4a2
α,β + 1 (51)

and
p2(c) = 2aα,β(a4

α,β + 1)c3 + 2aα,β(4a2
α,β − 1)c. (52)

We can now introduce Eq. (32) into

G(2)
α,β(c) =

∫
e−c′2Gα,β(c′ : c)c′2d3c′ (53)

to obtain

G(2)
α,β(c) = X (2)

α,β(c)− a2
β,α

4c

[
(5 + 6a2

α,βc2)π1/2erf(aα,βc) + 6aα,βc e−(aα,βc)2
]

(54)

where
X (2)

α,β(c) =
∫

e−c′2Xα,β(c′ : c)c′2d3c′. (55)

We find we can rewrite Eq. (55) as

X (2)
α,β(c) =

(1 + a2
α,β)2

2aα,βc(a2
α,β − 1)2

∫ ∞

0

T (c, w)wdw, (56)

where

T (c, w) =
∫ a2

α,βw+(a2
α,β−1)c

a2
α,βw−(a2

α,β−1)c

E(x,w)[x2 − a2
α,βw2 + (a2

α,β − 1)c2]dx. (57)

We have evaluated the repeated integral defined by Eq. (56) and used the result
with Eq. (54) to find

G(2)
α,β(c) = [π1/2erf(aα,βc)p3(c) + e−(aα,βc)2p4(c)]/[2ca2

α,β(a2
α,β + 1)2], (58)

where
p3(c) = 4a4

α,βc4 + 4a2
α,β(1− 2a2

α,β)c2 − 4a2
α,β − 1 (59)

and
p4(c) = 4a3

α,βc3 + 2aα,βc(1− 4a2
α,β). (60)

Combining Eqs. (50) and (58), we find

F (2)
α,β(c) + 4G(2)

α,β(c) = 4c2aβ,αν(aα,βc), (61)

which we can use, along with Eq. (49), to confirm that the conditions

$1(c)c2 = π1/2
{
4n1σ1,1P(2)(c) + n2σ1,2

[F (2)
1,2 (c) + 4G(2)

1,2(c)
]}

(62a)

and

$2(c)c2 = π1/2
{
4n2σ2,2P(2)(c) + n1σ2,1

[F (2)
2,1 (c) + 4G(2)

2,1(c)
]}

(62b)

are satisfied, and so we conclude that H3(r, c) is a solution of Eq. (21).
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3.3. Conservation of momentum

In order to confirm that H4(r, c) is a solution of Eq. (21), we consider the integrals

P(1)(c) =
∫

e−c′2P(c′ : c)c′µ′d3c′, (63)

F (1)
α,β(c) =

∫
e−c′2Fα,β(c′ : c)c′µ′d3c′, (64)

and
G(1)

α,β(c) =
∫

e−c′2Gα,β(c′ : c)c′µ′d3c′. (65)

Again, we use c as a reference direction and change the integration variable from
c′ to w = c′ − c, with d3c′ = d3w. We also let k denote a unit vector in the
positive z direction, so that with c and c′ referred to k, we can write

c′µ′ = k · c′, cµ = k · c, and c′µ′ = cµ + k ·w. (66a,b,c)

In this way, we can rewrite Eqs. (63), (64), and (65) as

P(1)(c) = cµP(0)(c) +
∫

e−(w+c)2P(w + c : c)(k ·w)d3w, (67)

F (1)
α,β(c) = cµF (0)

α,β(c) +
∫

e−(w+c)2Fα,β(w + c : c)(k ·w)d3w, (68)

and
G(1)

α,β(c) =
∫

e−(w+c)2Gα,β(w + c : c)(k ·w)d3w, (69)

where we have used Eq. (43). Now, if we use θk, with µk = cos θk, and φk to locate
k with respect to the vector c and θw, with µw = cos θw, and φw to locate w with
respect to the vector c, so that d3w = w2dµwdφwdw, we can write

k ·w = wµ∗, (70)

where
µ∗ = µwµk + (1− µ2

w)1/2(1− µ2
k)1/2 cos(φw − φk). (71)

Using Eqs. (70) and (71) in Eqs. (67), (68), and (69), we can carry out the inte-
grations to find

P(1)(c) = cµP(0)(c), (72)

F (1)
α,β(c) = cµF (0)

α,β(c)

+ ∆1(µk)[π1/2erf(aα,βc)p5(c) + e−(aα,βc)2p6(c)]/[c2a2
α,β(a2

α,β + 1)], (73)

and

G(1)
α,β(c) = −∆1(µk)[π1/2erf(aα,βc)p5(c)+e−(aα,βc)2p6(c)]/[4c2a3

α,β(a2
α,β+1)], (74)
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where
1
2π

∫ 2π

0

(k ·w)dφw = ∆1(µk)wµw, (75)

with
∆1(µk) = µk. (76)

In addition,
p5(c) = 1− 4a2

α,βc2(1 + a2
α,βc2), (77)

and
p6(c) = −2aα,βc(1 + 2a2

α,βc2). (78)

Combining Eqs. (30), (31), (72), (73) and (74), we can now verify that the condi-
tions

$1(c)cµ = π1/2
{
4n1σ1,1P(1)(c) + n2σ1,2

[F (1)
1,2 (c) + 4a1,2G(1)

1,2(c)
]}

(79a)

and

$2(c)cµ = π1/2
{
4n2σ2,2P(1)(c) + n1σ2,1

[F (1)
2,1 (c) + 4a2,1G(1)

2,1(c)
]}

(79b)

are satisfied, and so we conclude that H4(r, c) is a solution of Eq. (21).
To show that H5(r, c) and H6(r, c) are solutions to Eq. (21), we make use of

two Cartesian reference frames: the first is defined by unit vectors {i, j, k}, while
the second is defined by unit vectors {l,m,n}. These reference frames are chosen
so that

c = c[sin θ cos φ i + sin θ sinφ j + cos θ k] (80)

and
c = cn. (81)

In addition,
c′ = c′[sin θ′ cos φ′ i + sin θ′ sin φ′ j + cos θ′ k]. (82)

Recalling that w = c′ − c, we can write

k ×w · i = c′(1− µ′2)1/2 cos φ′ − c(1− µ2)1/2 cos φ (83a)

and
k ×w · j = c′(1− µ′2)1/2 sin φ′ − c(1− µ2)1/2 sin φ. (83b)

Continuing to use θk and φk to locate k with respect to the vector c and θw and
φw to locate w with respect to the vector c, we can write

k ×w = α(θk, φk, θw, φw) l + β(θk, φk, θw, φw)m + γ(θk, φk, θw, φw)n, (84)

where

α(θk, φk, θw, φw) = w[cos θw sin θk sinφk − cos θk sin θw sin φw], (85a)

β(θk, φk, θw, φw) = w[cos θk sin θw cos φw − cos θw sin θk cos φk], (85b)
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and
γ(θk, φk, θw, φw) = w[sin θk sin θw sin(φw − φk)]. (85c)

Proceeding, we introduce

P(c)(c) =
∫

e−c′2P(c′ : c)c′(1− µ′2)1/2 cos φ′d3c′, (86a)

F (c)
α,β(c) =

∫
e−c′2Fα,β(c′ : c)c′(1− µ′2)1/2 cos φ′d3c′, (86b)

G(c)
α,β(c) =

∫
e−c′2Gα,β(c′ : c)c′(1− µ′2)1/2 cos φ′d3c′, (86c)

P(s)(c) =
∫

e−c′2P(c′ : c)c′(1− µ′2)1/2 sin φ′d3c′, (87a)

F (s)
α,β(c) =

∫
e−c′2Fα,β(c′ : c)c′(1− µ′2)1/2 sinφ′d3c′, (87b)

and

G(s)
α,β(c) =

∫
e−c′2Gα,β(c′ : c)c′(1− µ′2)1/2 sin φ′d3c′, (87c)

which, after we note Eqs. (83), we can rewrite as

P(c)(c) = c(1−µ2)1/2 cos φP(0)(c)+
∫

e−(w+c)2P(w+c : c)(k×w ·i)d3w, (88a)

F (c)
α,β(c) = c(1− µ2)1/2 cos φF (0)

α,β(c) +
∫

e−(w+c)2Fα,β(w + c : c)(k ×w · i)d3w,

(88b)

G(c)
α,β(c) =

∫
e−(w+c)2Gα,β(w + c : c)(k ×w · i)d3w, (88c)

P(s)(c) = c(1−µ2)1/2 sinφP(0)(c)+
∫

e−(w+c)2P(w+c : c)(k×w ·j)d3w, (89a)

F (s)
α,β(c) = c(1− µ2)1/2 sin φF (0)

α,β(c) +
∫

e−(w+c)2Fα,β(w + c : c)(k ×w · j)d3w,

(89b)
and

G(s)
α,β(c) =

∫
e−(w+c)2Gα,β(w + c : c)(k ×w · j)d3w, (89c)

where again we have used Eq. (43). At this point, we can use Eq. (84) to express
k ×w · i and k×w · j in terms of θk, φk, θw, and φw and integrate the resulting
forms to find

1
2π

∫ 2π

0

(k ×w · i)dφw = ∆c(θk, φk)wµw (90a)
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and
1
2π

∫ 2π

0

(k ×w · j)dφw = ∆s(θk, φk)wµw, (90b)

where
∆c(θk, φk) = sin θk[(i · l) sin φk − (i ·m) cos φk] (91a)

and
∆s(θk, φk) = sin θk[(j · l) sin φk − (j ·m) cos φk]. (91b)

Noting that ∆c(θk, φk)wµw and ∆s(θk, φk)wµw enter the current calculations in
exactly the same way that ∆1(µk)wµw entered the proof that H4(r, c) is a solu-
tion, we conclude that the necessary cancellation takes place when combining the
three Eqs. (88) [and the three Eqs. (89)] so that we obtain the desired result: the
conditions

$1(c)c(1− µ2)1/2 cos φ

= π1/2
{
4n1σ1,1P(c)(c) + n2σ1,2

[F (c)
1,2(c) + 4a1,2G(c)

1,2(c)
]}

, (92a)

$2(c)c(1− µ2)1/2 cos φ

= π1/2
{
4n2σ2,2P(c)(c) + n1σ2,1

[F (c)
2,1(c) + 4a2,1G(c)

2,1(c)
]}

, (92b)

$1(c)c(1− µ2)1/2 sinφ

= π1/2
{
4n1σ1,1P(s)(c) + n2σ1,2

[F (s)
1,2 (c) + 4a1,2G(s)

1,2(c)
]}

, (93a)

and

$2(c)c(1− µ2)1/2 sinφ

= π1/2
{
4n2σ2,2P(s)(c) + n1σ2,1

[F (s)
2,1 (c) + 4a2,1G(s)

2,1(c)
]}

, (93b)

are satisfied, and H5(r, c) and H6(r, c) are solutions of Eq. (21).

4. Concluding remarks

In this work we have reported some solutions to an exact and explicit formulation
of the (vector) linearized Boltzmann equation relevant to a binary mixture of
rigid spheres that scatter isotropically in the center-of-mass system. The solutions
(collisional invariants) listed as Eqs. (25) are consequences of the conservation of
number, energy, and momentum. While these solutions are easily anticipated,
we found that to prove (by direct substitution into the Boltzmann equation) the
correctness of these solutions and to establish a standard flow condition were
nontrivial tasks. Since we have worked with a recently reported explicit form
of the linearized Boltzmann equation (for a binary mixture of rigid-spheres), we
have demonstrated the usefulness (and provided additional evidence about the
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correctness) of the form of the Boltzmann equation established by Garcia, Siewert
and Williams [1].

As in previous works on the linearized Boltzmann equation for a single-species
gas [6] and on the McCormack model for binary mixtures [4], we believe that, in
addition to the class of solutions listed in Eqs. (25), we can expect also to find
(asymptotic) solutions that are linear in the spatial variables. While, at this point,
we are not able to define these solutions explicitly for the considered linearized
Boltzmann equation for a binary mixture of rigid spheres, we do intend to pursue
such work.
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