Z. angew. Math. Phys.(2006) 999-1010
0044-2275/05/060999-12

DOIT 10.1007 /s00033-005-0027-4 Zeitschrift fiir angewandte

© 2006 Birkhiuser Verlag, Basel Mathematik und Physik ZAMP

Some exact results basic to the linearized Boltzmann
equations for a binary mixture of rigid spheres

R. D. M. Garcia and C. E. Siewert

Abstract. Six exact solutions (related to the conservation of number, energy and momentum)
of the linearized Boltzmann equations for a binary mixture of rigid spheres, for the case of
isotropic scattering in the center-of-mass system, are reported. The verification of the reported
exact solutions (collisional invariants) is based on a recently reported explicit formulation of the
linearized Boltzmann equation for a binary mixture of rigid spheres. Elementary analysis is used
also to establish a basic flow condition.
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1. Introduction

In a recent work, Garcia, Siewert and Williams [1] reported explicit forms of the
collision operators required to establish the linearized Boltzmann equation for a
binary mixture of rigid spheres that are assumed to scatter isotropically in the
center-of-mass system. And so here we report the way in which we have verified
that six exact solutions (corresponding to conservation of number, energy and
momentum) and a flow condition are valid. While the established results are
exactly what could have been foreseen, we have found that considerable work was
required to show explicitly that the expected results are correct. In the process of
establishing the results reported herein, we have also gained more confidence that
the explicit, but complicated, forms for the collision operators reported in Ref. [1]
are correct.

To start this work, we write the coupled, linearized Boltzmann equations, for
the considered binary mixture of rigid spheres, in the form reported by Garcia,
Siewert and Williams [1], viz.

2
¢V, ho(r,e) + @wa(c)ha(r,c) = Z /e_c/ZKa’ﬁ(c’ ce)hg(r,d)d*d, a=1,2,
B=1

(1)

where 7, with Cartesian coordinates {z,y, z}, is the spatial variable and ¢, with
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coordinates {cg, ¢y, ¢, } and magnitude ¢, denotes the dimensionless velocity vector.
In addition

Ki1(¢ 2 ¢) = dnyoi 17/ *P(c - €) + naoy om /2 Fia(c €, (2)
Kia(c 1 €) = dnzo1 212G (¢ - €), (3)
Kg’l(cl : C) = 4TL10'2’17T1/2Q’2’1(C/ : C), (4)
and
KQ’Q(C/ : C) = 4712(72’271'1/27)(61 : C) + 7’L10'2’17T1/2.7:2’1(C/ : C). (5)
Here )
1 2 |c’ x ¢
P(c :c) = ;(|c’—c|eXp{\c’—c|2} — \c’—c|) (6)
is the basic kernel for a single-species gas used by Pekeris [2],
Fap(c :c)=F(anp;c :c), (7)
and
Gap(c i ¢) =G(aap;c : c), (8)
where
ta,5 = (mg/ma)'/?, (9)
2 2 / 2 N2 42 2 4 /
o ~ (a®+1) {2|c><c| _(1—a)(c —l—c)_(a—l)c-C}
Flaieie) = a’wle — c|e “ |¢/ — ¢|? 4a? 2a? ’
(10)
and
i) = —|c - ‘i) -1 11
G(a;c' = ¢) p |’ — ac|[J(a;c : ) — 1] (11)
In addition,
wa(c) = wP(c) + P (c), (12)
with
@ P (¢) = 47 g0 0 pas.av(ae, sc) (13)
and )
2 1 [
v(c) = ¢ c+ / e dr+e . (14)
0

Since Eq. (1) is written in terms of a dimensionless velocity variable ¢, we note
that the basic velocity distribution functions are available from

fa(r,0) = fao(0)[1+ ha(r, A/ ?v)], (15)
where A, = mq/(2kTy) and where

fa0(v) = na(Aa/m)? e Aev" (16)
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is the Maxwellian distribution for n, particles of mass m,, in equilibrium at tem-
perature Ty. Note that k is the Boltzmann constant. To complete our starting
equations, we note from Ref. [1] that

, a a)? —2C(a;c 1 e)y . Ala;c :c
Ja;e’ze) = Q(A(—Z;lc/’ :)c)eXp{ (Qa(l/a)2 )}smh{ﬁ}, a7 1,

(17a)
and o 2
1 c' xc
o) = —
J(a;c :e) = |c’—c|2€Xp{\c’—c|2}’ 1, (17b)
where, to write Eq. (17a), we have used the definitions [1]
Ala;c s ¢) = {C2(a;c : ¢) + (a — 1/a)| x c|?}"/* (18)
and
Cla:c ie) =+ = (a+1/a)c - c. (19)

Finally, and to be clear, we note that we use 0,3 to denote the differential-
scattering cross section, which for the case of rigid-sphere scattering that is isotropic
in the center-of-mass system, we write, after consultation with Chapman and Cowl-
ing [3], as

1/do +dg\2
U"’B:Z( 2 ﬂ) ’ (20)
where d; and ds are the atomic diameters of the two types of gas particles.
2. Exact solutions
To start this section, we first rewrite Eq. (1) as
¢V, H(r,c) + Z(c)H(r,c) = / K () H(r )P, (21)
where
_ hl (’I‘, C)
Hre) = | 1) (22
and

Kii1(d:¢c) Kia(cd:c) } (23)

K(d:c)= { Koi(c' :¢) Kaa(c :c)

Here the elements of the scattering matrix K(c' : ¢) are given by Egs. (2-5), and

() = [ wlo(C) wf(c) ] . (24)

In a recent work [4] in which the McCormack model [5] was used to describe a
binary mixture of rigid spheres, six exact solutions related to the conservation of
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number, energy and momentum were reported (in our current notation) as

1

H\(r,c)=H, = { .

} . Hy(r,c)— Hy = [ ; ] : (25a,b)

H;(r,c) = H3(c) =2 [ i } , Hy(r,c) = Hy(c) =cp [ a112 ] . (25¢,d)
Hi(r,c) = Hs(c) = c(1 — 1)/ cos & { a112 } , (250)

and
H(r,¢) = He(c) = e(1 — p2)Y?sin o [ a; } . (25f)

Here we use the spherical coordinates {c, 8, ¢}, with 1 = cosf, to define the
dimensionless vector ¢ so that ¢, = cu, ¢ = (1 — p?)Y/?cos¢ and
cy = c(1— ,u2)1/2 sin ¢. In the following section, we proceed to show that these
equations define solutions also for the linearized Boltzmann equations considered
in this work.

3. Proofs

While it may not be difficult to anticipate that the expressions listed as Eqs. (25)
define exact solutions of Eq. (21), we have found that considerable work is required
in order to prove (by direct substitution) that these solutions are correct.

3.1 Conservation of number and a flow condition

We wish to show that Egs. (25a) and (25b) define valid solutions (that can be
related to the conservation of number) of Eq. (21), and so we first define

77(0)(0) = /efC/QP(c' ce)d3d, (26)
FO© = [ Fuple s o', (27)

and
Ghe) = [ Guste s e, @)

where Eqgs. (6-11) and (17-19) are to be used. And so to verify that H{(r,¢) and
H (7, c) are valid solutions, we must show that

w1 (C) = 771/2[4711017177(0)(0) + 7120'1)2.7:1(?2) (C)] (293,)
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and
(7op) (C) = 7r1/2[4n202,273(0) (C) + 7’L10'2’1f2(?1) (C)] (29b)

If we use ¢ as a reference direction and change the integration variable from ¢’ to
w = ¢ — ¢, with d*¢’ = d®w, then we can easily find from Egs. (26) and (27) that

PO () = v(c) (30)

and .
F %(c) = 4dag oV (Gq,pC), (31)

a1

where v(c) is given by Eq. (14). We can now use Egs. (30) and (31) to show that
Egs. (29) are valid and thus that H1(r,¢) and H(r,¢) are solutions of Eq. (21).
Now, considering Egs. (8) and (11), we write

1
gaﬁ(c/ic)==ﬁb¢ﬂc/ic)—';\a@acl"CL (32)

where )
Xop(c i e) = =|agac — c|J(anp;c : €). (33)
m

To evaluate Eq. (28) we again use ¢ as a reference direction, but this time we
change the integration variable from ¢ to w = ag ¢ — ¢, with d*¢’ = aiﬂdgm
so that we can write, after we have integrated the second term in Eq. (32),

(@) = X)(€) — ap avlaa,s0), (34)
where
200 = [ Husle s et (35)

If we define w, relative to the vector ¢, in terms of the spherical coordinates
{w, 0y, &}, with p,, = cosb,, then we find we can write, after an integration
over the azimuthal angle ¢,,,

o] 1 2
(0) 2 \2
X, 5(c) = (1/2)aqp(1+ ag / / E|B(c,w, ty), W = dp,,dw,
&) = (1/Dan s+ a2 [ [ BB w0l
(36)
where
B(z,w) = exp{—A(z — w)?} — exp{—A(z + w)?}, (37)
with
A= —20
rE >
and
B(c,w, jiw) = {ah, gw® + 2a2 g(a2 5 — Dewpy + (1 — aiﬁ)QcQ}l/z. (39)

In order to avoid especially heavy notation we suppress, when convenient, some
{a, 8} dependence of our intermediate expressions. After changing the variable of
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integration ., to B(c,w, ) in Eq. (36) and then putting B(c, w, ft,y) = « in the
resulting equation , we can rewrite Eq. (36) as

1+ad2 ,)? oo
(0) (c) = (—aﬁ/ F(e,w)wdw (40)
T e VI R
where
ai,ﬁw-l-(aiﬁ—l)c
F(c,w) :/ E(z,w)dz. (41)
ai”@w—(aiﬁ—l)c

At this point we can use “integration by parts” [with dv = wdw and u = F(c, w)]
to deduce from Eq. (40) that

0
X (e) = ag.av(aa,se) (42)
so that, finally,
0
(@) = 0. (43)

We can now use Egs. (30), (31) and (43) to prove a desired flow condition. And
so, we multiply Eq. (1) by exp{—cQ}dBC and integrate over all ¢ to find, after we
interchange ¢ and ¢’ in the resulting term with the repeated integrals,

/e_czc Voha(r,e)d®c=0, a=1,2. (44)

In obtaining Eq. (44), we have used, in addition to Egs. (30), (31) and (43), the
facts that
Koold ie)=Kua(c: ) (45)

and
Gap(c 1 ¢) =apafpalc: ). (46)

3.2 Conservation of energy

To show, by direct substitution, that Hgz(r,c) is a solution of Eq. (21) some
additional integrals must be evaluated. First of all, we define

PP (e) = /e’CQP(c’ e)dadd (47)

and

F2 (c) = /efc Fap(c: c)c’zdgc’, (48)

and

FEU(e) = 2[n 2erf(an ge)pa(c) + e @09 py(e)]/[ca® g(al 5+ 1)%],  (50)
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where
pi(c) = 2a2 s(ap g+ 1t + (9aiﬁ —2a2 5+ 1) +4d2 5+ 1 (51)

and
p2(c) = 2aq,5(ag g + 1)’ + 2a4,5(4a2 5 — 1)c. (52)

We can now introduce Eq. (32) into
gf)ﬂ(c) = /e_cﬁga’ﬁ(c’ ce)dPdd (53)
to obtain

2
a
Glh(e) = X 2(e) = —22[(5 4 6a2, o) Perf(an o) + Gag gee 0] (54)

where
Xé[),(c) = /e_Cl2 wp(c C)C/ngc’. (55)
We find we can rewrite Eq. (55) as
(1 —+ (12 )2 %)
X(?) — a,3 / T d 56
s (®) 2aq,pc(al 5 —1)2 Jo (e, whwdw, (56)
where

saurt(a,s— e 2 2 2 2 2
T(c,w) = / E(z,w)[z" — ag, gw* + (a5 — 1)c7|dz. (57)
aiﬁwf(aiﬁfl)c
We have evaluated the repeated integral defined by Eq. (56) and used the result
with Eq. (54) to find

Garp(©) = [m'Zerf(an, pe)ps(c) + o™= pa(e)]/ 200} y(ad 5 + 1], (58)
where
ps(c) = dap zc* + 4a§75(1 —2a2 5)c* —4al 53— 1 (59)
and
pa(c) = 4ad 3¢ + 2aq,5c(1 — 4a2 p). (60)
Combining Egs. (50) and (58), we find
_7-'0(‘2%(0) + 495}3(0) = 4cag av(aa.pc), (61)
which we can use, along with Eq. (49), to confirm that the conditions
wy(c)c® = 7r1/2{4n101,173(2) (c) + n2o1 2 [.7:1(22) (e) + 49122) (c)]} (62a)
and
wa(c)c? = w1/2{4n202,273(2) (€) + n1o21 [.7:2(21) (c) + 4g§21)(c)] } (62b)

are satisfied, and so we conclude that H3(r, c) is a solution of Eq. (21).



1006 R. D. M. Garcia and C. E. Siewert ZAMP
3.3. Comnservation of momentum

In order to confirm that H 4 (7, ¢) is a solution of Eq. (21), we consider the integrals

rP(l) (C) _ /e_CIQ,P(C/ . c)c///dgcl, (63)
Fe) = [ Fanle i, (64)

and
G (e) = /076'2%,5(0' se)d e (65)

Again, we use c as a reference direction and change the integration variable from
¢ tow = ¢ — e, with d®¢ = d®w. We also let k denote a unit vector in the
positive z direction, so that with ¢ and ¢’ referred to k, we can write

dy=k-¢, cu=k-c, and dp =cu+k- -w. (66a,b,c)
In this way, we can rewrite Eqgs. (63), (64), and (65) as
PO (e) = cuP O (e) + / e~ Wt P(w + ¢ : ¢)(k - w)dPw, (67)
FUe) = euF(c) + / W, swt e o)k wdw,  (68)
and
g{th(e) = / e TG s(w + e o) (k- w)dw, (69)

where we have used Eq. (43). Now, if we use 0y, with p = cos 6, and ¢y to locate
k with respect to the vector ¢ and 6,,, with u,, = cos#f,,, and ¢,, to locate w with
respect to the vector ¢, so that d®w = w2du,,d¢,dw, we can write

k-w = wy,, (70)

where
f = prope + (1= )2 (1= p2) 2 cos(dw — dr).- (71)

Using Eqs. (70) and (71) in Egs. (67), (68), and (69), we can carry out the inte-
grations to find
PW(e) = P (e), (72)

F(e) = enFl(e)
+ Ay (i) [ %erf(an ge)ps (¢) + e @59 pg(0)] /[P 4(a 5 + 1)), (73)
and

Giih(e) = —Ax(u) " 2erf(an,se)ps () +e~ "0 pg ()] /[4c%al 5(a 5+1)], (74)
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where 0
1 iy
2 [, Uerw)déw = Aau)wp, (75)
with
A1 (pk) = pi- (76)
In addition,
p5(c) =1- 4ai,662(1 + ai7ﬁc2), (77)
and
pG(C) = —2aaﬁc(1 + 2ai)ﬂc2). (78)

Combining Egs. (30), (31), (72), (73) and (74), we can now verify that the condi-
tions

w(c)ep = 7r1/2{4n101717)(1)(c) + n201 2 [.7:1(12)(0) + 4@1,2Q§712)(c)]} (79a)

)

and
wa(c)en = 7r1/2{4n2027277(1)(c) +n102,1 [féll)(c) + 4a2’1gé}1) (o))} (79b)

are satisfied, and so we conclude that H4(r,¢) is a solution of Eq. (21).

To show that H5(r,c) and Hg(r,c) are solutions to Eq. (21), we make use of
two Cartesian reference frames: the first is defined by unit vectors {4, 7, k}, while
the second is defined by unit vectors {l,m,n}. These reference frames are chosen
so that

c=c[sinfcos i+ sinfsingj + cos 0 k] (80)
and
c=cn. (81)
In addition,
c = [sinf cos¢' i+ sinb sin¢’ j + cosb’ kJ. (82)
Recalling that w = ¢’ — ¢, we can write
kxw-i=c(1—p>)"2cosd —c(l— p2)"/%cos ¢ (83a)
and
kxw-j=c(1—p>2sing — (1 — p2)"/?sin ¢. (83b)

Continuing to use 0 and ¢, to locate k with respect to the vector ¢ and 6,, and
¢ to locate w with respect to the vector ¢, we can write

kxw = a0k, or, 0w, Puw)l + B(Ok, O, 0w, Ow) M + v(O, Ok, 0w, Pu) 1, (84)
where
a0k, Pk, O, ) = w[cos by, sin Oy, sin ¢y, — cos O, sin 0, sin ¢,,), (85a)

B0k, Ok, O, ) = w(cos b, sin Oy, cos ¢y, — cos By, sin O, cos @), (85b)
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and

YOk Pr, O, Puw) = w[sin Oy sin O, sin(dw, — )] (85¢)
Proceeding, we introduce

PE(e) = /e_CIQP(c' o) (1 — p/*) 2 cos ¢/ d’e, (86a)
.7:6(5) (c) = /6_6,27a75(cl o) (1 — p/*) 2 cos ¢/d’e, (86D)
gg)ﬁ(c) = /e_c/zgaﬂ(c' ce)d (1= )2 cos ¢/ d®c, (86¢)
P (c) = /e_C/ZP(c' ce)d (1 — u’2)1/2 sin¢/d®¢, (87a)
fc(jz,(c) = /e_cn]:a,,@(c' ce)d (1 — //2)1/2 sin¢'d3¢, (87Db)

and
gioh(e) = / ¢ Gap(c ) (1 - p*) /2 sing/d’c/, (87c)

which, after we note Egs. (83), we can rewrite as

P (e) = c(1—p?)2 cos ¢PO) (¢) +/ e_(w+c)2’P(w+c c¢)(kxw-i)d*w, (88a)

]—'é%(c) =c(l— M2)1/2 cosqﬁfo(fz,(c) + /e—(w+c)2]__aﬁ(w te:e)kxw- i)d3w,
(88b)
e [Tt e i, (539

PE)(e) = e(1—p?)'/? sin¢P<0>(c)+/e*<w+@2p(w+c ce)(kxw-j)dw, (89a)

FEUe) = e(1 — u2) 2 sin o F ) (e) + /e*’”*cffw(w tee)kxw-§)dw,
(89D)

Giohle) = / e (Wt G, s(w+ e e)(k x w-j)d w, (89¢)

where again we have used Eq. (43). At this point, we can use Eq. (84) to express
kxw-tand k x w-j in terms of 0, ¢k, 0., and ¢,, and integrate the resulting

forms to find ,
1 g .
o (k x w-1)doy, = Ac(Ok, Or) Wity (90a)
0
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and )
2i (k X w - §)ddbw = A0, b)wjte, (90D)
™ Jo
where
Ac(Ok, r) = sinO;[(3 - 1) sin ¢, — (i - m) cos Py (91a)
and
As(Ok, o) = sinbi[(J - 1) sin ¢, — (5 - m) cos ¢y ]. (91b)

Noting that A (0k, dr)wi, and Ag(Og, dr)wp, enter the current calculations in
exactly the same way that Aj(ug)wp,, entered the proof that Hy(r,¢) is a solu-
tion, we conclude that the necessary cancellation takes place when combining the
three Egs. (88) [and the three Egs. (89)] so that we obtain the desired result: the
conditions
@1 (Q)e(1 — 12)? cos
= 7 /2{4n1011P (€) + noo 2 [FL9(€) + a1 2G5(c)] ). (92)
Da(e)e(l — p2) 12 cos
= 771/2{471202,273(0)(0) +ni021 [.7-'2(61)(0) + 4a2,1g§2(c)] }, (92b)
@1(c)e(l — p*)/? sin ¢
= 771/2{4n101,173(5) (C) + 7120172 [.7:1(?2) (C) + 4a1’2g£,52) (C)] }7 (93&)
and
@s(c)e(l — p*)/? sin ¢
= 771/2{47’L20'2’2'P(8) (C) + ’17110271 [‘F2(,Sl) (C) + 4a271g§’51) (C)] }7 (93]3)

are satisfied, and H5(r,c) and Hg(r, c) are solutions of Eq. (21).

4. Concluding remarks

In this work we have reported some solutions to an exact and explicit formulation
of the (vector) linearized Boltzmann equation relevant to a binary mixture of
rigid spheres that scatter isotropically in the center-of-mass system. The solutions
(collisional invariants) listed as Eqgs. (25) are consequences of the conservation of
number, energy, and momentum. While these solutions are easily anticipated,
we found that to prove (by direct substitution into the Boltzmann equation) the
correctness of these solutions and to establish a standard flow condition were
nontrivial tasks. Since we have worked with a recently reported explicit form
of the linearized Boltzmann equation (for a binary mixture of rigid-spheres), we
have demonstrated the usefulness (and provided additional evidence about the
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correctness) of the form of the Boltzmann equation established by Garcia, Siewert
and Williams [1].

As in previous works on the linearized Boltzmann equation for a single-species
gas [6] and on the McCormack model for binary mixtures [4], we believe that, in
addition to the class of solutions listed in Egs. (25), we can expect also to find
(asymptotic) solutions that are linear in the spatial variables. While, at this point,
we are not able to define these solutions explicitly for the considered linearized
Boltzmann equation for a binary mixture of rigid spheres, we do intend to pursue
such work.
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