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Some solutions (linear in the spatial variables) and
generalized Chapman–Enskog functions basic to the linearized
Boltzmann equations for a binary mixture of rigid spheres

R. D. M. Garcia and C. E. Siewert

Abstract. A Legendre expansion of the (matrix) scattering kernel relevant to the (vector-
valued) linearized Boltzmann equation for a binary mixture of rigid spheres is used to define

twelve solutions that are linear in the spatial variables {x, y, z}. The twelve (asymptotic) solu-
tions are expressed in terms of three vector-valued functions A

(1)(c), A
(2)(c), and B(c). These

functions are generalizations of the Chapman–Enskog functions used to define asymptotic so-
lutions and viscosity and heat conduction coefficients for the case of a single-species gas. To
provide evidence that the three Chapman–Enskog vectors exist as solutions of the defining linear

integral equations, numerical results developed in terms of expansions based on Hermite cubic
splines and a collocation scheme are reported for two binary mixtures (Ne-Ar and He-Xe) with

various molar concentrations.

Keywords. Rarefied gas dynamics, binary mixtures, rigid spheres.

1. Introduction

In a recent work, Garcia, Siewert and Williams [1] reported explicit forms of the
collision operators required to establish the linearized (vector-valued) Boltzmann
equation for a binary mixture of rigid spheres that are assumed to scatter isotrop-
ically in the center-of-mass system. In a subsequent work, Garcia and Siewert [2]
used the GSW expressions [1] for the matrix scattering kernel to establish a basic
flow condition and to confirm the validity of six exact solutions (corresponding to
conservation of number, energy and momentum) of the relevant Boltzmann equa-
tion. In this work we use a Legendre expansion of the scattering kernel to define
twelve additional (asymptotic) solutions that are linear in the spatial variables
{x, y, z}, and to provide evidence that three required Chapman–Enskog (vector-
valued) functions exist, numerical results for these functions are reported for two
binary mixtures with various molar concentrations of each species.

To start this work, we write the coupled linearized Boltzmann equations for
the considered binary mixture of rigid spheres in the form reported by Garcia,
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Siewert and Williams [1], viz.

c · ∇rhα(r, c) + ̟α(c)hα(r, c) =

2∑

β=1

∫
e−c′2Kα,β(c′ : c)hβ(r, c′)d3c′, α = 1, 2,

(1)
where r, with Cartesian coordinates {x, y, z}, is the spatial variable and c, with
coordinates {cx, cy, cz} and magnitude c, denotes the dimensionless velocity vector.
In addition

K1,1(c
′ : c) = 4n1σ1,1π

1/2P(c′ : c) + n2σ1,2π
1/2F1,2(c

′ : c), (2)

K1,2(c
′ : c) = 4n2σ1,2π

1/2G1,2(c
′ : c), (3)

K2,1(c
′ : c) = 4n1σ2,1π

1/2G2,1(c
′ : c), (4)

and
K2,2(c

′ : c) = 4n2σ2,2π
1/2P(c′ : c) + n1σ2,1π

1/2F2,1(c
′ : c). (5)

Here

P(c′ : c) =
1

π

( 2

|c′ − c|
exp

{ |c′ × c|2

|c′ − c|2

}
− |c′ − c|

)
(6)

is the basic kernel for a single-species gas used by Pekeris [3],

Fα,β(c′ : c) = F(aα,β ; c′ : c), (7)

and
Gα,β(c′ : c) = G(aα,β ; c′ : c), (8)

where
aα,β = (mβ/mα)1/2, (9)

F(a; c′ : c) =
(a + 1/a)2

πa|c′ − c|
exp

{
a2 |c

′ × c|2

|c′ − c|2

−
(a − 1/a)2(c′

2
+ c2)

4
−

(a2 − 1/a2)c′ · c

2

}
, (10)

and

G(a; c′ : c) =
1

aπ

∣∣c′ − ac
∣∣[J(a; c′ : c) − 1]. (11)

In addition,
̟α(c) = ̟(1)

α (c) + ̟(2)
α (c), (12)

with
̟(β)

α (c) = 4π1/2nβσα,βaβ,αν(aα,βc) (13)

and

ν(c) =
2c2 + 1

c

∫ c

0

e−x2

dx + e−c2

. (14)
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Since Eq. (1) is written in terms of a dimensionless velocity variable c, we note
that the basic velocity distribution functions are available from

fα(r,v) = fα,0(v)[1 + hα(r, λ1/2
α v)], (15)

where λα = mα/(2kT0) and where

fα,0(v) = nα(λα/π)3/2e−λαv2

(16)

is the Maxwellian distribution for nα particles of mass mα in equilibrium at tem-
perature T0. Note that k is the Boltzmann constant. To complete our starting
equations, we note from Ref. [2] that

J(a; c′ : c) =
(a + 1/a)2

2∆(a; c′ : c)
exp

{−2C(a; c′ : c)

(a − 1/a)2

}
sinh

{2∆(a; c′ : c)

(a − 1/a)2

}
, a 6= 1,

(17a)
and

J(a; c′ : c) =
1

|c′ − c|2
exp

{ |c′ × c|2

|c′ − c|2

}
, a = 1, (17b)

where, to write Eq. (17a), we have used the definitions [2]

∆(a; c′ : c) =
{
C2(a; c′ : c) + (a − 1/a)2|c′ × c|2

}1/2
(18)

and
C(a; c′ : c) = c′

2
+ c2 − (a + 1/a)c′ · c. (19)

Finally, and to be clear, we note that we use σα,β to denote the differential-
scattering cross section, which for the case of rigid-sphere scattering that is isotropic
in the center-of-mass system we write, after consultation with Chapman and Cowl-
ing [4], as

σα,β =
1

4

(dα + dβ

2

)2

, (20)

where d1 and d2 are the atomic diameters of the two types of gas particles.

2. Exact solutions

To be complete, we repeat here a listing of the exact solutions of Eq. (1) that were
discussed in our previous work [2]. But first, we rewrite Eq. (1) as

c · ∇rH(r, c) + Σ(c)H(r, c) =

∫
e−c′2K(c′ : c)H(r, c′)d3c′, (21)

where

H(r, c) =

[
h1(r, c)
h2(r, c)

]
(22)

and

K(c′ : c) =

[
K1,1(c

′ : c) K1,2(c
′ : c)

K2,1(c
′ : c) K2,2(c

′ : c)

]
. (23)
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Here the elements of the scattering matrix K(c′ : c) are given by Eqs. (2)–(5),
and

Σ(c) =

[
̟1(c) 0

0 ̟2(c)

]
. (24)

In a recent work [5] in which the McCormack model [6] was used to describe a
binary mixture of rigid spheres, six exact solutions related to the conservation of
number, energy and momentum were reported (in our current notation) as

H1(r, c) = H1 =

[
1
0

]
, H2(r, c) = H2 =

[
0
1

]
, (25a,b)

H3(r, c) = H3(c) = c2

[
1
1

]
, H4(r, c) = H4(c) = cµ

[
1

a1,2

]
, (25c,d)

H5(r, c) = H5(c) = c(1 − µ2)1/2 cos φ

[
1

a1,2

]
, (25e)

and

H6(r, c) = H6(c) = c(1 − µ2)1/2 sin φ

[
1

a1,2

]
. (25f)

Here we use the spherical coordinates {c, θ, φ}, with µ = cos θ, to define
the dimensionless vector c so that cz = cµ, cx = c(1 − µ2)1/2 cos φ and
cy = c(1 − µ2)1/2 sin φ. As we have formally shown [2] that the six solutions
listed as Eqs. (25) are valid also for the linearized Boltzmann equation considered
in this work, we are ready now to discuss additional solutions.

3. A Legendre expansion and additional solutions

The exact solutions (collisional invariants) listed as Eqs. (25) are the results of the
three conservation laws: number, energy and momentum. However, we have seen
in regard to the linearized Boltzmann equation for a single-species gas [7] and for
the McCormack model for binary mixtures [5] that we should expect also to find
(asymptotic) solutions that are linear in the spatial variables. While, at this point,
we are not able to define these solutions as explicitly as those given by Eqs. (25),
we can compute these solutions. To start, we note that since the (matrix) kernel
in Eq. (21) depends only on {c, c′, µ0}, where c′ · c = c′cµ0, we can make use of a
Legendre expansion and write

K(c′ : c) =
1

4π

∞∑

n=0

n∑

m=0

(2n + 1)(2 − δ0,m)Pm
n (µ′)Pm

n (µ)Kn(c′, c) cos m(φ′ − φ).

(26)
Here the normalized Legendre functions

Pm
n (µ) =

[
(n − m) !

(n + m) !

]1/2

(1 − µ2)
m/2 dm

dµm
Pn(µ), n ≥ m, (27)
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where Pn(µ) denotes one of Legendre polynomials, are such that

∫ 1

−1

Pm
n (µ)Pm

n′ (µ)dµ =
( 2

2n + 1

)
δn,n′ . (28)

Given that we can write the scattering kernel as expressed in Eq. (26), we can use
the solutions given by Eqs. (25) to conclude that

{
Σ(c) −

∫
∞

0

e−c′2K0(c
′, c)c′

2
dc′

} [
1
0

]
= 0, (29a)

{
Σ(c) −

∫
∞

0

e−c′2K0(c
′, c)c′

2
dc′

} [
0
1

]
= 0, (29b)

{
c2Σ(c) −

∫
∞

0

e−c′2K0(c
′, c)c′

4
dc′

} [
1
1

]
= 0, (29c)

and {
cΣ(c) −

∫
∞

0

e−c′2K1(c
′, c)c′

3
dc′

}[
1

a1,2

]
= 0. (29d)

Now, to be more specific, we use the spatial variables {x, y, z} to measure
distances in the {i, j,k} directions and rewrite Eq. (21) as

{
c(1 − µ2)1/2

[
cos φ

∂

∂x
+ sin φ

∂

∂y

]
+ cµ

∂

∂z

}
H(r, c) = L{H}(r, c), (30)

where

L{H}(r, c) = −Σ(c)H(r, c) +

∫
e−c′2K(c′ : c)H(r, c′)d3c′. (31)

Following a work [5] with the McCormack model, we seek additional solutions to
Eq. (21) of the forms

H7(r, c) = zΦ1(c) − µF (1)(c) (32a)

and

H8(r, c) = zΦ2(c) − µF (2)(c), (32b)

where Φ1(c) and Φ2(c) are two (suitably chosen) linearly independent combina-
tions of the solutions listed as Eqs. (25a,b,c) and where the vector-valued functions

F (1)(c) and F (2)(c) are to be determined from the inhomogeneous integral equa-
tions

Σ(c)F (1)(c) −

∫
∞

0

e−c′2K1(c
′, c)F (1)(c′)c′

2
dc′ = cΦ1(c) (33a)

and

Σ(c)F (2)(c) −

∫
∞

0

e−c′2K1(c
′, c)F (2)(c′)c′

2
dc′ = cΦ2(c). (33b)
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To establish a necessary solvability condition on the vector-valued functions Φ1(c)
and Φ2(c), we first rewrite (in general terms) Eqs. (33) as

Σ(c)F (c) −

∫
∞

0

e−c′2K1(c
′, c)F (c′)c′

2
dc′ = R(c). (34)

We now let cα = nα/(n1 + n2), multiply Eq. (34) by

Π(c) =
[

c1 c2

]
c3e−c2

, (35)

and integrate over all c to find that R(c) must satisfy

[
c1 c2

] ∫
∞

0

e−c2

R(c)c3dc = 0. (36)

In obtaining the condition listed as Eq. (36), we have used Eq. (29d) and the fact
that, in general,

SKT (c : c′) = K(c′ : c)S, (37)

where the superscript T denotes the transpose operation and where

S =

[
c2 0
0 c1a1,2

]
. (38)

Considering that the McCormack model for a binary mixture is a kinetic model
which admits all of the exact solutions listed as Eqs. (25), we find it reasonable
to speculate that the linear combinations Φ1(c) and Φ2(c) to be used in Eqs. (33)
should be the same as those found [5] for the McCormack model, i.e.,

Φα(c) = Φα,0 + (c2 − 5/2)Φα,2, α = 1, 2, (39)

where

Φ1,0 =

[
c1 − 1

c1

]
, Φ1,2 =

[
c1

c1

]
, (40a,b)

Φ2,0 =

[
c2

c2 − 1

]
, and Φ2,2 =

[
c2

c2

]
. (40c,d)

It is a simple matter to show that cΦ1(c) and cΦ2(c) both satisfy the solvability
condition listed as Eq. (36). Continuing to follow Ref. [5], we look for additional
solutions expressed as

H9(r, c) = zH5(c) − µ(1 − µ2)1/2 cos φF (c) (41a)

and
H10(r, c) = zH6(c) − µ(1 − µ2)1/2 sinφF (c), (41b)

where the vector-valued function F (c) is to be determined from the inhomogeneous
integral equation

Σ(c)F (c) −

∫
∞

0

e−c′2K2(c
′, c)F (c′)c′

2
dc′ = c2Φ, (42)
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where

Φ =

[
1

a1,2

]
. (43)

The proposed solutions listed in Eqs. (32) and (41) are to be used when a
given problem has variations in the z direction, but we can list proposed solutions
relevant to variations in the other two directions, i.e.,

H11(r, c) = xΦ1(c) − (1 − µ2)1/2 cos φF (1)(c), (44a)

H12(r, c) = xΦ2(c) − (1 − µ2)1/2 cos φF (2)(c), (44b)

H13(r, c) = xH4(c) − µ(1 − µ2)1/2 cos φF (c), (44c)

H14(r, c) = xH6(c) − (1 − µ2) cos φ sin φF (c), (44d)

H15(r, c) = yΦ1(c) − (1 − µ2)1/2 sin φF (1)(c), (45a)

H16(r, c) = yΦ2(c) − (1 − µ2)1/2 sin φF (2)(c), (45b)

H17(r, c) = yH4(c) − µ(1 − µ2)1/2 sinφF (c), (45c)

and
H18(r, c) = yH5(c) − (1 − µ2) sin φ cos φF (c). (45d)

While we have listed in this section additional solutions to Eq. (21), it is clear
that more work must be done to justify these results. In particular, in order that
the solutions proposed in this section be valid, it should be shown that solutions to
the integral equations defined by Eqs. (33), (39), and (40) and Eqs. (42) and (43)
actually exist. This, of course, will be a difficult task; in fact, we not aware of any
such proofs even for the one-gas case. However, as has been done [8–10] for the
one-gas case, we can provide some numerical evidence that the equivalent integral
equations defined in this work for mixtures can be solved. And so in subsequent
sections of this paper, we use Hermite cubic splines and a collocation scheme to
solve normalized versions of Eqs. (33), (39), and (40) and Eqs. (42) and (43).

Before we can develop numerical solutions of the relevant integral equations, we
must be able to compute well the Legendre components Kn(c′, c) for the special
cases of n = 1 and n = 2. However to solve well more general problems based
on the Boltzmann equation, we will require Kn(c′, c) for additional values of n,
say n = 0, 1, 2, ..., 8, for example. And so, noting that the velocity dependence of
K(c′ : c) can be expressed in terms of c′, c, and µ0, where c′ · c = c′cµ0, we can
write

Kn(c′, c) = π1/2

[
K

(1,1)
n (c′, c) K

(1,2)
n (c′, c)

K
(2,1)
n (c′, c) K

(2,2)
n (c′, c)

]
, (46)

where
K(1,1)

n (c′, c) = 4n1σ1,1P
(n)(c′, c) + n2σ1,2F

(n)(a1,2; c
′, c) (47a)

K(1,2)
n (c′, c) = 4n2σ1,2G

(n)(a1,2; c
′, c), (47b)
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K(2,1)
n (c′, c) = 4n1σ2,1G

(n)(a2,1; c
′, c), (47c)

and
K(2,2)

n (c′, c) = 4n2σ2,2P
(n)(c′, c) + n1σ2,1F

(n)(a2,1; c
′, c). (47d)

Here the Legendre moments can be written as

P(n)(c′, c) = 2π

∫ 1

−1

P(c′, c, µ0)Pn(µ0)dµ0, (48)

F (n)(a; c′, c) = 2π

∫ 1

−1

F(a; c′, c, µ0)Pn(µ0)dµ0, (49)

and

G(n)(a; c′, c) = 2π

∫ 1

−1

G(a; c′, c, µ0)Pn(µ0)dµ0, (50)

where

P(c′, c, µ0) =
1

π

[ 2

r(c′, c, µ0)
exp

{c′
2
c2(1 − µ2

0)

r2(c′, c, µ0)

}
− r(c′, c, µ0)

]
, (51)

F(a; c′, c, µ0) =
(a + 1/a)2

πar(c′, c, µ0)
exp

{a2c′
2
c2(1 − µ2

0)

r2(c′, c, µ0)

−
(a − 1/a)2(c′

2
+ c2)

4
−

(a2 − 1/a2)c′cµ0

2

}
, (52)

and

G(a; c′, c, µ0) =
r(c′, ac, µ0)

πa

[
J(a; c′, c, µ0) − 1

]
, (53)

with

J(a; c′, c, µ0) =
(a + 1/a)2

2∆(a; c′, c, µ0)
exp

{
−

2C(a; c′, c, µ0)

(a − 1/a)2

}
sinh

{2∆(a; c′, c, µ0)

(a − 1/a)2

}
,

(54a)
for a 6= 1, or

J(a; c′, c, µ0) =
1

r2(c′, c, µ0)
exp

{c′
2
c2(1 − µ2

0)

r2(c′, c, µ0)

}
, (54b)

for a = 1. Here
r(c′, c, µ0) = (c′

2
+ c2 − 2c′cµ0)

1/2, (55)

C(a; c′, c, µ0) = c′
2

+ c2 − (a + 1/a)c′cµ0, (56)

and
∆(a; c′, c, µ0) =

[
C2(a; c′, c, µ0) + (a − 1/a)2c′

2
c2(1 − µ2

0)
]1/2

. (57)

Note that
J(a; c′, c, µ0) = J(a; c, c′, µ0), (58a)
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J(a; c′, c, µ0) = J(1/a; c′, c, µ0), (58b)

P(n)(c, c′) = P(n)(c′, c), (59)

F (n)(a; c, c′) = F (n)(a; c′, c), (60)

and
G(n)(a; c′, c) = (1/a)G(n)(1/a; c, c′). (61)

We choose to introduce

ε0 = (n1 + n2)π
1/2

(n1d1 + n2d2

n1 + n2

)2

(62)

and write the Boltzmann equation in the form

c · ∇rH(r, c) + ε0V (c)H(r, c) = ε0

∫
e−c′2

K(c′ : c)H(r, c′)d3c′, (63)

where
V (c) = (1/ε0)Σ(c) (64)

and
K(c′ : c) = (1/ε0)K(c′ : c). (65)

4. The generalized Chapman–Enskog functions

Having introduced ε0 to normalize the considered Boltzmann equation, we now
seek to solve Eqs. (33) and (42) rewritten as

V (c)A(1)(c) −

∫
∞

0

e−c′2
K1(c

′, c)A(1)(c′)c′
2
dc′ = cΦ1(c), c ∈ [0,∞), (66a)

and

V (c)A(2)(c) −

∫
∞

0

e−c′2
K1(c

′, c)A(2)(c′)c′
2
dc′ = cΦ2(c), c ∈ [0,∞), (66b)

and

V (c)B(c) −

∫
∞

0

e−c′2
K2(c

′, c)B(c′)c′
2
dc′ = c2Φ, c ∈ [0,∞), (67)

where Eqs. (39), (40) and (43) are to be used. Here

A(1)(c) = ε0F
(1)(c), A(2)(c) = ε0F

(2)(c), and B(c) = ε0F (c). (68a,b, c)

To be complete, we note that we have introduced V (c) = (1/ε0)Σ(c) and
Kn(c′, c) = (1/ε0)Kn(c′, c), so that

V (c) =

[
v1(c) 0

0 v2(c)

]
, (69)

where now
v1(c) = p1ν(c) + g2a2,1ν(a1,2c) (70a)
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and
v2(c) = p2ν(c) + g1a1,2ν(a2,1c), (70b)

with

pα = cα

( ndα

n1d1 + n2d2

)2

, α = 1, 2, (71a)

gα = cα

( ndavg

n1d1 + n2d2

)2

, α = 1, 2, (71b)

n = n1 + n2, and davg = (d1 + d2)/2. (72a,b)

In addition,

Kn(c′, c) =

[
K

(1,1)
n (c′, c) K

(1,2)
n (c′, c)

K
(2,1)
n (c′, c) K

(2,2)
n (c′, c)

]
, (73)

where
K(1,1)

n (c′, c) = p1P
(n)(c′, c) + (g2/4)F (n)(a1,2; c

′, c), (74a)

K(1,2)
n (c′, c) = g2G

(n)(a1,2; c
′, c), (74b)

K(2,1)
n (c′, c) = g1G

(n)(a2,1; c
′, c), (74c)

and
K(2,2)

n (c′, c) = p2P
(n)(c′, c) + (g1/4)F (n)(a2,1; c

′, c). (74d)

It can be seen from Eq. (29d) and Eqs. (68a,b) that

Ah(c) = λc

[
1

a1,2

]
, (75)

for any value of λ, is a solution of the homogeneous versions of Eqs. (66), so
we intend to add Ah(c) to any solution we find of Eq. (66a) or (66b) and then
determine the constants λ1 and λ2 so that our final solutions will satisfy the
normalization conditions

[
c1 c2

] ∫
∞

0

e−c2

A(α)(c)c3dc = 0, α = 1, 2. (76)

5. Hermite cubic splines and numerical results

Before we develop our numerical solutions of the generalized Chapman–Enskog
integral equations listed as Eqs. (66), (67), and (76), we must be able to compute
well the Legendre components, as defined by Eqs. (46)–(57), of the scattering
matrix. As this part of our work is especially important in regard to numerical
work, and since these components eventually will be used to solve a collection of
basic problems defined in terms of the linearized Boltzmann equation for a mixture
of rigid spheres, we devote Appendix A of this work to a discussion of the various
algorithms we have used to obtain our working subroutines for these components.
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Considering that we have good subroutines available to compute the Legendre
components of the scattering matrix, we now proceed to generalize (to the case of
mixtures) the spline solutions of the Chapman–Enskog integral equations for the
one-gas case reported in Ref. [9]. The Hermite cubic spline functions we use in
this work are taken from Schultz [11]. To be specific and to define the notation
we use, we list these splines here. First of all, we consider there to be M +1 knots
ζα defined on the interval [0,1] by

ζα = (α/M)m, α = 0, 1, ...,M. (77)

In this work we use the quadratic distribution (m = 2). And so to approximate a
function, say Y (x), for x ∈ [0, 1], in terms of the spline functions we write

Y (x) =

K∑

α=0

aαFα(x), (78)

where the aα are constants and where K = 2M + 1. We note that there are two
spline functions Fα(x) associated with each knot and that the spline functions are
defined differently for even or odd values of α. And so we write

F2β(x) = Φβ(x) and F2β+1(x) = Ψβ(x) (79a,b)

for β = 0, 1, ...,M . Making use of the definitions

pα(x) =
x − ζα−1

ζα − ζα−1
(80a)

and

gα(x) =
ζα+1 − x

ζα+1 − ζα
(80b)

and considering that the spline functions are zero unless otherwise defined, we can
write the Φ functions as

Φ0(x) = g2
0(x)

[
3 − 2g0(x)

]
, x ∈ [ζ0, ζ1], (81a)

Φα(x) =

{
p2

α(x)
[
3 − 2pα(x)

]
, x ∈ [ζα−1, ζα],

g2
α(x)

[
3 − 2gα(x)

]
, x ∈ [ζα, ζα+1],

(81b)

for α = 1, 2, ...,M − 1, and

ΦM (x) = p2
M (x)

[
3 − 2pM (x)

]
, x ∈ [ζM−1, ζM ]. (81c)

In a similar way we can write the Ψ functions as

Ψ0(x) = xg2
0(x), x ∈ [ζ0, ζ1], (82a)

Ψα(x) =

{
(x − ζα)p2

α(x), x ∈ [ζα−1, ζα],

(x − ζα)g2
α(x), x ∈ [ζα, ζα+1],

(82b)

for α = 1, 2, ...,M − 1, and

ΨM (x) = (x − ζM )p2
M (x), x ∈ [ζM−1, ζM ]. (82c)
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Having defined the spline functions we use, we are ready to proceed with our
calculations. To make use of the interval [0,1], we introduce the variables

u(c) = e−c and u′(c′) = e−c′ (83a,b)

and rewrite our (general) problem defined by Eqs. (66) and (67) as

V (− ln u)F (− ln u) −

∫ 1

0

K(− ln u′,− ln u)F (− ln u′)J(u′)du′

= R(− lnu), u ∈ [0, 1], (84)

where
J(u) = (1/u)(ln u)2e−(ln u)2 . (85)

In order to apply this formulation both to Eqs. (66) and to Eq. (67), we have
omitted a subscript n on the kernel function in Eq. (84); clearly F (c) can refer to

A(1)(c), A(2)(c) or B(c), as R(c) refers to cΦ1(c), cΦ2(c) or c2Φ. Continuing to
follow Ref. [9], we now introduce the spline representation

F (− ln u) =
K∑

α=0

AαFα(u) (86)

into Eq. (84) to obtain

K∑

α=0

[V (− ln u)Fα(u) − Uα(u) − V α(u)]Aα = R(− ln u), (87)

where

Uα(u) =

∫ u

0

K(− ln u′,− ln u)J(u′)Fα(u′)du′ (88a)

and

V α(u) =

∫ 1

u

K(− ln u′,− ln u)J(u′)Fα(u′)du′. (88b)

At this point we use a collocation technique to obtain from Eq. (87) a system
of linear algebraic equations we can solve to find the (vector) constants {Aα}
required to complete the (approximate) solution listed as Eq. (86). To be specific,
we evaluate Eq. (87) at the collocation points

uα = (α/K)m, α = 0, 1, ...,K, (89)

(again with m = 2) and solve the resulting system to find the constants {Aα}.
This algorithm thus establishes our first (approximate) solution which we call our
“standard” solution, and which we label F a(− ln u). A second “postprocessed” so-
lution F b(− ln u) can be found by using F a(− ln u) in the integral term in Eq. (84)
and solving the resulting equation to find

F b(− ln u) = V −1(− ln u)
{

R(− ln u) +

K∑

α=0

[
Uα(u) + V α(u)

]
Aα

}
. (90)
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We note that some comments (useful here for the case of mixtures) relevant to the
numerical evaluation of the one-gas versions of Uα(u) and V α(u) can be found in
Ref. [9].

At this point we can report some numerical results for two specific cases: the
first is a mixture of Ne and Ar atoms, while the second is a mixture of He and Xe
atoms. For the sake of our computations we consider that the data

m2 = 39.948 m1 = 20.183 d2/d1 = 1.406 (Ne-Ar mixture)

and
m2 = 131.30 m1 = 4.0026 d2/d1 = 2.226 (He-Xe mixture)

are exact. We tabulate our results for these two cases in terms of the molar
concentration defined (in terms of the first particle) as

c1 =
n1/n2

1 + n1/n2
. (91)

We note that the generalized Chapman–Enskog (vector-valued) functions A(1)(c),

A(2)(c) and B(c), as defined, depend only on three ratios: n1/n2, d1/d2 and
m1/m2. We list in Tables 1–3 selected values of the three (vector-valued) gener-
alized Chapman–Enskog functions for the Ne-Ar mixture for three values of the
concentration parameter: c1 = 0.1, 0.5, 0.9. Results for the He-Xe mixture are
given in Tables 4–6. To establish some confidence in the accuracy of our results,
we first generated a set of results using M = 320 and a quadrature based on four
Gauss points per subinterval to evaluate the integrals in Eqs. (88a,b). We then
increased M to 640 and the number of Gauss points per subinterval to eight to
obtain a second set of results in which the first seven significant figures of the post-
processed results agreed perfectly with those of the first set of results, for all cases.
Moreover, we have observed that in our second set of results the first seven figures
of the standard and postprocessed results were the same for all cases studied.

In addition to computing the basic functions A(1)(c), A(2)(c), and B(c), we
have evaluated some basic integrals of the functions. First of all, we generalize the
notation used in Ref. [9] and introduce the definitions

εp,α =
16

15π1/2

∫
∞

0

e−c2

Bα(c)c4dc, α = 1, 2, (92)

where B1(c) and B2(c) are the two elements of B(c). We choose to report both
εp,1 and εp,2 so that various definitions of the viscosity can be accommodated.
For example, we note that Takata, Yasuda, Aoki and Shibata [12] have reported
(graphically) a quantity denoted by µ̂ that is related to the viscosity. We find we
can obtain the results reported for µ̂ in Ref. [12] from the expression

µ̂ = 2(2)1/2
( d1

c1d1 + c2d2

)2

(c1εp,1 + c2εp,2). (93)

In Table 7 we report, for the two considered mixtures, εp,1 and εp,2 as functions
of the concentration c1. In regard to the three ways to obtain the one-gas limit
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Table 1. The generalized Chapman–Enskog functions for the Ne-Ar mixture for the
case c1 = 0.1

c A
(1)
1 (c) A

(1)
2 (c) A

(2)
1 (c) A

(2)
2 (c) B1(c) B2(c)

0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 –1.245503(–1) –1.409118(–2) –1.738694(–1) –1.924604(–1) 8.948039(–3) 8.420111(–3)
0.2 –2.454715(–1) –2.749876(–2) –3.389238(–1) –3.786977(–1) 3.545276(–2) 3.353171(–2)
0.3 –3.595333(–1) –3.956072(–2) –4.869640(–1) –5.526839(–1) 7.855316(–2) 7.490027(–2)
0.4 –4.641940(–1) –4.965572(–2) –6.108743(–1) –7.087589(–1) 1.368178(–1) 1.318384(–1)
0.5 –5.577233(–1) –5.721760(–2) –7.048582(–1) –8.417624(–1) 2.085412(–1) 2.034548(–1)
1.0 –8.436373(–1) –4.178085(–2) –6.059229(–1) –1.021675 7.100345(–1) 7.433387(–1)
1.5 –8.648387(–1) 8.661882(–2) 5.679476(–1) –1.730976(–1) 1.339594 1.488148
2.0 –6.840484(–1) 3.431839(–1) 2.865881 1.839379 2.019132 2.338906
2.5 –3.367670(–1) 7.332641(–1) 6.300654 5.060461 2.717517 3.240245
3.0 1.595875(–1) 1.259082 1.087826(1) 9.507213 3.421611 4.163716
3.5 7.960557(–1) 1.921764 1.660196(1) 1.518787(1) 4.125616 5.094889
4.0 1.567748 2.721960 2.347361(1) 2.210719(1) 4.826999 6.026471
4.5 2.471868 3.660075 3.149430(1) 3.026820(1) 5.524760 6.954864
5.0 3.506761 4.736372 4.066470(1) 3.967297(1) 6.218626 7.878411

Table 2. The generalized Chapman–Enskog functions for the Ne-Ar mixture for the
case c1 = 0.5

c A
(1)
1 (c) A

(1)
2 (c) A

(2)
1 (c) A

(2)
2 (c) B1(c) B2(c)

0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 –1.759689(–1) –5.641100(–2) –8.340683(–2) –1.157864(–1) 7.690682(–3) 7.288256(–3)
0.2 –3.459208(–1) –1.100222(–1) –1.628603(–1) –2.286262(–1) 3.053225(–2) 2.905193(–2)
0.3 –5.042490(–1) –1.581027(–1) –2.346130(–1) –3.356472(–1) 6.786436(–2) 6.499422(–2)
0.4 –6.460811(–1) –1.980533(–1) –2.952902(–1) –4.341181(–1) 1.186811(–1) 1.146411(–1)
0.5 –7.674636(–1) –2.274563(–1) –3.419917(–1) –5.215038(–1) 1.817459(–1) 1.773693(–1)
1.0 –9.903001(–1) –1.474921(–1) –2.977210(–1) –7.205150(–1) 6.346182(–1) 6.592924(–1)
1.5 –5.149137(–1) 4.312002(–1) 2.982508(–1) –3.999013(–1) 1.221164 1.345306
2.0 6.481473(–1) 1.596114 1.491435 5.255536(–1) 1.865655 2.151078
2.5 2.476767 3.384604 3.296620 2.088339 2.534725 3.023796
3.0 4.957299 5.814195 5.720655 4.301663 3.213507 3.933287
3.5 8.081924 8.894227 8.767374 7.171799 3.895101 4.862534
4.0 1.184601(1) 1.263020(1) 1.243911(1) 1.070222(1) 4.576255 5.801829
4.5 1.624667(1) 1.702560(1) 1.673735(1) 1.489508(1) 5.255462 6.745558
5.0 2.128209(1) 2.208271(1) 2.166309(1) 1.975182(1) 5.932088 7.690450
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Table 3. The generalized Chapman–Enskog functions for the Ne-Ar mixture for the
case c1 = 0.9

c A
(1)
1 (c) A

(1)
2 (c) A

(2)
1 (c) A

(2)
2 (c) B1(c) B2(c)

0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 –2.095077(–1) –8.014456(–2) –1.436240(–2) –6.149881(–2) 6.486759(–3) 6.248353(–3)
0.2 –4.118904(–1) –1.561522(–1) –2.810636(–2) –1.223455(–1) 2.581069(–2) 2.493178(–2)
0.3 –6.003073(–1) –2.239562(–1) –4.063264(–2) –1.819019(–1) 5.757558(–2) 5.586826(–2)
0.4 –7.684454(–1) –2.796246(–1) –5.137809(–2) –2.395562(–1) 1.011612(–1) 9.876387(–2)
0.5 –9.106937(–1) –3.194169(–1) –5.982829(–2) –2.947342(–1) 1.557752(–1) 1.532257(–1)
1.0 –1.092038 –1.670828(–1) –5.364365(–2) –5.168369(–1) 5.615379(–1) 5.805261(–1)
1.5 –1.912675(–1) 7.921714(–1) 5.624104(–2) –6.198911(–1) 1.109914 1.211018
2.0 1.892417 2.747218 2.853847(–1) –5.839802(–1) 1.727389 1.976274
2.5 5.182043 5.796402 6.401853(–1) –4.033457(–1) 2.375998 2.826901
3.0 9.683136 9.992629 1.123772 –7.743484(–2) 3.037333 3.731066
3.5 1.539739(1) 1.536659(1) 1.737945 3.929136(–1) 3.702490 4.668925
4.0 2.232549(1) 2.193748(1) 2.483844 1.006699 4.367176 5.628092
4.5 3.046779(1) 2.971803(1) 3.362236 1.763062 5.029391 6.600728
5.0 3.982447(1) 3.871706(1) 4.373658 2.661323 5.688295 7.581783

Table 4. The generalized Chapman–Enskog functions for the He-Xe mixture for the
case c1 = 0.1

c A
(1)
1 (c) A

(1)
2 (c) A

(2)
1 (c) A

(2)
2 (c) B1(c) B2(c)

0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 –4.528458(–1) –1.187778(–2) –5.154299(–1) –1.849159(–1) 3.050749(–2) 3.378962(–2)
0.2 –7.687664(–1) –2.309942(–2) –8.641389(–1) –3.639528(–1) 1.068797(–1) 1.345907(–1)
0.3 –9.486460(–1) –3.302752(–2) –1.040844 –5.313999(–1) 2.053841(–1) 3.007407(–1)
0.4 –1.044172 –4.106022(–2) –1.102297 –6.818646(–1) 3.129096(–1) 5.295988(–1)
0.5 –1.093319 –4.664444(–2) –1.091581 –8.103913(–1) 4.244460(–1) 8.177201(–1)
1.0 –1.102820 –2.263895(–2) –4.899014(–1) –9.877519(–1) 1.009060 2.996638
1.5 –9.819640(–1) 1.127405(–1) 7.126621(–1) –1.671010(–1) 1.627307 6.012572
2.0 –7.900737(–1) 3.754622(–1) 2.446645 1.794837 2.276993 9.460218
2.5 –5.358228(–1) 7.711461(–1) 4.704925 4.948713 2.956657 1.311015(1)
3.0 –2.213670(–1) 1.302075 7.488581 9.315364 3.664323 1.684482(1)
3.5 1.527374(–1) 1.969399 1.080050(1) 1.490554(1) 4.397634 2.060532(1)
4.0 5.864443(–1) 2.773788 1.464389(1) 2.172571(1) 5.154014 2.436247(1)
4.5 1.079887 3.715662 1.902182(1) 2.978014(1) 5.930801 2.810232(1)
5.0 1.633258 4.795294 2.393703(1) 3.907175(1) 6.725367 3.181886(1)
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Table 5. The generalized Chapman–Enskog functions for the He-Xe mixture for the
case c1 = 0.5

c A
(1)
1 (c) A

(1)
2 (c) A

(2)
1 (c) A

(2)
2 (c) B1(c) B2(c)

0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 –3.666527(–1) –2.411582(–2) –1.395504(–1) –9.455371(–2) 1.527023(–2) 2.786601(–2)
0.2 –6.761292(–1) –4.610639(–2) –2.554125(–1) –1.869939(–1) 5.814503(–2) 1.111796(–1)
0.3 –9.076047(–1) –6.387823(–2) –3.377280(–1) –2.752388(–1) 1.219944(–1) 2.490995(–1)
0.4 –1.067756 –7.539954(–2) –3.875273(–1) –3.572676(–1) 2.002270(–1) 4.402630(–1)
0.5 –1.170425 –7.872648(–2) –4.091575(–1) –4.311473(–1) 2.880717(–1) 6.828407(–1)
1.0 –1.152116 8.720255(–2) –2.099672(–1) –6.189792(–1) 7.973243(–1) 2.579754
1.5 –6.117239(–1) 6.768451(–1) 3.669525(–1) –3.853634(–1) 1.359373 5.352794
2.0 2.909380(–1) 1.794980 1.259438 3.740377(–1) 1.950200 8.671471
2.5 1.512257 3.498007 2.450002 1.715519 2.564073 1.230070(1)
3.0 3.036575 5.817395 3.932736 3.670642 3.198823 1.609584(1)
3.5 4.857510 8.772162 5.705724 6.258626 3.853043 1.997289(1)
4.0 6.972430 1.237459(1) 7.768667 9.492016 4.525390 2.388402(1)
4.5 9.380410 1.663295(1) 1.012197(1) 1.337937(1) 5.214438 2.780230(1)
5.0 1.208135(1) 2.155296(1) 1.276633(1) 1.792669(1) 5.918679 3.171282(1)

from our formulation of the mixture problem, we note that

εp,1 = εp, c2 = 0, (94a)

εp,2/a1,2 = εp, c1 = 0, (94b)

and

εp,1 = εp,2 = εp, m1/m2 = 1, d1/d2 = 1, (94c)

where [9]

εp = 0.449027806... . (95)

Now, since we have two (vector-valued) functions A(1)(c) and A(2)(c), we report
four basic integrals defined as

ε
(1)
t,α =

16

15π1/2

∫
∞

0

e−c2

A(1)
α (c)c5dc, α = 1, 2, (96a)

and

ε
(2)
t,α =

16

15π1/2

∫
∞

0

e−c2

A(2)
α (c)c5dc, α = 1, 2, (96b)

where A
(β)
1 (c) and A

(β)
2 (c) are the two elements of A(β)(c), β = 1, 2. In Tables

8 and 9 we report, for the two considered mixtures, ε
(β)
t,1 and ε

(β)
t,2 , β = 1, 2, as

functions of the concentration c1. Here the one-gas limits yield

ε
(1)
t,1 = εt, c2 = 0, (97a)
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Table 6. The generalized Chapman–Enskog functions for the He-Xe mixture for the
case c1 = 0.9

c A
(1)
1 (c) A

(1)
2 (c) A

(2)
1 (c) A

(2)
2 (c) B1(c) B2(c)

0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1 –2.492079(–1) 7.231057(–2) –1.109094(–2) –6.637109(–2) 7.397869(–3) 2.506036(–2)
0.2 –4.844589(–1) 1.469693(–1) –2.145935(–2) –1.324771(–1) 2.936495(–2) 1.001712(–1)
0.3 –6.951110(–1) 2.263161(–1) –3.044550(–2) –1.980537(–1) 6.515651(–2) 2.251231(–1)
0.4 –8.743694(–1) 3.126738(–1) –3.749127(–2) –2.628388(–1) 1.135534(–1) 3.995709(–1)
0.5 –1.018120 4.083412(–1) –4.214811(–2) –3.265728(–1) 1.731147(–1) 6.230394(–1)
1.0 –1.147449 1.104203 –2.003078(–2) –6.206827(–1) 5.922252(–1) 2.451043
1.5 –2.833403(–1) 2.352999 8.834649(–2) –8.523629(–1) 1.128489 5.375200
2.0 1.521086 4.385376 2.861135(–1) –9.955717(–1) 1.717866 9.250880
2.5 4.214463 7.394764 5.725844(–1) –1.028471 2.333036 1.392669(1)
3.0 7.762440 1.154041(1) 9.468240(–1) –9.330848(–1) 2.962572 1.926161(1)
3.5 1.214272(1) 1.695198(1) 1.408147 –6.947818(–1) 3.601714 2.513209(1)
4.0 1.734043(1) 2.373421(1) 1.956096 –3.017563(–1) 4.248524 3.143345(1)
4.5 2.334532(1) 3.197105(1) 2.590367 2.554409(–1) 4.902269 3.807875(1)
5.0 3.015013(1) 4.172934(1) 3.310768 9.843135(–1) 5.562708 4.499667(1)

ε
(2)
t,2 = εt, c1 = 0, (97b)

ε
(1)
t,1 + ε

(2)
t,1 = εt, m1/m2 = 1, d1/d2 = 1, (97c)

and
ε
(1)
t,2 + ε

(2)
t,2 = εt, m1/m2 = 1, d1/d2 = 1, (97d)

where [9]
εt = 0.679630049... . (98)

Finally, we note that the results reported in Tables 7–9 were obtained using the
standard solutions generated with M = 640 in Eqs. (92) and (96) and four Gauss
points per subinterval to perform the required integrations.

6. Concluding remarks

In this work we have listed some solutions to an exact and explicit formulation of
the (vector) linearized Boltzmann equation relevant to a binary mixture of rigid
spheres that scatter isotropically in the center-of-mass system. The solutions (col-
lisional invariants) reported in Ref. [2] and listed as Eqs. (25) are consequences
of the conservation of number, energy, and momentum. We have also reported
twelve additional solutions listed in Eqs. (32), (41), (44), and (45). These twelve
solutions are linear in the spatial variables {x, y, z} and are defined in terms of

three vector-valued functions F (1)(c), F (2)(c) and F (c) that are solutions of the
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Table 7. Values of εp,1 and εp,2

Ne-Ar mixture He-Xe mixture

c1 εp,1 εp,2 εp,1 εp,2

0.0 5.595420(–1) 6.317248(–1) 6.872939(–1) 2.571784
0.1 5.476674(–1) 6.176388(–1) 6.591318(–1) 2.496050
0.2 5.359138(–1) 6.036851(–1) 6.313460(–1) 2.424505
0.3 5.242967(–1) 5.898802(–1) 6.040327(–1) 2.358467
0.4 5.128351(–1) 5.762439(–1) 5.773241(–1) 2.299872
0.5 5.015515(–1) 5.627999(–1) 5.514060(–1) 2.251684
0.6 4.904734(–1) 5.495769(–1) 5.265471(–1) 2.218677
0.7 4.796344(–1) 5.366103(–1) 5.031460(–1) 2.209062
0.8 4.690763(–1) 5.239439(–1) 4.818064(–1) 2.238244
0.9 4.588517(–1) 5.116331(–1) 4.634256(–1) 2.338849
1.0 4.490278(–1) 4.997484(–1) 4.490278(–1) 2.593733

Table 8. Values of ε
(1)
t,1 and ε

(1)
t,2

Ne-Ar mixture He-Xe mixture

c1 ε
(1)
t,1 ε

(1)
t,2 ε

(1)
t,1 ε

(1)
t,2

0.0 –5.786993(–1) 0.0 –6.550719(–1) 0.0
0.1 –4.434017(–1) 1.308477(–1) –5.382464(–1) 1.476024(–1)
0.2 –3.115692(–1) 2.576567(–1) –4.266660(–1) 2.926300(–1)
0.3 –1.828680(–1) 3.808994(–1) –3.196957(–1) 4.376882(–1)
0.4 –5.689983(–2) 5.011247(–1) –2.163624(–1) 5.868217(–1)
0.5 6.681834(–2) 6.189829(–1) –1.150978(–1) 7.466435(–1)
0.6 1.888842(–1) 7.352621(–1) –1.320706(–2) 9.287041(–1)
0.7 3.100523(–1) 8.509388(–1) 9.434715(–2) 1.155004
0.8 4.312964(–1) 9.672537(–1) 2.181351(–1) 1.472751
0.9 5.539050(–1) 1.085827 3.844456(–1) 2.002584
1.0 6.796300(–1) 1.208839 6.796300(–1) 3.154640

integral equations listed as Eqs. (33) and (42). We consider these vector-valued
functions, when multiplied by ε0 as shown in Eqs. (68), to be generalizations of
the Chapman–Enskog functions A(c) and B(c) that are very important in con-
structing rigorous asymptotic solutions [7], and for defining the viscosity and heat
conduction coefficients [13,14] for a single-species gas of rigid spheres.

We believe that the solutions reported in this work are especially important if
we wish to obtain the correct asymptotic behavior when solving basic problems
for binary gas mixtures. While we have not given rigorous proof that solutions to
Eqs. (33) and (42) exist (we are not aware of such proofs even for the one-gas case),
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Table 9. Values of ε
(2)
t,1 and ε

(2)
t,2

Ne-Ar mixture He-Xe mixture

c1 ε
(2)
t,1 ε

(2)
t,2 ε

(2)
t,1 ε

(2)
t,2

0.0 1.173076 6.796300(–1) 1.005103 6.796300(–1)
0.1 1.038931 5.485715(–1) 8.839454(–1) 5.378480(–1)
0.2 9.092710(–1) 4.229940(–1) 7.693810(–1) 4.036160(–1)
0.3 7.839021(–1) 3.025904(–1) 6.612577(–1) 2.762283(–1)
0.4 6.625987(–1) 1.870182(–1) 5.593440(–1) 1.546015(–1)
0.5 5.450951(–1) 7.588717(–2) 4.632709(–1) 3.699208(–2)
0.6 4.310712(–1) –3.125726(–2) 3.724127(–1) –7.958390(–2)
0.7 3.201319(–1) –1.349592(–1) 2.856177(–1) –2.006686(–1)
0.8 2.117775(–1) –2.358885(–1) 2.005164(–1) –3.377880(–1)
0.9 1.053576(–1) –3.348957(–1) 1.113681(–1) –5.192500(–1)
1.0 0.0 –4.330988(–1) 0.0 –8.362999(–1)

we have provided numerical evidence that these equations can be solved with a
good accuracy. We believe the numerical results listed in Tables 1–8 are valid
to all figures given, and so our use of the Hermite cubic splines and a collocation
scheme can be considered a good computational method for solving the considered
integral equations. While there does not seem to be any numerical tabulation of
the Chapman–Enskog (vector-valued) functions we have reported here, Takata,
Yasuda, Aoki and Shibata [12] have reported (in graphical form) various transport
coefficients that are related to integral moments of these (and other) functions. In
order to increase confidence in our results, we (asked and) received from Aoki [15]
some explicit numerical results upon which Figure 1 of Ref. [12] is based. For
several values of XA, as defined in Ref. [12], we found 6–8 figures of agreement for
µ̂ as defined (in this work) by Eq. (93).

Finally, we believe that here, as well as in Ref. [2], we have demonstrated that
the GSW form [1] of the scattering (matrix) kernel is especially useful for studies
based on the linearized Boltzmann equation for a mixture of rigid spheres that
scatter isotropically in the center-of-mass system.
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Appendix A. Algorithms for computing some basic Legendre mo-
ments

As shown by Eqs. (46) and (47) of Section 3, the Legendre components Kn(c′, c)
of the scattering matrix for a binary mixture of rigid sphere gases can be expressed
in terms of the basic Legendre moments

P(n)(c′, c) = 2π

∫ 1

−1

P(c′, c, µ0)Pn(µ0)dµ0, (A.1a)

F (n)(a; c′, c) = 2π

∫ 1

−1

F(a; c′, c, µ0)Pn(µ0)dµ0, (A.1b)

and

G(n)(a; c′, c) = 2π

∫ 1

−1

G(a; c′, c, µ0)Pn(µ0)dµ0, (A.1c)

where

P(c′, c, µ0) =
1

π

[ 2

r(c′, c, µ0)
exp

{c′
2
c2(1 − µ2

0)

r2(c′, c, µ0)

}
− r(c′, c, µ0)

]
, (A.2a)

F(a; c′, c, µ0) =
(a + 1/a)2

πar(c′, c, µ0)
exp

{a2c′
2
c2(1 − µ2

0)

r2(c′, c, µ0)

−
(a − 1/a)2(c′

2
+ c2)

4
−

(a2 − 1/a2)c′cµ0

2

}
, (A.2b)

and

G(a; c′, c, µ0) =
r(c′, ac, µ0)

πa

[
J(a; c′, c, µ0) − 1

]
, (A.2c)

with

J(a; c′, c, µ0) =
(a + 1/a)2

2∆(a; c′, c, µ0)
exp

{
−

2C(a; c′, c, µ0)

(a − 1/a)2

}
sinh

{2∆(a; c′, c, µ0)

(a − 1/a)2

}
,

(A.3a)
for a 6= 1, or

J(a; c′, c, µ0) =
1

r2(c′, c, µ0)
exp

{c′
2
c2(1 − µ2

0)

r2(c′, c, µ0)

}
, (A.3b)

for a = 1. In these equations,

r(c′, c, µ0) = (c′
2

+ c2 − 2c′cµ0)
1/2, (A.4)

C(a; c′, c, µ0) = c′
2

+ c2 − (a + 1/a)c′cµ0, (A.5)

and

∆(a; c′, c, µ0) =
[
C2(a; c′, c, µ0) + (a − 1/a)2c′

2
c2(1 − µ2

0)
]1/2

. (A.6)
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As mentioned in Section 3, the Legendre moments expressed by Eqs. (A.1) are
required in this work only for n = 1 and n = 2. However, since in our continuing
work on binary gas mixtures we intend to investigate and develop solutions for
several basic problems formulated in terms of Eq. (63), using an expansion of the
form of Eq. (26) for the kernel K(c′ : c) = (1/ε0)K(c′ : c), and since we have seen
in previous works [16–20] on single-gas problems that a truncation at n = 8 in the
single-gas version of Eq. (26) is usually sufficient, we discuss in this Appendix our
algorithms for computing

P̂(n)(c′, c) = e−c′2P(n)(c′, c), (A.7a)

F̂ (n)(a; c′, c) = e−c′2F (n)(a; c′, c), (A7.b)

and
Ĝ(n)(a; c′, c) = e−c′2G(n)(a; c′, c) (A.7c)

for n = 0, 1, . . . , 8, a ∈ (0,∞), c′ ∈ [0,∞), and c ∈ [0,∞). We note that, for con-

venience, we have included the factor exp{−c′
2
} in the definitions of the moments

to be computed, as this factor appears in the integrands of Eqs. (66) and (67)
and, as we will see, it can be combined with the exponentials in the expressions
for P(c′, c, µ0), F(a; c′, c, µ0), and G(a; c′, c, µ0) to avoid exponentials with positive
arguments and, consequently, to eliminate the risk of overflows in the calculation.
Before starting the discussion of our algorithms for computing the moments de-
fined by Eqs. (A.7), we note that we find it convenient to exclude the cases c′ = 0
and/or c = 0 from our general presentation. These special cases will be treated at
the end of this Appendix.

Beginning our general discussion with P̂(n)(c′, c), we consider, without loss of
generality, that c ≥ c′. Because P(n)(c′, c) is invariant by an interchange of the

arguments c′ and c, it is clear that once a good way of computing P̂(n)(c′, c) for

c > c′ is established, we can get P̂(n)(c′, c) for c < c′ from

P̂(n)(c′, c) = e−(c′2−c2)P̂(n)(c, c′). (A.8)

Our working formula for P̂(n)(c′, c), c ≥ c′, follows directly from the work of
Pekeris [3]. First of all, we write

P̂(n)(c′, c) = P̂
(n)
1 (c′, c) − P̂

(n)
2 (c′, c), (A.9)

where

P̂
(n)
1 (c′, c) = 4

∫ 1

−1

1

r(c′, c, µ0)
exp{−[c′(cµ0 − c′)/r(c′, c, µ0)]

2}Pn(µ0)dµ0 (A.10a)

and

P̂
(n)
2 (c′, c) = 2e−c′2

∫ 1

−1

r(c′, c, µ0)Pn(µ0)dµ0. (A.10b)

The integral in Eq. (A.10a) can be rewritten in a convenient way for numerical
integration if we change the variable of integration from µ0 to r(c′, c, µ0) and use
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the transformation

z = (1/2)
[
r(c′, c, µ0) − (c2 − c′

2
)/r(c′, c, µ0)

]
. (A.11)

Doing this, we find

P̂
(n)
1 (c′, c) =

4

c′c

∫ c′

−c′

(
1 + z/

√
z2 + c2 − c′2

)
e−z2

× Pn

[
(c′c)−1

(
c′

2
− z2 − z

√
z2 + c2 − c′2

)]
dz, c ≥ c′. (A.12)

Next, we note that we can perform the integral in Eq. (A.10b) analytically if we
use the relation

(2n + 1)Pn(x) =
d

dx
Pn+1(x) −

d

dx
Pn−1(x), (A.13)

followed by integration by parts and use of the generating function

[
1 − 2τx + τ2

]
−1/2

=

∞∑

k=0

τkPk(x), |τ | ≤ 1, (A.14)

for τ = c′/c, along with the orthogonality property of the Legendre polynomials.
We find

P̂
(n)
2 (c′, c) =

4c′e−c′2

2n + 1

[( 1

2n + 3

)(c′

c

)n+1

−
( 1

2n − 1

)(c′

c

)n−1]
, c ≥ c′. (A.15)

Our algorithm for computing P̂(n)(c′, c), c ≥ c′, is thus based on Eqs. (A.9), (A.12),
and (A.15), and the use of a 100-point Gauss–Legendre quadrature set mapped
linearly onto [−c′, c′] to calculate the integral in Eq. (A.12).

In regard to F̂ (n)(a; c′, c), we start with the defining equation for these mo-
ments,

F̂ (n)(a; c′, c) = 2πe−c′2
∫ 1

−1

F(a; c′, c, µ0)Pn(µ0)dµ0, (A.16)

where F(a; c′, c, µ0) is given by Eq. (A.2b). We find, after some algebraic manip-
ulations, that Eq. (A.16) can be expressed as

F̂ (n)(a; c′, c) = (2/a)(a + 1/a)2
∫ 1

−1

1

r(c′, c, µ0)

× exp
{
−

[c′cµ0 − (1 + a2)c′
2
/2 − (1 − a2)c2/2

ar(c′, c, µ0)

]2}
Pn(µ0)dµ0, (A.17)

where r(c′, c, µ0) is given by Eq. (A.4). During an extensive numerical testing
procedure that was carried out with Eq. (A.17), we have found that this equation
works well, except when c′ → 0 or c′ → c. The difficulty with the limiting case
c′ → 0 can be easily accommodated if we add and subtract the term

(1/c)exp
{
− (a − 1/a)2c2/4

}
Pn(µ0)
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to and from the integrand of Eq. (A.17). We note that the added term can be
integrated analytically, while the subtracted one serves to make the contribution
to be computed by numerical integration less important. We find

F̂ (n)(a; c′, c) = (2/a)(a + 1/a)2
∫ 1

−1

[
1

r(c′, c, µ0)

× exp
{
−

[c′cµ0 − (1 + a2)c′
2
/2 − (1 − a2)c2/2

ar(c′, c, µ0)

]2}

− (1/c)exp
{
− (a − 1/a)2c2/4

}]
Pn(µ0)dµ0 + S(a, c), (A.18)

where

S(a, c) =
4(a + 1/a)2

ac
exp

{
− (a − 1/a)2c2/4

}
. (A.19)

Now, to treat the limiting case c′ → c, we consider (without loss of generality)
c ≥ c′ and change the variable of integration from µ0 to s = r(c′, c, µ0)/a to find
the alternative form

F̂ (n)(a; c′, c) =
2(a + 1/a)2

c′c

∫ (c+c′)/a

(c−c′)/a

exp
{
− (1/4)[s − (c2 − c′

2
)/s]2

}

× Pn

[
(2c′c)−1(c′

2
+ c2 − a2s2)

]
ds, c ≥ c′. (A.20)

As done above for Eq. (A.17), we can improve the accuracy that can be obtained
from this expression by adding and subtracting the term

exp
{
− (1/4)[s − (c2 − c′

2
)/s]2

}
Pn

[
(2c′c)−1(c′

2
+ c2)

]

to and from the integrand of Eq. (A.20). We find

F̂ (n)(a; c′, c) =
2(a + 1/a)2

c′c

∫ (c+c′)/a

(c−c′)/a

exp
{
− (1/4)[s − (c2 − c′

2
)/s]2

}

×
{
Pn

[
(2c′c)−1(c′

2
+ c2 − a2s2)

]
− Pn

[
(2c′c)−1(c′

2
+ c2)

]}
ds

+ T (n)(a; c′, c), c ≥ c′, (A.21)

where

T (n)(a; c′, c) = F̂ (0)(a; c′, c)Pn

[
(2c′c)−1(c′

2
+ c2)

]
. (A.22)

Here

F̂ (0)(a; c′, c) = π1/2 (a + 1/a)2

c′c

(
ec2

−c′2
{
erf

[
(a + 1/a)c/2 − (a − 1/a)c′/2

]

− erf
[
(a + 1/a)c/2 + (a − 1/a)c′/2

]}
+ erf

[
(a − 1/a)c/2 − (a + 1/a)c′/2

]

− erf
[
(a − 1/a)c/2 + (a + 1/a)c′/2

])
, c ≥ c′, (A.23)
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a result that can be deduced with the help of formula 7.4.33 of Ref. [21]. To avoid
the difficulty for c → ∞ that is caused by the exponential function with a positive
argument in Eq (A.23), we can use Taylor series expansions for the first two error
functions in that equation and formula 7.1.19 of Ref. [21] to rewrite Eq. (A.23) as

F̂ (0)(a; c′, c) = −
4(a + 1/a)2

c′c
exp{−[(a − 1/a)2c2/4 + c′

2
]}

×

∞∑

m=0

( 1

2m + 1

)
[(a − 1/a)c′/2]2m+1H2m[(a + 1/a)c/2]

+ π1/2 (a + 1/a)2

c′c

(
erf

[
(a − 1/a)c/2 − (a + 1/a)c′/2

]

− erf
[
(a − 1/a)c/2 + (a + 1/a)c′/2

])
, c ≥ c′, (A.24)

where Hn(x), with

H0(x) = 1, H1(x) = 2x, (A.25a,b)

and

(n + 1)Hn+1(x) = 2xHn(x) − 2Hn−1(x), n ≥ 1, (A.25c)

are normalized Hermite polynomials.
Summarizing our algorithm for computing the F̂ (n)(a; c′, c) moments, we use

Eq. (A.18) for 0 < c′ ≤ 0.9c and Eqs. (A.21)–(A.23) for 0.9c < c′ ≤ c, except if
c−c′ > 10, in which case instead of Eq. (A.23) we use Eq. (A.24) with the summa-

tion truncated for 16-figure accuracy. When c′ > c, we first compute F̂ (n)(a; c, c′)
using the algorithm just discussed, and then we take

F̂ (n)(a; c′, c) = e−(c′2−c2)F̂ (n)(a; c, c′), (A.26)

which follows from the symmetry of F (n)(a; c′, c) in c and c′. Again, we have found
that the use of a 100-point Gauss–Legendre quadrature set [mapped linearly onto
the indicated integration interval, in the case of Eq. (A.21)] to perform the integrals
in Eqs. (A.18) and (A.21) was sufficient.

Finally, we discuss our algorithms for computing the Ĝ(n)(a; c′, c) moments. We
begin by noting that for a = 1 we can use Eqs. (A.2a), (A.2c) and (A.3b), along
with Eqs. (A.7a) and (A.7c), to conclude that

Ĝ(n)(1; c′, c) = (1/2)P̂
(n)
1 (c′, c) − P̂

(n)
2 (c′, c), (A.27)

where P̂
(n)
1 (c′, c) and P̂

(n)
2 (c′, c) are given, respectively, by Eqs. (A.12) and (A.15).

It thus follows that essentially the same algorithm that was used to compute the
P̂(n)(c′, c) moments can be used to compute Ĝ(n)(a; c′, c) for a = 1.

Now, turning our attention to the more important case of a 6= 1, we first note
that we can combine the arguments of the exponential and the hyperbolic sine in
Eq. (A.3a) with the argument {−c′

2
} of the exponential in Eq. (A.7c) to show
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that Ĝ(n)(a; c′, c), a 6= 1, can be expressed as

Ĝ(n)(a; c′, c) = Ĝ
(n)
1 (a; c′, c) − Ĝ

(n)
2 (a; c′, c), (A.28)

where

Ĝ
(n)
1 (a; c′, c) =

(a + 1/a)2

2a

∫ 1

−1

r(c′, ac, µ0)

∆(a; c′, c, µ0)

×
[
exp

{
− 2c′

2
[cµ0 − (a + 1/a)c′/2]2/A(a; c′, c, µ0

}

− exp
{
− 2A(a; c′, c, µ0)/(a − 1/a)2

}]
Pn(µ0)dµ0 (A.29a)

and

Ĝ
(n)
2 (a; c′, c) = (2/a)e−c′2

∫ 1

−1

r(c′, ac, µ0)Pn(µ0)dµ0. (A.29b)

We note that in Eq. (A.29a)

A(a; c′, c, µ0) = (a − 1/a)2c′
2
/2 + C(a; c′, c, µ0) + ∆(a; c′, c, µ0), (A.30)

and that r(c′, ac, µ0), C(a; c′, c, µ0), and ∆(a; c′, c, µ0) are as defined by Eqs. (A.4)–
(A.6). In addition, while the integral in Eq. (A.29a) must be performed numeri-
cally, it is clear that the integral in Eq. (A.29b) has an analytical result, since it is
the same as that of Eq. (A.10b), except that the second argument of r(c′, c, µ0) in
Eq. (A.10b) is changed to ac in Eq. (A.29b). Therefore, we can look at the result
expressed by Eq. (A.15) and write

Ĝ
(n)
2 (a; c′, c) =

4c′e−c′2

(2n + 1)a

[( 1

2n + 3

)( c′

ac

)n+1

−
( 1

2n − 1

)( c′

ac

)n−1]
, c ≥ c′/a.

(A.31)

Our algorithm for computing Ĝ
(n)
2 (a; c′, c), a 6= 1 and c ≥ c′/a, is thus based

on Eqs. (A.28), (A.29a), and (A.31), and the use of a 100-point Gauss–Legendre
quadrature to calculate the integral in Eq. (A.29a). When c < c′/a, we use
Eqs. (A.28), (A.29a) and an appropriate alternative result for Eq. (A.29b), viz.

Ĝ
(n)
2 (a; c′, c) =

4c e−c′2

2n + 1

[( 1

2n + 3

)(ac

c′

)n+1

−
( 1

2n − 1

)(ac

c′

)n−1]
, c ≤ c′/a.

(A.32)
At this point, having finished the discussion of our general algorithms for com-

puting the Legendre moments of the scattering matrix for a binary mixture of
rigid-sphere gases, we should add that the reported algorithms are not restricted
to n = 0, 1, . . . , 8, even though our testing procedure was focused on these values
of n. It is recommended, however, that anyone wishing to use our algorithms with
confidence for n > 8, should perform additional numerical tests in advance to be
sure that the 100-point Gauss–Legendre quadrature set that we have used in this
work will be adequate for the intended application.



288 R. D. M. Garcia and C. E. Siewert ZAMP

To close this Appendix, we discuss next the special cases c′ = 0 and/or c = 0
which were excluded from our general presentation. Considering first the case
c′ = 0 and c 6= 0, we find from Eqs. (A.1) and (A.2)

P̂(0)(0, c) = 4(2/c − c), (A.33a)

P̂(n)(0, c) = 0, n ≥ 1, (A.33b)

F̂ (0)(a; 0, c) =
4(a + 1/a)2

ac
exp

{
− (a − 1/a)2c2/4

}
, (A.33c)

F̂ (n)(a; 0, c) = 0, n ≥ 1, (A.33d)

Ĝ(0)(a; 0, c) = (1/c)(a + 1/a)2
{
1 − exp

[
− 4c2/(a − 1/a)2

]}
− 4c, (A.33e)

and
Ĝ(n)(a; 0, c) = 0, n ≥ 1. (A.33f)

Results for the case c′ 6= 0 and c = 0 can be found from the above results for c′ = 0
and c 6= 0 and the symmetry relations expressed by Eqs. (A.8), (A.26), and

Ĝ(n)(a; c′, c) = (1/a)e−(c′2−c2)Ĝ(n)(1/a; c, c′), (A.34)

a relation that can be deduced from Eqs. (61) and (A.7c).
Finally, a few words about the case c′ = 0 and c = 0. While we have found

that the zeroth-order moments P̂(0)(c′, 0), F̂ (0)(a; c′, 0), and Ĝ(0)(a; c′, 0) diverge
as 1/c′ when c′ → 0, the higher-order moments are all zero. Since only the n = 1
and n = 2 moments are required in this work, the fact that for c = 0 the n = 0
moments diverge when c′ → 0 is of no concern here. This issue is not important
even for problems where the n = 0 moments are required, because these moments
appear always as parts of integrands that include the factor c′

2
, so that

lim
c′→0

c′
2
P̂(0)(c′, 0) = 0, (A.35a)

lim
c′→0

c′
2
F̂ (0)(a; c′, 0) = 0, (A.35b)

and
lim
c′→0

c′
2
Ĝ(0)(a; c′, 0) = 0. (A.35c)
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