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Abstract

An analytical version of the discrete-ordinates method (the ADO method) is used with recently reported analytical forms for
the rigid-sphere scattering kernels to establish a concise and particularly accurate solution to the temperature-jump problem for
a binary gas mixture described by the linearized Boltzmann equation. The solution yields, in addition to the temperature-jump
coefficient for the general (specular-diffuse) case of Maxwell boundary conditions for each of the two species, the density, the
temperature and the heat-flow profiles for both types of particles. Numerical results are reported for two binary mixtures (Ne–Ar
and He–Xe) with various molar concentrations.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

While the classical temperature-jump problem in rarefied gas dynamics [1–3] has been extensively studied for the
case of a single-species gas (see, for example, Refs. [4–11]), there are relatively few works [12–20] devoted to gas
mixtures. Almost all of the works on gas mixtures are based on model equations [13,16–19], with the exception of
a few that report variational estimates for the temperature-jump coefficient [12,14,15] but do not treat the density
and temperature effects in detail and a work [20] that provides a full treatment of the collision term in the linearized
Boltzmann equation (LBE) for a binary mixture of rigid-sphere gas particles. As the work in Ref. [20] is based on
numerical procedures applied to a fully discretized form of the LBE and is devoted to the special case of complete
accommodation for both species at the half-space boundary, we propose in this work a solution of the LBE that is
based on recently derived explicit forms of the rigid-sphere collision kernels for binary gas mixtures [21] and the
analytical discrete-ordinates (ADO) method [22], and allows a free choice of the accommodation coefficient for each
species at the confining surface. Our approach relies on a continuous treatment of both the space and speed variables
that has proved to be particularly efficient and accurate.
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2. Basic formulation

Before starting our work that is specific to the temperature-jump problem, we review here our analytical formu-
lation of the linearized Boltzmann equation for a binary mixture of rigid spheres. This formulation was started in
Ref. [21] and was further developed in Refs. [23] and [24]. Considering what has gone before this work, we write the
coupled linearized Boltzmann equation (for variations only in the z direction) for the considered binary mixture of
rigid spheres as

cμ
∂

∂z
H (z, c) + ε0V (c)H (z, c) = ε0

∫
e−c′2K(c′ : c)H (z, c′)d3c′, (2.1)

where

H (z, c) =
[

h1(z, c)

h2(z, c)

]
. (2.2)

At this point ε0 is an arbitrary parameter that we (soon) will use to define a dimensionless spatial variable. Since
Eq. (2.1) is written in terms of a dimensionless velocity variable c, we note that the basic velocity distribution functions
are available from

fα(z,v) = fα,0(v)
[
1 + hα

(
z,λ1/2

α v
)]

, α = 1,2, (2.3)

where λα = mα/(2kT0) and where

fα,0(v) = nα(λα/π)3/2 e−λαv2
(2.4)

is the Maxwellian distribution for nα particles of mass mα in equilibrium at temperature T0. Here, k is the Boltzmann
constant. Continuing, we note that we use spherical coordinates {c, θ,φ}, with μ = cos θ , to describe the dimensionless
velocity vector, so that H (z, c) ⇔ H (z, c,μ,φ). In addition,

V (c) = (1/ε0)Σ(c) (2.5)

and

K(c′ : c) = (1/ε0)K(c′ : c), (2.6)

where Σ(c) and K(c′ : c) are as defined in Ref. [24]: first of all,

Σ(c) =
[

	1(c) 0
0 	2(c)

]
, (2.7)

with

	α(c) = 	(1)
α (c) + 	(2)

α (c), (2.8)

	(β)
α (c) = 4π1/2nβσα,βaβ,αν(aα,βc), (2.9)

and

ν(c) = 2c2 + 1

c

c∫
0

e−x2
dx + e−c2

. (2.10)

Here

aα,β = (mβ/mα)1/2, α,β = 1,2, (2.11)

and to be clear, we note that we use σα,β to denote the differential-scattering cross section, which for the case of
rigid-sphere scattering that is isotropic in the center-of-mass system, we write, after consultation with Chapman and
Cowling [25], as

σα,β = 1
(

dα + dβ
)2

, (2.12)

4 2
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where d1 and d2 are the atomic diameters of the two types of gas particles. Next, we again consult Ref. [24] and write

K(c′ : c) =
[

K1,1(c
′ : c) K1,2(c

′ : c)
K2,1(c

′ : c) K2,2(c
′ : c)

]
, (2.13)

where

K1,1(c
′ : c) = 4n1σ1,1π

1/2P(c′ : c) + n2σ1,2π
1/2F1,2(c

′ : c), (2.14)

K1,2(c
′ : c) = 4n2σ1,2π

1/2G1,2(c
′ : c), (2.15)

K2,1(c
′ : c) = 4n1σ2,1π

1/2G2,1(c
′ : c), (2.16)

and

K2,2(c
′ : c) = 4n2σ2,2π

1/2P(c′ : c) + n1σ2,1π
1/2F2,1(c

′ : c). (2.17)

Here

P(c′ : c) = 1

π

(
2

|c′ − c| exp

{ |c′ × c|2
|c′ − c|2

}
− |c′ − c|

)
(2.18)

is the basic kernel for a single-species gas used by Pekeris [26]. In addition,

Fα,β(c′ : c) = F(aα,β; c′ : c) (2.19)

and

Gα,β(c′ : c) = G(aα,β; c′ : c), (2.20)

where [23]

F(a; c′ : c) = (a2 + 1)2

a3π |c′ − c| exp

{
a2 |c′ × c|2

|c′ − c|2 − (1 − a2)2(c′2 + c2)

4a2
− (a4 − 1)c′ · c

2a2

}
, (2.21)

and

G(a; c′ : c) = 1

aπ
|c′ − ac|[J (a; c′ : c) − 1

]
, (2.22)

with

J (a; c′ : c) = (a + 1/a)2

2Δ(a; c′ : c) exp

{−2C(a; c′ : c)
(a − 1/a)2

}
sinh

{
2Δ(a; c′ : c)
(a − 1/a)2

}
, a �= 1, (2.23a)

and

J (a; c′ : c) = 1

|c′ − c|2 exp

{ |c′ × c|2
|c′ − c|2

}
, a = 1. (2.23b)

To write Eq. (2.23a), we have used the definitions [23]

Δ(a; c′ : c) = {
C2(a; c′ : c) + (a − 1/a)2|c′ × c|2}1/2 (2.24)

and

C(a; c′ : c) = c′2 + c2 − (a + 1/a)c′ · c. (2.25)

We wish to make use of a dimensionless spatial variable that is based on the physical properties of both species of
particles, and so we choose to follow Ref. [24] and let

ε0 = (n1 + n2)π
1/2

(
n1d1 + n2d2

n1 + n2

)2

(2.26)

and then

τ = zε0. (2.27)
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Introducing the spatial variable τ and noting that the considered (temperature-jump) problem has azimuthal symmetry,
we find it convenient to define our work in terms of

Ψ (τ, c,μ) = 1

2π

2π∫
0

H (τ/ε0, c)dφ (2.28)

and deduce from Eq. (2.1) that

cμ
∂

∂τ
Ψ (τ, c,μ) + V (c)Ψ (τ, c,μ) =

∞∫
0

1∫
−1

e−c′2K(c′,μ′ : c,μ)Ψ (τ, c′,μ′)c′2 dμ′ dc′. (2.29)

Here

K(c′,μ′ : c,μ) =
2π∫

0

K(c′ : c)dφ. (2.30)

We find from Ref. [24] that we can write

K(c′,μ′ : c,μ) = 1

2

∞∑
n=0

(2n + 1)Pn(μ
′)Pn(μ)Kn(c

′, c), (2.31)

where

Kn(c
′, c) =

[K(1,1)
n (c′, c) K(1,2)

n (c′, c)
K(2,1)

n (c′, c) K(2,2)
n (c′, c)

]
, (2.32)

with

K(1,1)
n (c′, c) = p1P(n)(c′, c) + (g2/4)F (n)(a1,2; c′, c), (2.33a)

K(1,2)
n (c′, c) = g2G(n)(a1,2; c′, c), (2.33b)

K(2,1)
n (c′, c) = g1G(n)(a2,1; c′, c), (2.33c)

and

K(2,2)
n (c′, c) = p2P(n)(c′, c) + (g1/4)F (n)(a2,1; c′, c). (2.33d)

We also can write

V (c) =
[

v1(c) 0
0 v2(c)

]
, (2.34)

where now

v1(c) = p1ν(c) + g2a2,1ν(a1,2c) (2.35a)

and

v2(c) = p2ν(c) + g1a1,2ν(a2,1c). (2.35b)

In writing Eqs. (2.33) and (2.35), we have used

pα = cα

(
ndα

n1d1 + n2d2

)2

, α = 1,2, (2.36a)

and

gα = cα

(
ndavg

)2

, α = 1,2, (2.36b)

n1d1 + n2d2
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where

cα = nα/n, n = n1 + n2, and davg = (d1 + d2)/2. (2.37a–c)

In order to avoid too much repetition, we do not list here our expressions for the Legendre moments P(n)(c′, c),
F (n)(a; c′, c), and G(n)(a; c′, c) since they are explicitly given in Ref. [24].

At the confining surface of the considered half-space, we use a combination of specular and diffuse reflection, and
so, in regard to Eq. (2.1), we write the boundary condition as

H (0, c,μ,φ) − (I − α)H (0, c,−μ,φ) − 2

π
α

∞∫
0

1∫
0

2π∫
0

e−c′2
H (0, c′,−μ′, φ′)c′3μ′ dφ′ dμ′ dc′ = 0, (2.38)

for μ ∈ (0,1] and all c and all φ. Here, I is the 2 × 2 identity matrix and

α = diag{α1, α2}, (2.39)

where α1 and α2 are the accommodation coefficients to be used for the two species of gas particles. Taking note of
Eq. (2.28), we find from Eq. (2.38) the boundary condition subject to which we must solve Eq. (2.29), viz.

Ψ (0, c,μ) − (I − α)Ψ (0, c,−μ) − 4α

∞∫
0

1∫
0

e−c′2
Ψ (0, c′,−μ′)c′3μ′ dμ′ dc′ = 0, (2.40)

for μ ∈ (0,1] and all c.
In this work, we intend to compute the density, the temperature, and the heat-flow perturbations (see Appendix A

for a discussion of these and other macroscopic quantities of interest), i.e.,

Nα(z) = 1

π3/2

∫
e−c2

hα(z, c)d3c, (2.41a)

Tα(z) = 2

3π3/2

∫
e−c2

hα(z, c)
(
c2 − 3/2

)
d3c, (2.41b)

and

Qα(z) = 1

π3/2

∫
e−c2

hα(z, c)
(
c2 − 5/2

)
cμd3c, (2.41c)

for α = 1 and 2. Thus, making use of the dimensionless spatial variable and matrix notation, we can express the
desired perturbations as

N(τ ) = 1

π3/2

∞∫
0

1∫
−1

2π∫
0

e−c2
H (τ/ε0, c)c

2 dφ dμdc, (2.42a)

T (τ ) = 2

3π3/2

∞∫
0

1∫
−1

2π∫
0

e−c2
H (τ/ε0, c)

(
c2 − 3/2

)
c2 dφ dμdc, (2.42b)

and

Q(τ ) = 1

π3/2

∞∫
0

1∫
−1

2π∫
0

e−c2
H (τ/ε0, c)

(
c2 − 5/2

)
c3μdφ dμdc (2.42c)

or

N(τ ) = 2

π1/2

∞∫ 1∫
e−c2

Ψ (τ, c,μ)c2 dμdc, (2.43a)
0 −1
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T (τ ) = 4

3π1/2

∞∫
0

1∫
−1

e−c2
Ψ (τ, c,μ)

(
c2 − 3/2

)
c2 dμdc, (2.43b)

and

Q(τ ) = 2

π1/2

∞∫
0

1∫
−1

e−c2
Ψ (τ, c,μ)

(
c2 − 5/2

)
c3μdμdc. (2.43c)

Now, since there is no driving term in Eq. (2.1) we require that the solutions hα(z, c) diverge as z tends to infinity, but
at the same time we impose a (generalized) Welander condition [1] on the temperature of the gas mixture, viz.

lim
τ→∞[c1 c2] d

dτ
T (τ ) = K. (2.44)

Here K is a normalizing constant which we henceforth set equal to unity. At this point we are ready to discuss the
ADO method and to develop a (diverging as τ tends to infinity) solution of the problem defined by Eqs. (2.29), (2.40)
and (2.44).

3. An expansion in the speed variable

In order to account for the c dependence of Ψ (τ, c,μ) we introduce the (approximate) representation

Ψ (τ, c,μ) =
K∑

k=0

Πk(c)Gk(τ,μ), (3.1)

where {Πk(c)} is a collection of basis functions to be specified. And so we substitute Eq. (3.1) into Eqs. (2.29) and
(2.40), multiply the resulting equations by

c2 exp
{−c2}Πl(c)

and integrate over all c to find

μ
∂

∂τ
AG(τ,μ) + SG(τ,μ) =

1∫
−1

C(μ′ : μ)G(τ,μ′)dμ′ (3.2)

and

FG(0,μ) − HG(0,−μ) − J

1∫
0

G(0,−μ′)μ′ dμ′ = 0, μ ∈ (0,1]. (3.3)

Here

G(τ,μ) = [
G0(τ,μ),G1(τ,μ), . . . ,GK(τ,μ)

]T
, (3.4)

where the superscript T denotes the transpose operation, and the 2(K + 1) × 2(K + 1) matrices A, S and C(μ′ : μ)

have 2 × 2 elements given by

Al,k = I

∞∫
0

e−c2
c3Πl(c)Πk(c)dc, (3.5a)

Sl,k =
∞∫

e−c2
c2Πl(c)V (c)Πk(c)dc, (3.5b)
0
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and

Cl,k(μ
′ : μ) =

∞∫
0

∞∫
0

e−c2
e−c′2

c2c′2Πl(c)K(c′,μ′ : c,μ)Πk(c
′)dc′ dc. (3.5c)

In addition, we define the 2(K + 1) × 2(K + 1) matrices

F =
∞∫

0

e−c2
P T(c)P (c)c2 dc, (3.6a)

H =
∞∫

0

e−c2
P T(c)(I − α)P (c)c2 dc, (3.6b)

and

J = 4P T
0 αP 1, (3.6c)

where

P n =
∞∫

0

e−c2
P (c)cn+2 dc, (3.7)

with the 2 × 2(K + 1) matrix P (c) given by

P (c) = [
Π0(c)I Π1(c)I · · ·ΠK(c)I

]
. (3.8)

And so we now proceed to develop our ADO (analytical discrete ordinates) solution of Eqs. (3.2) and (3.3) in order
to compute the density, temperature, and heat-flow perturbations as defined by Eqs. (2.43).

4. Elementary (ADO) solutions

Seeking separable solutions of Eq. (3.2), we substitute

G(τ,μ) = Φ(ν,μ) e−τ/ν (4.1)

into that equation to find

SU(ν,μ) −
1∫

0

C+(μ′ : μ)U(ν,μ′)dμ′ = (μ/ν)AV (ν,μ) (4.2a)

and

SV (ν,μ) −
1∫

0

C−(μ′ : μ)V (ν,μ′)dμ′ = (μ/ν)AU(ν,μ), (4.2b)

where

C±(μ′ : μ) = C(μ′ : μ) ± C(−μ′ : μ). (4.3)

Here

U(ν,μ) = Φ(ν,μ) + Φ(ν,−μ) (4.4a)

and

V (ν,μ) = Φ(ν,μ) − Φ(ν,−μ). (4.4b)
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We can now substitute U(ν,μ) from Eq. (4.2b) into Eq. (4.2a) to find

(
1/μ2)[Σ2V (ν,μ) −

1∫
0

B(μ′ : μ)V (ν,μ′)dμ′
]

= λV (ν,μ), (4.5)

where

λ = 1/ν2, (4.6)

B(μ′ : μ) = (μ/μ′)B+(μ′ : μ)Σ + ΣB−(μ′ : μ) −
1∫

0

(μ/μ′′)B+(μ′′ : μ)B−(μ′ : μ′′)dμ′′, (4.7)

Σ = A−1S, (4.8)

and

B±(μ′ : μ) = 1

2

∞∑
n=0

(2n + 1)
[
1 ± (−1)n

]
Pn(μ

′)Pn(μ)Bn, (4.9)

where

Bn = A−1Cn (4.10)

and where the 2(K + 1) × 2(K + 1) matrices Cn have 2 × 2 elements given by

C
(n)
l,k =

∞∫
0

∞∫
0

e−c2
e−c′2

c2c′2Πl(c)Kn(c
′, c)Πk(c

′)dc′ dc. (4.11)

We rewrite Eq. (4.7) as

B(μ′ : μ) = (μ/μ′)B+(μ′ : μ)Σ + ΣB−(μ′ : μ) − μ

∞∑
m=0

∞∑
m′=m

Δm,m′P2m(μ)P2m′+1(μ
′)B2mB2m′+1, (4.12)

where

Δm,m′ = (4m + 1)(4m′ + 3)

1∫
0

P2m(x)P2m′+1(x)
dx

x
(4.13)

or

Δm,m′ = [
(2m′ + 1)P2m′(0)

]−1
(4m + 1)(4m′ + 3)P2m(0), m � m′, (4.14)

with

Pα+2(0) = −
(

α + 1

α + 2

)
Pα(0), α = 0,2, . . . , and P0(0) = 1. (4.15a,b)

We now introduce a “half-range” quadrature scheme (with weights and nodes wk and μk) and rewrite Eqs. (4.5) and
(4.2b) evaluated at the quadrature points as

(
1/μ2

i

)[
Σ2V (νj ,μi) −

N∑
k=1

wkB(μk : μi)V (νj ,μk)

]
= λjV (νj ,μi) (4.16a)

and

U(νj ,μi) = (νj /μi)

[
ΣV (νj ,μi) −

N∑
wkB−(μk : μi)V (νj ,μk)

]
, (4.16b)
k=1
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for i = 1,2, . . . ,N . Equation (4.16a) defines our eigenvalue problem, to which we have added the subscript j to label
the eigenvalues and eigenvectors. Once this eigenvalue problem is solved, we have the elementary solutions from

Φ(νj ,μi) = (1/2)
[
U(νj ,μi) + V (νj ,μi)

]
(4.17a)

and

Φ(νj ,−μi) = (1/2)
[
U(νj ,μi) − V (νj ,μi)

]
. (4.17b)

Note that the separation constants defined by

νj = ±λ
−1/2
j (4.18)

occur in ± pairs. From this point, we take νj to be the positive root listed in Eq. (4.18). Once we have solved the
eigenvalue problem defined by Eq. (4.16a), we can write our general (discrete-ordinates) solution to Eq. (3.2) as

G(τ,±μi) =
J∑

j=1

[
AjΦ(νj ,±μi) e−τ/νj + BjΦ(νj ,∓μi) eτ/νj

]
, (4.19)

for i = 1,2, . . . ,N . Here J = 2N(K + 1), and the arbitrary constants {Aj } and {Bj } are to be determined from the
boundary conditions of a specific problem.

5. The complete speed-dependent ADO solution

If we combine Eqs. (3.1), (3.8) and (4.19) we can write our (approximate) solution as

Ψ (τ, c,±μi) = P (c)

J∑
j=1

[
AjΦ(νj ,±μi) e−τ/νj + BjΦ(νj ,∓μi) eτ/νj

]
, (5.1)

for i = 1,2, . . . ,N . While Eq. (5.1) is our general (discrete-ordinates) solution, we can make some improvements in
that result. We have found that the eigenvalue problem defined by Eq. (4.16a) yields three separation constants, say
ν1, ν2, and ν3, that approximate the three expected unbounded separation constants. And so we ignore ν1, ν2, and ν3
in Eq. (5.1) and rewrite that equation as

Ψ (τ, c,±μi) = Ψ ∗(τ, c,±μi) + P (c)

J∑
j=4

[
AjΦ(νj ,±μi) e−τ/νj + BjΦ(νj ,∓μi) eτ/νj

]
, (5.2)

for i = 1,2, . . . ,N . We note that Ψ ∗(τ, c,μ) is defined in terms of the elementary solutions we reported in a previous
work [24], viz.

Ψ ∗(τ, c,μ)

= A1H 1 + A2H 2 + A3H 3(c) + B1H 4(c,μ) + B2
[
τΦ1(c) − μA(1)(c)

] + B3
[
τΦ2(c) − μA(2)(c)

]
, (5.3)

where

H 1 =
[

1
0

]
, H 2 =

[
0
1

]
, H 3(c) = c2

[
1
1

]
, and H 4(c,μ) = cμ

[
1

a1,2

]
. (5.4a–d)

In addition, the A(α)(c) are [24] solutions of the two generalized Chapman–Enskog (vector-valued) integral equations

V (c)A(α)(c) −
∞∫

0

e−c′2K1(c
′, c)A(α)(c′)c′2 dc′ = cΦα(c), α = 1,2, (5.5)

for c ∈ [0,∞). Here

Φα(c) = Φα,0 + (
c2 − 5/2

)
Φα,2, α = 1,2, (5.6)
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with

Φ1,0 =
[

c1 − 1
c1

]
, Φ1,2 =

[
c1
c1

]
, Φ2,0 =

[
c2

c2 − 1

]
, and Φ2,2 =

[
c2
c2

]
. (5.7a–d)

Note that Eqs. (2.32) and (2.34) are required to complete the definition of Eq. (5.5). And finally, since Eq. (5.5) does
not uniquely define A(α)(c), we have, as in our previous work [24], imposed the normalization conditions

[c1 c2]
∞∫

0

e−c2
A(α)(c)c3 dc = 0, α = 1,2, (5.8)

to determine λα after adding

Ah,α(c) = λαc

[
1

a1,2

]
(5.9)

to any computed solution of Eq. (5.5).

6. The temperature-jump problem

Having completed our general development, we are ready to solve the temperature-jump problem for a binary
mixture of rigid spheres. Noting Eqs. (2.43b) and (2.44), we conclude that we must delete the terms in Eq. (5.2) that
diverge exponentially as τ tends to infinity. We thus now have

Ψ (τ, c,±μi) = Ψ ∗(τ, c,±μi) + P (c)

J∑
j=4

AjΦ(νj ,±μi) e−τ/νj . (6.1)

We can use Eqs. (5.3) and (6.1) to find from Eqs. (2.43a) and (2.43b)

N(τ ) = N∗(τ ) +
J∑

j=4

AjN j e−τ/νj (6.2a)

and

T (τ ) = T ∗(τ ) +
J∑

j=4

AjT j e−τ/νj , (6.2b)

where

N∗(τ ) =
[

A1 + (3/2)A3 − B2τ

A2 + (3/2)A3 − B3τ

]
(6.3a)

and

T ∗(τ ) =
[

A3 + (c1B2 + c2B3)τ

A3 + (c1B2 + c2B3)τ

]
. (6.3b)

In addition,

N j = 2

π1/2
P 0Xj (6.4a)

and

T j = 4

3π1/2

[
P 2 − (3/2)P 0

]
Xj , (6.4b)

where P 0 and P 2 are defined by Eq. (3.7), and where

Xj =
N∑

wk

[
Φ(νj ,μk) + Φ(νj ,−μk)

]
. (6.5)
k=1
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Using Eq. (2.44) and the fact that we have imposed the normalization K = 1, we find

c1B2 + c2B3 = 1, (6.6)

which allows us to rewrite Eq. (6.3b) as

T ∗(τ ) = (ζ + τ)

[
1
1

]
, (6.7)

where

ζ = A3 (6.8)

is the temperature-jump coefficient.
In order to determine the required constants in our solution, we start by rewriting the boundary condition listed as

Eq. (2.40) in the discrete-ordinates form

Ψ (0, c,μi) − (I − α)Ψ (0, c,−μi) − 4α

∞∫
0

e−c′2
c′3

N∑
k=1

wkΨ (0, c′,−μk)μk dc′ = 0, (6.9)

for i = 1,2, . . . ,N . We next use Eqs. (5.3) and (6.1) in Eq. (6.9), multiply the resulting equation by

c2 exp
{−c2}P T(c),

and integrate over all c to find

A3M3 + B1N1,i + B2N2,i + B3N3,i +
J∑

j=4

AjMj,i = 0, (6.10)

where

M3 = [
P T

2 − 2P T
0

]
α

[
1
1

]
, (6.11a)

N1,i = [
μiP

T
1 (2I − α) + (

π1/2/2
)
P T

0 α
][

1
a1,2

]
, (6.11b)

Nβ+1,i = −μi

∞∫
0

e−c2
P T(c)(2I − α)A(β)(c)c2 dc − (4/3)P T

0 α

∞∫
0

e−c2
A(β)(c)c3 dc, β = 1,2, (6.11c)

and

Mj,i = FΦ(νj ,μi) − HΦ(νj ,−μi) − 4P T
0 αP 1

N∑
k=1

wkμkΦ(νj ,−μk) (6.11d)

are vectors of size 2(K + 1). Clearly, Eq. (6.10) for i = 1,2, . . . ,N used in conjunction with Eq. (6.6) constitutes a
system of J +1 linear algebraic equations we can solve to find the J +1 constants B1, B2, B3, and Aj , j = 3,4, . . . , J .
However, there is a problem: it can be noted that each of the solutions H 1 and H 2 associated respectively with A1
and A2 in Eq. (5.3) satisfy the boundary condition listed as Eq. (2.40), and so neither A1 nor A2 can be determined
from that condition or from Eq. (2.44). Considering that the pressure perturbation on the gas mixture should approach
zero as τ → ∞, we introduce the additional constraint

lim
τ→∞[c1 c2]

[
N(τ ) + T (τ )

] = 0, (6.12)

which we can satisfy by requiring that

c1A1 + c2A2 = −(5/2)ζ, (6.13)
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where, at this point, the temperature-jump coefficient ζ is considered known. It thus follows, even after the use of
Eq. (6.12), that there is still one degree of freedom in our solution. If we multiply Eq. (6.2a) on the left by [c1 c2]
and use Eqs. (6.3a), (6.6), and (6.13), we find

[c1 c2]N(τ ) = −(ζ + τ) + [c1 c2]
J∑

j=4

AjN j e−τ/νj . (6.14)

We thus conclude that Eq. (6.12) allows us to determine [c1 c2]N(τ ) uniquely but not the individual components of
N(τ ). Therefore, to be able to report some numerical results for the components of N(τ ), we choose to use

A1 = A2 = −(5/2)ζ (6.15)

to satisfy Eq. (6.13). With this arbitrary normalization, we find

N(τ ) = −
[

ζ + B2τ

ζ + B3τ

]
+

J∑
j=4

AjN j e−τ/νj . (6.16)

While the temperature-jump coefficient and the density and temperature distributions can be considered the prin-
cipal quantities of interest for the considered problem, we can also compute the heat-flow distribution defined in
Eqs. (2.42c) and/or (2.43c). Making use of Eqs. (5.3) and (6.1), we find

Q(τ ) = Q∗ +
J∑

j=4

AjQj e−τ/νj , (6.17)

where

Q∗ = − 4

3π1/2

∞∫
0

e−c2[
B2A

(1)(c) + B3A
(2)(c)

](
c2 − 5/2

)
c3 dc. (6.18)

In addition,

Qj = 2

π1/2

[
P 3 − (5/2)P 1

]
Y j , (6.19)

with

Y j =
N∑

k=1

wkμk

[
Φ(νj ,μk) − Φ(νj ,−μk)

]
. (6.20)

In Ref. [27] it was proved for the McCormack model that

Q0 = [φ1 φ2 ]Q(τ ), (6.21)

where

φ1 = c1

c1 + a2,1c2
and φ2 = a2,1c2

c1 + a2,1c2
, (6.22a,b)

is a constant. In Appendix B of this work we report our proof of the fact that Q0 as defined by Eq. (6.21) is a constant
also for the linearized Boltzmann equation for a mixture of rigid spheres.

Finally we can use Eq. (2.40) and the constant-flow condition reported in Ref. [23] to show that

U(τ ) = 0, (6.23)

where

U(τ ) = 1

π3/2

∞∫ 1∫ 2π∫
e−c2

H (τ/ε0, c)μc3 dφ dμdc (6.24)
0 −1 0
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or

U(τ ) = 2

π1/2

∞∫
0

1∫
−1

e−c2
Ψ (τ, c,μ)μc3 dμdc. (6.25)

Using Eqs. (5.3) and (6.1) on the right side of Eq. (6.25) and noting Eq. (6.23), we find

π1/2

4
B1

[
1

a1,2

]
− 2

3

∞∫
0

e−c2[
B2A

(1)(c) + B3A
(2)(c)

]
c3 dc + P 1

J∑
j=4

AjY j e−τ/νj = 0, (6.26)

for any τ ∈ [0,∞). When τ → ∞ this condition simplifies to

π1/2

4
B1

[
1

a1,2

]
− 2

3

∞∫
0

e−c2[
B2A

(1)(c) + B3A
(2)(c)

]
c3 dc = 0. (6.27)

At this point, we can multiply Eq. (6.27) on the left by [c1 c2] and note Eq. (5.8) to conclude that

B1 = 0, (6.28)

and so Eq. (6.27) reduces to

∞∫
0

e−c2[
B2A

(1)(c) + B3A
(2)(c)

]
c3 dc = 0. (6.29)

It is now clear that we can determine B2 and B3 by solving a system of two linear algebraic equations that consists of
Eq. (6.6) and either one of the components of Eq. (6.29). We find, for α = 1 (and c2 �= 0) or α = 2 (and c1 �= 0),

B2 = Γ −1
α [ δ1,α δ2,α ]

∞∫
0

e−c2
A(2)(c)c3 dc (6.30a)

and

B3 = −Γ −1
α [ δ1,α δ2,α ]

∞∫
0

e−c2
A(1)(c)c3 dc, (6.30b)

where

Γα = [ δ1,α δ2,α ]

∞∫
0

e−c2[
c1A

(2)(c) − c2A
(1)(c)

]
c3 dc (6.31)

and δ1,α and δ2,α are Kronecker deltas. In spite of the fact that Eqs. (6.28) and (6.30) provide explicit results for
B1, B2, and B3, we prefer to find these constants numerically from the solution of the linear system that consists of
Eq. (6.10) for i = 1,2, . . . ,N combined with Eq. (6.6). The reason for this choice is that, in doing so, we can work
with a square system. Nevertheless, to be sure of the adequacy of our approach, we have verified that the results for
B1, B2, and B3 that are obtained via solution of the linear system match very well the values that are obtained from
Eqs. (6.28) and (6.30).

In conclusion, to be very clear about the temperature-jump problem formulated and solved in this work, we note
that: we constructed a solution of Eq. (2.1) that diverges linearly in the spatial variable and that satisfies Eqs. (2.40),
(2.44) and (6.12). It can be observed that we found a one-parameter family of solutions that satisfy these conditions,
and while, in our computations, we fixed the one arbitrary parameter by choosing A1 = A2 in Eq. (6.13), it can be seen
that this normalization does not affect either the reported temperature-jump coefficient or the reported temperature and
heat-flow profiles.
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7. Numerical results

Before reporting our numerical results for some representative cases and comparisons with results available in
the literature, we would like to summarize the numerical methods we have used in this work. First of all, we note
that our computational implementation was based on a truncated version of the kernel defined by Eq. (2.31). To this
end, we have stopped the summations in Eqs. (2.31) and (4.9) at n = L and, for consistency, we have stopped the
summations in Eq. (4.12) at m = 
(L − 1)/2� and m′ = 
(L − 1)/2�, where 
x� denotes the floor (or integer part)
of x. The Legendre components Kn(c

′, c) that are required in Eq. (4.11) were computed with the algorithms discussed
in Appendix A of Ref. [24], which were found to work well in this work for L as high as 50 when a 200-point Gauss–
Legendre quadrature set was used to perform the numerical integrations. In addition, we note that all integrals over
the c variable that are required in this work [the integrals in Eqs. (3.5a), (3.5b), (3.6a), (3.6b), (3.7), and (4.11)] were
evaluated by using the transformation u = e−c to map the integration interval [0,∞) to [0,1], and then applying a
Gauss–Legendre quadrature scheme of order M (with M even) mapped linearly onto [0,1]. In the case of the inner
integral over c′ in Eq. (4.11), we have, for better accuracy, split the integration interval into [0, c] and [c,∞). These
two subintervals were then mapped onto [0,1] and a Gauss–Legendre quadrature of order M/2 (mapped onto [0,1])
was used to evaluate the c′ integral over each of these subintervals. Since in addition to these approximations we
use the approximate representation of order K given by Eq. (3.1) with the choice Πk(c) = Pk(2 e−c − 1) introduced
in Ref. [9], a half-range quadrature scheme of order N in Eqs. (4.16), and a Hermite cubic spline representation
with a number Ks of spline functions [24] to compute (without postprocessing) the generalized Chapman–Enskog
vector functions A(α)(c), α = 1,2, we can see that our solution depends on the set of five approximation parameters
{L,M,K,N,Ks}. Incidentally, we note that the required integrals of A(α)(c) (see Eqs. (6.11c) and (6.18)) were
performed in this work as in Ref. [24], by applying a low-order Gaussian quadrature (order four being our choice
here) to evaluate the integrals over each of the subintervals defined by two consecutive knots.

In regard to linear algebra, we note that have used the sequence of EISPACK [28] routines BALANC, ELMHES,
ELTRAN, HQR2, and BALBAK to solve the eigensystem defined by Eq. (4.16a) for i = 1,2, . . . ,N and subrou-
tines DGECO and DGESL of the LINPACK package [29] to solve the linear system defined by Eq. (6.10) for
i = 1,2, . . . ,N and Eq. (6.6). We also note that for some choices of the approximation parameters {L,M,K,N}
a few eigenvalues of Eq. (4.16a) have shown up in our calculations as complex conjugate pairs slightly off the real
axis. This situation is resolved in our code without having to resort to programming in complex mode.

Our test problems are defined in terms of two gas mixtures: Ne–Ar and He–Xe. The basic data for the Ne–Ar
mixture are given by

m2 = 39.948, m1 = 20.183, d2/d1 = 1.406

and for the He–Xe mixture by

m2 = 131.30, m1 = 4.0026, d2/d1 = 2.226.

We report in Table 1 results of our computations of the temperature-jump coefficient ζ for several choices of the
molar concentrations (c1 as given in the table and c2 = 1 − c1) of the Ne–Ar mixture and various combinations of
the accommodation coefficients α1 and α2. In Table 2, we show similar results for the He–Xe mixture. The numerical
results in Tables 1 and 2 are thought to be accurate to within ±1 in the last figure. To obtain these results, the code was
executed several times for each case, increasing the values of the approximation parameters {L,M,K,N,Ks} in steps,
until numerical convergence was observed. Specifically, we have used 25 � L � 50, 100 � M � 400, 20 � K � 40,
20 � N � 30, and 80 � Ks − 2 � 1280 in our calculations. To provide some detailed results for the temperature,
density, and heat-flow profiles, we report in Table 3 our converged results for the case of the He–Xe mixture with
c1 = 0.3, α1 = 0.3, and α2 = 0.6. Typically, a calculation performed with L = 25, M = 100, K = 20, N = 20, and
Ks = 82 yields at least five figures of accuracy for all quantities, and uses less than a minute of CPU time on an AMD
Athlon 64 3200+ machine running at 2 GHz.

Now, in order to compare our results with those based on the McCormack model and reported in Ref. [18], we must
take note of the differing definitions of the mean-free path used in the two works: this work and Ref. [18]. Recalling
that we use τ , as defined by Eq. (2.27), to denote the dimensionless spatial variable adopted in this work and using
τM for that of Ref. [18], we find that the relationship between these two quantities,

ξM = τ
, (7.1)
τM
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can be computed from

ξM = c2[Υ1 + X
(4)
2,1] + c1[Υ2 + X

(4)
1,2]

Υ1Υ2 − X
(4)
1,2X

(4)
2,1

, (7.2)

where

X
(3)
α,β =

(
10

3
+ 2mβ

mα

)
Fα,β, (7.3)

X
(4)
α,β = 4

3
Fα,β, (7.4)

Fα,β = 2cβmα

5mβ

(
mβ

mα + mβ

)3/2(
c1m1 + c2m2

mα

)1/2( dα + dβ

c1d1 + c2d2

)2

, (7.5)

Υ1 = X
(3)
1,1 + X

(3)
1,2 − X

(4)
1,1, (7.6)

and

Υ2 = X
(3)
2,2 + X

(3)
2,1 − X

(4)
2,2. (7.7)

And so, to compare our results for the temperature-jump coefficient reported in Tables 1 and 2 with the equivalent
results of Ref. [18], we find that we must divide our results by the ξM factor given by Eq. (7.2). Having done this
conversion for all cases reported in Tables 1 and 2 of this work, we have found that the relative deviations of the
results of the McCormack model with respect to our results reach a maximum value of ∼ 2.4% for the test cases

Table 1
The temperature-jump coefficient ζ for the Ne–Ar mixture

c1 α1 = 0.1 α1 = 0.1 α1 = 0.3 α1 = 0.1 α1 = 0.8 α1 = 1.0
α2 = 0.1 α2 = 0.3 α2 = 0.5 α2 = 0.8 α2 = 0.9 α2 = 1.0

0.0 1.45095(1) 4.44448 2.41164 1.24705 1.02676 8.48578(−1)

0.1 1.43466(1) 4.92061 2.57270 1.53745 1.04473 8.38662(−1)

0.2 1.42142(1) 5.45123 2.73796 1.87360 1.06237 8.30661(−1)

0.3 1.41122(1) 6.04846 2.90850 2.27184 1.07996 8.24525(−1)

0.4 1.40413(1) 6.72812 3.08575 2.75662 1.09785 8.20276(−1)

0.5 1.40035(1) 7.51123 3.27149 3.36616 1.11648 8.18017(−1)

0.6 1.40021(1) 8.42629 3.46808 4.16359 1.13640 8.17943(−1)

0.7 1.40425(1) 9.51278 3.67863 5.26092 1.15831 8.20369(−1)

0.8 1.41322(1) 1.08268(1) 3.90732 6.87700 1.18314 8.25769(−1)

0.9 1.42825(1) 1.24507(1) 4.15990 9.50286 1.21214 8.34833(−1)

1.0 1.45095(1) 1.45095(1) 4.44448 1.45095(1) 1.24705 8.48578(−1)

Table 2
The temperature-jump coefficient ζ for the He–Xe mixture

c1 α1 = 0.1 α1 = 0.1 α1 = 0.3 α1 = 0.1 α1 = 0.8 α1 = 1.0
α2 = 0.1 α2 = 0.3 α2 = 0.5 α2 = 0.8 α2 = 0.9 α2 = 1.0

0.0 1.45095(1) 4.44448 2.41164 1.24705 1.02676 8.48578(−1)

0.1 1.37362(1) 6.12437 2.85924 2.62533 1.03464 7.89842(−1)

0.2 1.31606(1) 7.28482 3.08204 3.71452 1.02442 7.50181(−1)

0.3 1.26892(1) 8.13530 3.19932 4.65641 1.00832 7.19952(−1)

0.4 1.22982(1) 8.78985 3.26334 5.52402 9.91552(−1) 6.96240(−1)

0.5 1.19899(1) 9.32784 3.30402 6.37073 9.77609(−1) 6.78523(−1)

0.6 1.17858(1) 9.82007 3.34426 7.25166 9.70102(−1) 6.67780(−1)

0.7 1.17339(1) 1.03498(1) 3.40894 8.24404 9.74309(−1) 6.66783(−1)

0.8 1.19351(1) 1.10472(1) 3.53631 9.48537 9.99978(−1) 6.81705(−1)

0.9 1.26262(1) 1.21810(1) 3.80587 1.12796(1) 1.06916 7.27386(−1)

1.0 1.45095(1) 1.45095(1) 4.44448 1.45095(1) 1.24705 8.48578(−1)
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studied in Table 1 and ∼ 9.2% for those of Table 2. In Table 4, we display a comparison of our results for the profiles
reported in Table 3, now measured in McCormack units, with the equivalent results of Ref. [18]. In this case, the
relative deviations of the profiles computed with the McCormack model can be as high as ∼ 12.7%.

Finally, to be able to compare our results with the results reported in Ref. [20] for some test cases characterized by
complete accommodation (α1 = 1 and α2 = 1) and gas particles with the same diameter (d1 = d2), we note that if we
let τK denote the dimensionless spatial variable used in Ref. [20], then we find that

ξK = τ

τK

(7.8)

can be computed from

ξK = 21/2
(

c1d1 + c2d2

2d1

)2

. (7.9)

Thus, upon dividing our converged numerical results for the temperature-jump coefficient by the ξK factor, we found
agreement (within ±1 in the fifth figure) with the five-figure results reported in Table XI of Ref. [20].

Table 3
Temperature, density, and heat-flow profiles for the He–Xe mixture with c1 = 0.3, α1 = 0.3, α2 = 0.6: ζ = 2.96255, B2 = 0.560696, B3 = 1.18827,
Q0 = −0.746239

τ −N1(τ ) −N2(τ ) T1(τ ) T2(τ ) −Q1(τ ) −Q2(τ )

0.0 2.95231 2.04655 2.94012 1.88234 6.22796(−1) 1.04925
0.1 3.04632 2.39513 3.10870 2.27584 6.34439(−1) 1.02067
0.2 3.11360 2.60941 3.22981 2.49972 6.44351(−1) 9.96335(−1)

0.3 3.17459 2.79601 3.33949 2.68578 6.53153(−1) 9.74729(−1)

0.4 3.23260 2.96842 3.44367 2.85213 6.61086(−1) 9.55259(−1)

0.5 3.28898 3.13181 3.54478 3.00597 6.68293(−1) 9.37568(−1)

0.6 3.34439 3.28881 3.64404 3.15106 6.74876(−1) 9.21409(−1)

0.7 3.39922 3.44095 3.74215 3.28962 6.80912(−1) 9.06594(−1)

0.8 3.45368 3.58924 3.83954 3.42311 6.86461(−1) 8.92972(−1)

0.9 3.50794 3.73436 3.93649 3.55253 6.91574(−1) 8.80422(−1)

1.0 3.56208 3.87684 4.03319 3.67861 6.96293(−1) 8.68837(−1)

2.0 4.10520 5.21248 5.00184 4.83443 7.28051(−1) 7.90884(−1)

5.0 5.76870 8.88917 7.96756 7.94773 7.54513(−1) 7.25930(−1)

9.0 8.00897 1.36561(1) 1.19628(1) 1.19617(1) 7.57911(−1) 7.17588(−1)

Table 4
Basic results in McCormack units (τ ⇒ τM ) for the He–Xe mixture with c1 = 0.3, α1 = 0.3, and α2 = 0.6: ζLBE = 7.93116 and ζMcC = 7.34595

τ McCormack model [18] Linearized Boltzmann equation

−N1(τ ) −N2(τ ) T1(τ ) T2(τ ) −N1(τ ) −N2(τ ) T1(τ ) T2(τ )

0.0 6.90689 5.03578 6.87509 4.69618 7.90375 5.47892 7.87114 5.03929
0.1 7.11313 5.45593 7.13187 5.14852 8.02052 5.95423 8.07981 5.58783
0.2 7.24491 5.73415 7.30983 5.44479 8.10444 6.24325 8.23067 5.90954
0.3 7.35582 5.97246 7.46464 5.69461 8.17869 6.48793 8.36431 6.17397
0.4 7.45531 6.18862 7.60648 5.91793 8.24758 6.70918 8.48834 6.40730
0.5 7.54742 6.39019 7.73978 6.12346 8.31300 6.91541 8.60609 6.62033
0.6 7.63433 6.58123 7.86699 6.31596 8.37598 7.11099 8.71941 6.81880
0.7 7.71738 6.76423 7.98960 6.49842 8.43716 7.29853 8.82944 7.00617
0.8 7.79744 6.94085 8.10863 6.67283 8.49696 7.47973 8.93694 7.18473
0.9 7.87513 7.11223 8.22478 6.84061 8.55569 7.65576 9.04246 7.35612
1.0 7.95090 7.27924 8.33859 7.00283 8.61357 7.82748 9.14638 7.52150
2.0 8.65150 8.80252 9.40554 8.43799 9.16891 9.39991 1.01412(1) 8.97649
5.0 1.05938(1) 1.27604(1) 1.24056(1) 1.19876(1) 1.07967(1) 1.34985(1) 1.30457(1) 1.25521(1)
9.0 1.31507(1) 1.76004(1) 1.63721(1) 1.62245(1) 1.30000(1) 1.84994(1) 1.69732(1) 1.68042(1)
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8. Concluding remarks

We have reported in this work what we believe to be a concise and accurate solution for the temperature-jump
problem, as described by the (vector) linearized Boltzmann equation for a binary mixture of rigid spheres.

In addition to the comparisons with numerical results of other works for binary mixtures that are reported in
Section 7, we have also performed a comparison with the single-gas results of Ref. [9], using three different ways of
achieving the single-gas limit in our formulation: (i) c1 = 0, (ii) c2 = 0, and (iii) m1 = m2 and d1 = d2. We note that
to convert our results to the same spatial units used in Ref. [9] we made use of the factor

ξS = 0.679630049 . . . ,

which is the ratio between our dimensionless spatial variable, as defined by Eq. (2.27), and that of Ref. [9]. Doing this,
we found agreement (within ±1 in the fifth figure) with the five-figure results for the temperature-jump coefficient
and the density and temperature profiles that are tabulated in Ref. [9].

Finally, it is important to note that in contrast to other works [9,10,30–32], where problems formulated in terms of
the single-gas LBE were well solved with a truncation of the scattering kernel at L = 8, we have found that more terms
(at least L = 35 for the more demanding cases based on the He–Xe mixture) had to be used to obtain the six-figure
results reported in this work.
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Appendix A. Macroscopic quantities for mixtures

While the material reported in this appendix is well established and thus can be found in many sources, e.g.,
Refs. [2,3,33–35], there are some variations in the way different authors define the macroscopic quantities used in this
work. And so, in order to be clear and explicit about the quantities we report here, we include in this appendix a brief
discussion of our way of defining the relevant macroscopic quantities for each species and for a binary mixture.

A.1. Single-species quantities

For problems formulated in terms of one spatial variable z, the number density nα(z), the average velocity in the z

direction uα(z), the temperature tα(z), and the heat flux (also called heat flow) in the z direction qα(z) for a species
(with particle mass mα and equilibrium number density nα) are defined by

nα(z) =
∫

fα,0(v)
[
1 + hα

(
z,λ1/2

α v
)]

d3v, (A.1a)

nα(z)uα(z) =
∫

fα,0(v)
[
1 + hα

(
z,λ1/2

α v
)]

vz d3v, (A.1b)

(3/2)knα(z)tα(z) =
∫

fα,0(v)
[
1 + hα

(
z,λ1/2

α v
)]

(mα/2)
[
v − uα(z)ez

]2 d3v, (A.1c)

and

qα(z) =
∫

fα,0(v)
[
1 + hα

(
z,λ1/2

α v
)]

(mα/2)
[
v − uα(z)ez

]2[
vz − uα(z)

]
d3v, (A.1d)

where the ez that appears in Eqs. (A.1c) and (A.1d) is a unit vector in the positive z direction. While the above
definitions apply to a given species in a mixture, these definitions remain valid for a single-species gas.

Using Eq. (2.4) and the change of variables c = λ
1/2
α v, we find we can write Eqs. (A.1a)–(A.1c) as

nα(z) = nα

3/2

∫
e−c2[

1 + hα(z, c)
]

d3c, (A.2a)

π
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uα(z) = vα,0

∫
e−c2[1 + hα(z, c)]cμd3c∫

e−c2[1 + hα(z, c)]d3c
, (A.2b)

where vα,0 = (2kT0/mα)1/2, and

(3/2)ktα(z) =
∫

e−c2[1 + hα(z, c)][kT0c
2 − (2kT0mα)1/2cμuα(z) + (mα/2)u2

α(z)]d3c∫
e−c2[1 + hα(z, c)]d3c

. (A.2c)

We can evaluate one of the terms in Eq. (A.2a) to find

nα(z) = nα

[
1 + 1

π3/2

∫
e−c2

hα(z, c)d3c

]
. (A.3)

Next, we use the approximation (correct to order h)

1∫
e−c2[1 + hα(z, c)]d3c

≈ 1∫
e−c2 d3c

[
1 −

∫
e−c2

hα(z, c)d3c∫
e−c2 d3c

]
(A.4)

in Eq. (A.2b) and neglect the resulting term of order h2 to find the result (correct to order h)

uα(z) = vα,0

(
1

π3/2

)∫
e−c2

hα(z, c)cμd3c. (A.5)

Turning our attention to the temperature, we can use Eq. (A.2b) to rewrite Eq. (A.2c) as

(3/2)ktα(z) = kT0

∫
e−c2[1 + hα(z, c)]c2 d3c∫
e−c2[1 + hα(z, c)]d3c

− (mα/2)u2
α(z). (A.6)

Since u2
α(z) is of order h2, we can neglect the last term on the right side of Eq. (A.6), use the approximation expressed

by Eq. (A.4), and evaluate some integrals to find the result (correct to order h)

tα(z) = T0

[
1 + 2

3π3/2

∫
e−c2

hα(z, c)
(
c2 − 3/2

)
d3c

]
. (A.7)

In regard to the heat flux, we first neglect terms of order h2 or higher in Eq. (A.1d) to find that this equation yields, to
order h,

qα(z) =
∫

fα,0(v)
[
1 + hα

(
z,λ1/2

α v
)]

(mα/2)v2vz d3v − uα(z)

∫
fα,0(v)(mα/2)

(
v2 + 2v2

z

)
d3v. (A.8)

Using the change of variables c = λ
1/2
α v and evaluating some integrals, we find that Eq. (A.8) reduces to

qα(z) = pα,0vα,0

(
1

π3/2

)∫
e−c2

hα(z, c)
(
c2 − 5/2

)
cμd3c, (A.9)

where pα,0 = nαkT0 is the equilibrium partial pressure of the αth component of a mixture.
The macroscopic quantities for a single species can be written in a more compact form by defining the perturba-

tions

Nα(z) = 1

π3/2

∫
e−c2

hα(z, c)d3c, (A.10a)

Uα(z) = 1

π3/2

∫
e−c2

hα(z, c)cμd3c, (A.10b)

Tα(z) = 2

3π3/2

∫
e−c2

hα(z, c)
(
c2 − 3/2

)
d3c, (A.10c)

and

Qα(z) = 1
3/2

∫
e−c2

hα(z, c)
(
c2 − 5/2

)
cμd3c. (A.10d)
π
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With these definitions, we can write the number density of the αth species as

nα(z) = nα

[
1 + Nα(z)

]
, (A.11a)

the average velocity as

uα(z) = vα,0Uα(z), (A.11b)

the temperature as

tα(z) = T0
[
1 + Tα(z)

]
, (A.11c)

and the heat flux as

qα(z) = pα,0vα,0Qα(z). (A.11d)

A.2. Mixture quantities

For the considered case of a binary gas mixture, the macroscopic quantities are defined in terms of the quantities
for species 1 and 2 following the prescriptions of Ferziger and Kaper [33]. The number density of the mixture n(z) is
defined by

n(z) = n1(z) + n2(z), (A.12a)

the mass density (or simply the density) of the mixture ρ(z) by

ρ(z) = m1n1(z) + m2n2(z), (A.12b)

the average velocity of the mixture u(z) by

n(z)u(z) = n1(z)u1(z) + n2(z)u2(z), (A.12c)

the bulk or hydrodynamic velocity û(z) by

ρ(z)û(z) = m1n1(z)u1(z) + m2n2(z)u2(z), (A.12d)

the temperature of the mixture t (z) by

(3/2)n(z)kt (z) = (3/2)k
[
n1(z)t1(z) + n2(z)t2(z)

]
, (A.12e)

and the heat flux for the mixture q(z) by

q(z) = q1(z) + q2(z). (A.12f)

While Eqs. (A.12a), (A.12b), and (A.12f) are straightforward to use, Eqs. (A.12c)–(A.12e) can be simplified, by
linearization, to yield expressions that are correct to order h. In this way, we find

u(z) = c1u1(z) + c2u2(z), (A.13a)

where cα = nα/n with n = n1 + n2,

û(z) = 1

m

[
c1m1u1(z) + c2m2u2(z)

]
, (A.13b)

where m = c1m1 + c2m2, and

t (z) = c1t1(z) + c2t2(z). (A.13c)

Finally, we note that the macroscopic quantities for a binary mixture can be written in terms of the single-species
perturbations, equilibrium quantities, and basic parameters as

n(z) = n + n1N1(z) + n2N2(z), (A.14a)

ρ(z) = nm + n1m1N1(z) + n2m2N2(z), (A.14b)

u(z) = v0
[
c1(m/m1)

1/2U1(z) + c2(m/m2)
1/2U2(z)

]
, (A.14c)
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û(z) = v0
[
c1(m1/m)1/2U1(z) + c2(m2/m)1/2U2(z)

]
, (A.14d)

t (z) = T0
[
1 + c1T1(z) + c2T2(z)

]
, (A.14e)

and

q(z) = p0v0
[
c1(m/m1)

1/2Q1(z) + c2(m/m2)
1/2Q2(z)

]
, (A.14f)

where v0 = (2kT0/m)1/2 and p0 = nkT0.

Appendix B. A condition on the heat flux for the mixture

We report in this appendix our proof that the quantity Q0, as defined by Eq. (6.21), is a constant. We begin by
multiplying Eq. (2.29) by

c2(c2 − 5/2
)

exp
{−c2}

and integrating the resulting equation over all c and all μ to find

d

dτ
Q(τ ) = 2

π1/2

∞∫
0

1∫
−1

e−c2

{
−c2V (c) +

∞∫
0

e−c′2K0(c, c
′)c′4 dc′

}
Ψ (τ, c,μ)c2 dμdc, (B.1)

where, to simplify the right-hand side, we have used the identities expressed by Eqs. (29a) and (29b) of Ref. [24]
multiplied by 1/ε0, i.e.{

V (c) −
∞∫

0

e−c′2K0(c
′, c)c′2 dc′

}[
1
0

]
= 0 (B.2a)

and {
V (c) −

∞∫
0

e−c′2K0(c
′, c)c′2 dc′

}[
0
1

]
= 0. (B.2b)

Noting that

I =
(

1

c1c2

)
SR, (B.3)

where

S =
[

c2 0
0 c1a1,2

]
and R =

[
c1 0
0 c2a2,1

]
, (B.4a,b)

and using the relation

K0(c, c
′)S = SKT

0 (c′, c), (B.5)

which follows from Eq. (37) of Ref. [24], we can rewrite Eq. (B.1) as

d

dτ
Q(τ ) = 2

π1/2

∞∫
0

1∫
−1

e−c2

{
−c2V (c) +

(
1

c1c2

) ∞∫
0

e−c′2
SKT

0 (c′, c)Rc′4 dc′
}

Ψ (τ, c,μ)c2 dμdc. (B.6)

Next, we transpose Eq. (B.6), use again Eq. (B.3) with the V (c) term and multiply the resulting equation by R on the
right to find

d

dτ
QT(τ )R = 2

π1/2

∞∫ 1∫
e−c2

Ψ T(τ, c,μ)R

{
−c2V (c) +

∞∫
e−c′2K0(c

′, c)c′4 dc′
}

c2 dμdc. (B.7)
0 −1 0
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Finally, multiplying this equation on the right by [1 1]T and using Eq. (29c) of Ref. [24] multiplied by 1/ε0, i.e.{
c2V (c) −

∞∫
0

e−c′2K0(c
′, c)c′4 dc′

}[
1
1

]
= 0, (B.8)

we find

d

dτ

[
Q1(τ ) Q2(τ )

][
c1

c2a2,1

]
= 0, (B.9)

from which Eq. (6.21) follows.
To close this appendix, we note that the quantity Q0 is related to the heat flux for the mixture q(z), as defined in

Eq. (A.14f), by

q(z) = γp0v0Q0, (B.10)

where

γ = c1(m/m1)
1/2 + c2(m/m2)

1/2. (B.11)

We thus conclude, after letting τ → ∞ in Eqs. (6.17) and (6.21), using Eq. (6.29) in Eq. (6.18), and noting Eqs. (6.30),
that the heat flux

q(z) = − 4

3π1/2
γp0v0 [φ1 φ2 ]

∞∫
0

e−c2[
B2A

(1)(c) + B3A
(2)(c)

]
c5 dc (B.12)

not only is a constant but also does not depend on the accommodation coefficients α1 and α2 used to define the
boundary condition for the problem in Eq. (2.38).
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