
European Journal of Mechanics B/Fluids 26 (2007) 749–778

The viscous-slip, diffusion-slip, and thermal-creep problems
for a binary mixture of rigid spheres described

by the linearized Boltzmann equation

R.D.M. Garcia a,∗, C.E. Siewert b

a HSH Scientific Computing, Rua Carlos de Campos, 286, São José dos Campos, SP 12242-540, Brazil
b Mathematics Department, North Carolina State University, Raleigh, NC 27695-8205, USA

Received 11 July 2006; received in revised form 16 December 2006; accepted 18 December 2006

Available online 11 January 2007

Abstract

An analytical version of the discrete-ordinates method (the ADO method) is used with recently established analytical expressions
for the rigid-sphere scattering kernels to develop concise and particularly accurate solutions to the viscous-slip, the diffusion-slip,
and the half-space thermal-creep problems for a binary gas mixture described by the linearized Boltzmann equation. In addition to
a computation of the viscous-slip, the diffusion-slip, and the thermal-slip coefficients, for the case of Maxwell boundary conditions
for each of the two species, the velocity, heat-flow, and shear-stress profiles are established for each species of particles. Numerical
results are reported for two binary mixtures (Ne–Ar and He–Xe) with various molar concentrations.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

While the classical problems of viscous slip (Kramers’ problem) and thermal creep in the general field of rarefied
gas dynamics [1–4] have been extensively studied for the case of a single-species gas (see, for example, Refs. [5–11]
and the references therein), there are relatively few works (for example, [12–22]) devoted to these problems and/or
the diffusion-slip problem for gas mixtures. Almost all of the works on gas mixtures are based on model equations
[12–17], or there are works that report estimates of the slip coefficients obtained from the application of low-order so-
lution techniques to the linearized Boltzmann equation [18–20]. Most closely related to our work here are Refs. [21,22]
that consider a full treatment of the collision term in the linearized Boltzmann equation (LBE) for a binary mixture of
rigid-sphere gas particles. In Ref. [21], Yasuda, Takata, and Aoki implement a numerical procedure applied to a fully
discretized form of the LBE and thus solve well Kramers’ problem for a binary mixture of rigid spheres. In Ref. [22],
Takata, Yasuda, Kosuge, and Aoki use the same numerical approach to solve the thermal-creep and the diffusion-slip
problems, again for a binary mixture of rigid spheres described by the linearized Boltzmann equation. It can be noted
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that Refs. [21,22] report numerical results for spatial-dependent quantities [velocity and heat-flow profiles] as well as
the basic slip coefficients.

In this work we develop and evaluate numerically solutions for the three half-space problems of viscous-slip,
thermal-creep, and diffusion-slip, as defined by the recently reported explicit forms of the rigid-sphere collision kernels
for binary gas mixtures [23] and the analytical discrete-ordinates (ADO) method [24]. The developed solutions depend
(aside from some normalizations) only on the mass and diameter ratios and the relative equilibrium concentration of
the two species of particles. We also allow a free choice of the accommodation coefficient for each species at the
confining surface of the considered half space. Our approach relies on a continuous treatment of both the space and
speed variables that has proved to be particularly efficient and accurate. And so, in addition to reporting the basic slip
coefficients, we list (for some specific data cases) the velocity, heat-flow, and shear-stress profiles for each of the two
species. It should be noted that by reporting species-dependent results we make available mixture quantities that can
have different definitions (for example: average velocity and bulk velocity) in terms of the relevant quantities for the
individual components in the mixture.

2. Basic formulation

Before starting our work that is specific to the viscous-slip, diffusion-slip, and thermal-creep flow problems, we
review here our analytical formulation of the linearized Boltzmann equation for a binary mixture of rigid spheres. This
formulation was started in Ref. [23] and was further developed in Refs. [25–27]. Considering what has gone before
this work, we write the coupled linearized Boltzmann equation for variations only in the z direction (perpendicular to
the confining surface) for the considered binary mixture of rigid spheres as

cμ
∂

∂z
H (z, c) + ε0V (c)H (z, c) = ε0

∫
e−c′2K(c′ : c)H (z, c′)d3c′, (2.1)

where

H (z, c) =
[

h1(z, c)

h2(z, c)

]
. (2.2)

Since Eq. (2.1) is written in terms of a dimensionless velocity variable c, we note that the basic velocity distribution
functions are available from

fα(z,v) = fα,0(v)
[
1 + hα

(
z,λ1/2

α v
)]

, α = 1,2, (2.3)

where λα = mα/(2kT0) and where

fα,0(v) = nα

(
λα

π

)3/2

e−λαv2
(2.4)

is the Maxwellian distribution for nα particles of mass mα in equilibrium at temperature T0. Here, k is the Boltzmann
constant. It can be noted from Eq. (2.3) that, at this point, the particle distribution functions fα(z,v) have been
linearized about the absolute Maxwellian distributions fα,0(v). While this linearization will be used for the viscous-
slip problem, we will, in a following part of this work, use linearizations about local Maxwellian distributions for the
problems of thermal creep and diffusion slip. Continuing, we note that we use spherical coordinates {c, θ,φ}, with
μ = cos θ , to describe the dimensionless velocity vector, so that

H (z, c) ⇔ H (z, c,μ,φ).

In addition,

V (c) = 1

ε0
Σ(c) (2.5)

and

K(c′ : c) = 1
K(c′ : c), (2.6)
ε0
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where Σ(c) and K(c′ : c) are as defined in Ref. [26]: first of all,

Σ(c) =
[

	1(c) 0
0 	2(c)

]
, (2.7)

with

	α(c) = 	(1)
α (c) + 	(2)

α (c) (2.8)

and

	(β)
α (c) = 4π1/2nβσα,βaβ,αν(aα,βc). (2.9)

Here

ν(c) = 2c2 + 1

c

c∫
0

e−x2
dx + e−c2

, (2.10)

aα,β =
(

mβ

mα

)1/2

, α,β = 1,2, (2.11)

and, to be clear, we note that we use σα,β to denote the differential-scattering cross section, which for the case of
rigid-sphere scattering that is isotropic in the center-of-mass system, we write as [4]

σα,β = 1

4

(
dα + dβ

2

)2

, (2.12)

where d1 and d2 are the atomic diameters of the two types of gas particles. We continue to follow Ref. [26] and write

K(c′ : c) =
[

K1,1(c
′ : c) K1,2(c

′ : c)
K2,1(c

′ : c) K2,2(c
′ : c)

]
, (2.13)

where

K1,1(c
′ : c) = 4n1σ1,1π

1/2P(c′ : c) + n2σ1,2π
1/2F1,2(c

′ : c), (2.14)

K1,2(c
′ : c) = 4n2σ1,2π

1/2G1,2(c
′ : c), (2.15)

K2,1(c
′ : c) = 4n1σ2,1π

1/2G2,1(c
′ : c), (2.16)

and

K2,2(c
′ : c) = 4n2σ2,2π

1/2P(c′ : c) + n1σ2,1π
1/2F2,1(c

′ : c). (2.17)

Here

P(c′ : c) = 1

π

(
2

|c′ − c| exp

{ |c′ × c|2
|c′ − c|2

}
− |c′ − c|

)
(2.18)

is the basic kernel for a single-species gas used by Pekeris [28]. In addition,

Fα,β(c′ : c) = F(aα,β; c′ : c) (2.19)

and

Gα,β(c′ : c) = G(aα,β; c′ : c), (2.20)

where [26]

F(a; c′ : c) = (a2 + 1)2

a3π |c′ − c| exp

{
a2 |c′ × c|2

|c′ − c|2 − (1 − a2)2(c′2 + c2)

4a2
− (a4 − 1)c′ · c

2a2

}
, (2.21)

and

G(a; c′ : c) = 1 |c′ − ac|[J (a; c′ : c) − 1
]
, (2.22)
aπ
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with

J (a; c′ : c) = (a + 1/a)2

2Δ(a; c′ : c) exp

{−2C(a; c′ : c)
(a − 1/a)2

}
sinh

{
2Δ(a; c′ : c)
(a − 1/a)2

}
, a �= 1, (2.23a)

or

J (a; c′ : c) = 1

|c′ − c|2 exp

{ |c′ × c|2
|c′ − c|2

}
, a = 1. (2.23b)

To write Eq. (2.23a), we have used the definitions [26]

Δ(a; c′ : c) =
{
C2(a; c′ : c) +

(
a − 1

a

)2

|c′ × c|2
}1/2

(2.24)

and

C(a; c′ : c) = c′2 + c2 −
(

a + 1

a

)
c′ · c. (2.25)

In our notation, cμ is the component of the (dimensionless) velocity vector in the positive z direction, and so if we
let

cx = c
(
1 − μ2)1/2

cosφ (2.26)

denote the component of velocity in the direction x (parallel to the confining surface) of the flow, then we can express
the velocity, the shear-stress, and the heat-flow profiles for the considered flow problems as

U(z) = 1

π3/2

∞∫
0

1∫
−1

2π∫
0

e−c2
H (z, c)c3(1 − μ2)1/2 cosφ dφ dμdc, (2.27)

P (z) = 2

π3/2

∞∫
0

1∫
−1

2π∫
0

e−c2
H (z, c)c4μ

(
1 − μ2)1/2 cosφ dφ dμdc, (2.28)

and

Q(z) = 1

π3/2

∞∫
0

1∫
−1

2π∫
0

e−c2
H (z, c)

(
c2 − 5

2

)
c3(1 − μ2)1/2 cosφ dφ dμdc, (2.29)

where the components of U(z), P (z), and Q(z) are, respectively, the functions Uα(z), Pα(z), and Qα(z), for α = 1,2,
that are used in Appendix A to define macroscopic quantities for a binary mixture.

While it may not be clear until later in this work when the specific problems of viscous-slip, thermal-creep and
diffusion-slip flow will be defined mathematically, we note that an expansion (for the considered problems) of H (z, c)

in a Fourier series requires only one term – viz., one proportional to cosφ. And so, we introduce the dimensionless
spatial variable

τ = zε0, (2.30)

where

ε0 = (n1 + n2)π
1/2

(
n1d1 + n2d2

n1 + n2

)2

, (2.31)

and write

H (τ/ε0, c) = Ψ (τ, c,μ)
(
1 − μ2)1/2 cosφ, (2.32)

where Ψ (τ, c,μ) is the (vector-valued) function to be determined. We now let z = τ/ε0 in Eqs. (2.27)–(2.29) and
consider that
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U(τ ) = 1

π1/2

∞∫
0

1∫
−1

e−c2
Ψ (τ, c,μ)c3(1 − μ2)dμdc, (2.33)

P (τ ) = 2

π1/2

∞∫
0

1∫
−1

e−c2
Ψ (τ, c,μ)c4(1 − μ2)μdμdc, (2.34)

and

Q(τ ) = 1

π1/2

∞∫
0

1∫
−1

e−c2
Ψ (τ, c,μ)

(
c2 − 5

2

)
c3(1 − μ2)dμdc (2.35)

are the quantities to be computed. It should be noted that to avoid excessive notation, we have, in writing Eqs. (2.33)–
(2.35), followed the (often-used) procedure of not always introducing new labels for dependent quantities (in this
case U ,P , and Q) when the independent variable is changed.

We can now use Eq. (2.32) in Eq. (2.1), multiply the resulting equation by cosφ, integrate over all φ, and use the
Legendre expansion of the scattering kernel K(c′ : c) that was introduced in Ref. [26] to find

cμ
∂

∂τ
Ψ (τ, c,μ) + V (c)Ψ (τ, c,μ) =

∞∫
0

1∫
−1

e−c′2
f (μ′,μ)K(c′,μ′ : c,μ)Ψ (τ, c′,μ′)c′2 dμ′ dc′, (2.36)

where

f (μ′,μ) =
(

1 − μ′2

1 − μ2

)1/2

. (2.37)

In addition

K(c′,μ′ : c,μ) cosφ′ =
2π∫

0

K(c′ : c) cosφ dφ, (2.38)

which we can express, in the notation of Ref. [26], as

K(c′,μ′ : c,μ) = 1

2

∞∑
n=1

(2n + 1)P 1
n (μ′)P 1

n (μ)Kn(c
′, c), (2.39)

where P 1
n (x) is used to denote one of the normalized associated Legendre functions. More explicitly,

P m
l (μ) =

[
(l − m)!
(l + m)!

]1/2(
1 − μ2)m/2 dm

dμm
Pl(μ), (2.40)

where Pl(μ) is the Legendre polynomial. In addition

Kn(c
′, c) =

[K(1,1)
n (c′, c) K(1,2)

n (c′, c)
K(2,1)

n (c′, c) K(2,2)
n (c′, c)

]
, (2.41)

with

K(1,1)
n (c′, c) = p1P(n)(c′, c) + g2

4
F (n)(a1,2; c′, c), (2.42a)

K(1,2)
n (c′, c) = g2G(n)(a1,2; c′, c), (2.42b)

K(2,1)
n (c′, c) = g1G(n)(a2,1; c′, c), (2.42c)

and

K(2,2)
n (c′, c) = p2P(n)(c′, c) + g1F (n)(a2,1; c′, c). (2.42d)
4
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We also can write

V (c) =
[

v1(c) 0
0 v2(c)

]
, (2.43)

where now

v1(c) = p1ν(c) + g2a2,1ν(a1,2c) (2.44a)

and

v2(c) = p2ν(c) + g1a1,2ν(a2,1c). (2.44b)

In writing Eqs. (2.42) and (2.44), we have used

pα = cα

(
ndα

n1d1 + n2d2

)2

, α = 1,2, (2.45a)

and

gα = cα

(
ndavg

n1d1 + n2d2

)2

, α = 1,2, (2.45b)

where

cα = nα/n, n = n1 + n2, and davg = (d1 + d2)/2. (2.46a–c)

In order to avoid too much repetition, we do not list here our expressions for the Legendre moments P(n)(c′, c),
F (n)(a; c′, c), and G(n)(a; c′, c) since they are explicitly given in Ref. [26].

At the confining surface of the considered half-space, we use a combination of specular and diffuse reflection, and
so, in regard to Eq. (2.1), we write the boundary condition as

H (0, c,μ,φ) − (I − α)H (0, c,−μ,φ) − 2

π
α

∞∫
0

1∫
0

2π∫
0

e−c′2
H (0, c′,−μ′, φ′)c′3μ′ dφ′ dμ′ dc′ = 0, (2.47)

for μ ∈ (0,1] and all c and all φ. Here

α = diag{α1, α2}, (2.48)

where α1 and α2 are the accommodation coefficients to be used for the two species of gas particles. Taking note of
Eq. (2.32), we find from Eq. (2.47) the boundary condition subject to which we must solve Eq. (2.36), viz.,

Ψ (0, c,μ) − (I − α)Ψ (0, c,−μ) = 0, (2.49)

for μ ∈ (0,1] and all c. We use I to denote the 2 × 2 identity matrix.
While Eqs. (2.36) and (2.49) are basic to the three physical problems of interest here, some additional development

will be done in a later section of this work in order to complete the formulation of the three specific problems of
viscous-slip, thermal-creep, and diffusion-slip flow. More specifically and in addition to the wall condition listed
as Eq. (2.49), we will be imposing conditions on the solution of Eq. (2.36) as τ tends to infinity. And, as noted
already, for the problems of thermal-creep flow and diffusion-slip flow we will change the linearization from about
absolute Maxwellian distributions to about local Maxwellian distributions. This linearization about local properties
will introduce an inhomogeneous driving term in Eq. (2.36) for which we will have to develop a particular solution.

3. An expansion in the speed variable

In order to account for the c dependence of Ψ (τ, c,μ), we introduce the (approximate) representation

Ψ (τ, c,μ) =
K∑

Πk(c)Gk(τ,μ), (3.1)

k=0
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where {Πk(c)} is a collection of basis functions to be specified. And so we substitute Eq. (3.1) into Eqs. (2.36)
and (2.49), multiply the resulting equations by

c2 exp
{−c2}Πl(c),

for l = 0,1, . . . ,K , and integrate over all c to find

μ
∂

∂τ
AG(τ,μ) + SG(τ,μ) =

1∫
−1

C(μ′ : μ)G(τ,μ′)dμ′ (3.2)

and

FG(0,μ) − HG(0,−μ) = 0, μ ∈ (0,1]. (3.3)

Here

G(τ,μ) = [
G0(τ,μ),G1(τ,μ), . . . ,GK(τ,μ)

]T
, (3.4)

where the superscript T is used to denote the transpose operation, and the 2(K + 1) × 2(K + 1) matrices A, S and
C(μ′ : μ) are given by

A =
∞∫

0

e−c2
c3ΠT(c)Π(c)dc, (3.5a)

S =
∞∫

0

e−c2
c2ΠT(c)V (c)Π(c)dc, (3.5b)

and

C(μ′ : μ) = f (μ′,μ)

∞∫
0

∞∫
0

e−c2
e−c′2

c2c′2ΠT(c)K(c′,μ′ : c,μ)Π(c′)dc′ dc, (3.5c)

where the 2 × 2(K + 1) matrix Π(c) is defined as

Π(c) = [
Π0(c)I Π1(c)I · · ·ΠK(c)I

]
. (3.6)

In addition,

F =
∞∫

0

e−c2
c2ΠT(c)Π(c)dc (3.7a)

and

H =
∞∫

0

e−c2
c2ΠT(c)(I − α)Π(c)dc. (3.7b)

4. Elementary (ADO) solutions

Seeking separable solutions of Eq. (3.2), we substitute

G(τ,μ) = Φ(ν,μ)e−τ/ν (4.1)

into that equation to find

SU(ν,μ) −
1∫
C+(μ′ : μ)U(ν,μ′)dμ′ = μ

ν
AV (ν,μ) (4.2a)
0
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and

SV (ν,μ) −
1∫

0

C−(μ′ : μ)V (ν,μ′)dμ′ = μ

ν
AU(ν,μ), (4.2b)

where

C±(μ′ : μ) = C(μ′ : μ) ± C(−μ′ : μ). (4.3)

Here

U(ν,μ) = Φ(ν,μ) + Φ(ν,−μ) (4.4a)

and

V (ν,μ) = Φ(ν,μ) − Φ(ν,−μ). (4.4b)

We can now substitute U(ν,μ) from Eq. (4.2b) into Eq. (4.2a) to find

1

μ2

[
Σ2V (ν,μ) −

1∫
0

B(μ′ : μ)V (ν,μ′)dμ′
]

= λV (ν,μ), (4.5)

where

λ = 1

ν2
, (4.6)

B(μ′ : μ) = μ

μ′ B+(μ′ : μ)Σ + ΣB−(μ′ : μ) −
1∫

0

μ

μ′′ B+(μ′′ : μ)B−(μ′ : μ′′)dμ′′, (4.7)

and

Σ = A−1S. (4.8)

In Eq. (4.7), we have defined

B±(μ′ : μ) = 1

2
f (μ′,μ)

∞∑
n=1

(2n + 1)
[
1 ∓ (−1)n

]
P 1

n (μ′)P 1
n (μ)Bn, (4.9)

where

Bn = A−1Cn. (4.10)

Here the 2(K + 1) × 2(K + 1) matrices Cn are given by

Cn =
∞∫

0

∞∫
0

e−c2
e−c′2

c2c′2ΠT(c)Kn(c
′, c)Π(c′)dc′ dc. (4.11)

Making use of Eq. (4.9), we rewrite Eq. (4.7) as

B(μ′ : μ) = μ

μ′ B+(μ′ : μ)Σ + ΣB−(μ′ : μ) − μf (μ′,μ)

∞∑
m=0

∞∑
m′=m+1

Δm,m′P 1
2m′(μ′)P 1

2m+1(μ)B2m+1B2m′ ,

(4.12)

where the required

Δm,m′ = (4m + 3)(4m′ + 1)

1∫
P 1

2m′(x)P 1
2m+1(x)

dx

x
(4.13)
0
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can be shown to be given by

Δm,m′ = −[
2
(
m′2 + m′)1/2

P 1
2m′+1(0)

]−1
(4m + 3)(4m′ + 1)P 1

2m+1(0), m � m′ − 1, (4.14)

with

P 1
2α+1(0) = −1

2

[
4α2 − 1

α(α + 1)

]1/2

P 1
2α−1(0), α = 1,2, . . . , and P 1

1 (0) = 2−1/2. (4.15a,b)

We now introduce a “half-range” quadrature scheme (with weights and nodes wk and μk) and rewrite Eqs. (4.5)
and (4.2b) evaluated at the quadrature points as

1

μ2
i

[
Σ2V (νj ,μi) −

N∑
k=1

wkB(μk : μi)V (νj ,μk)

]
= λjV (νj ,μi) (4.16a)

and

U(νj ,μi) = νj

μi

[
ΣV (νj ,μi) −

N∑
k=1

wkB−(μk : μi)V (νj ,μk)

]
, (4.16b)

for i = 1,2, . . . ,N . Equation (4.16a) defines our eigenvalue problem, to which we have added the subscript j to label
the eigenvalues and eigenvectors. Once this eigenvalue problem is solved, we have the elementary solutions from

Φ(νj ,μi) = 1

2

[
U(νj ,μi) + V (νj ,μi)

]
(4.17a)

and

Φ(νj ,−μi) = 1

2

[
U(νj ,μi) − V (νj ,μi)

]
. (4.17b)

Note that the separation constants defined by

νj = ±λ
−1/2
j (4.18)

occur in ± pairs. From this point, we take νj to be the positive root listed in Eq. (4.18). Once we have solved the
eigenvalue problem defined by Eq. (4.16a), we can write our general (discrete ordinates) solution to Eq. (3.2) as

G(τ,±μi) =
J∑

j=1

[
AjΦ(νj ,±μi)e

−τ/νj + BjΦ(νj ,∓μi)e
τ/νj

]
, (4.19)

for i = 1,2, . . . ,N . Here J = 2N(K + 1), and the arbitrary constants {Aj } and {Bj } are to be determined from the
conditions that define a specific problem.

5. The complete speed-dependent ADO solution

If we combine Eqs. (3.1), (3.4), (3.6) and (4.19) we can write our (approximate) solution as

Ψ (τ, c,±μi) = Π(c)

J∑
j=1

[
AjΦ(νj ,±μi)e

−τ/νj + BjΦ(νj ,∓μi)e
τ/νj

]
, (5.1)

for i = 1,2, . . . ,N . While Eq. (5.1) is our general (discrete-ordinates) solution, we can make some improvements in
that result. We have found that the eigenvalue problem defined by Eq. (4.16a) yields a separation constant, say ν1, that
approximates the expected unbounded separation constant. And so we ignore ν1 in Eq. (5.1) and rewrite that equation
as

Ψ (τ, c,±μi) = Ψ ∗(τ, c,±μi) + Π(c)

J∑[
AjΦ(νj ,±μi)e

−τ/νj + BjΦ(νj ,∓μi)e
τ/νj

]
, (5.2)
j=2
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for i = 1,2, . . . ,N . We note that Ψ ∗(τ, c,μ) is defined in terms of two of the exact elementary solutions we reported
in a previous work [26], viz.,

Ψ ∗(τ, c,μ) = A1cΦ + B1
[
cτΦ − μB(c)

]
, (5.3)

where

Φ =
[

1
a1,2

]
, (5.4)

and where B(c) is one of the generalized Chapman–Enskog (vector-valued) functions discussed in Ref. [26]. In
our formulation of Kramers’ problem there is no inhomogeneous driving term in the balance equation, and so we
will use the arbitrary constants {Aj ,Bj } in Eqs. (5.2) and (5.3) to satisfy a condition as τ tends to infinity and
a discrete-ordinates version of the relevant boundary condition. On the other hand, for the thermal-creep and diffusion-
slip problems, when we introduce an inhomogeneous term in our balance equation, we will require that a particular
solution be added to Eq. (5.2) before applying the appropriate conditions on the solutions.

6. The problems

Having developed our elementary solutions of Eq. (2.36), we are now ready to use them to solve the three specific
problems basic to our current study.

6.1. The viscous-slip problem

For our formulation of the viscous-slip problem no driving term is added to Eq. (2.1). Instead the velocity profile

U(τ ) = 1

π3/2

∞∫
0

1∫
−1

2π∫
0

e−c2
H (τ/ε0, c)c

3(1 − μ2)1/2
cosφ dφ dμdc (6.1)

is considered to diverge linearly (but no faster) in τ as τ tends to infinity. And so, since the balance equation listed as
Eq. (2.1) and the boundary condition listed as Eq. (2.47) are both homogeneous, and since the remaining condition is
applied to U(τ ) as given by Eq. (6.1), there is no reason to include more than one term in a Fourier-series expansion
of H (z, c). In this way, we justify the use of Eq. (2.32). Continuing, we neglect exponentially diverging (as τ tends to
infinity) terms in Eq. (5.2) and write

Ψ (τ, c,±μi) = A1cΦ + B1
[
cτΦ ∓ μiB(c)

] + Π(c)

J∑
j=2

AjΦ(νj ,±μi)e
−τ/νj , (6.2)

for i = 1,2, . . . ,N . Once the arbitrary constants {Aj } and B1 are established, we can define the quantities of interest
by using Eq. (6.2) in (discrete-ordinates versions of) Eqs. (2.33)–(2.35) to find

U(τ ) = 1

2
(A1 + B1τ)Φ +

J∑
j=2

AjUj e−τ/νj , (6.3a)

P (τ ) = −1

2
B1εp +

J∑
j=2

AjPj e−τ/νj , (6.3b)

and

Q(τ ) =
J∑

j=2

AjQj e−τ/νj . (6.3c)

Here Φ is given by Eq. (5.4), and

εp = 16

15π1/2

∞∫
e−c2

B(c)c4 dc. (6.4)
0
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We note that the components εp,1 and εp,2 of εp have been evaluated (for several data sets) in Ref. [26]. In writing
Eqs. (6.3), we have used the definitions

Uj = Π1Xj , (6.5a)

Pj = 2Π2Y j , (6.5b)

and

Qj =
[
Π3 − 5

2
Π1

]
Xj , (6.5c)

where

Xj = 1

π1/2

N∑
k=1

wk

(
1 − μ2

k

)[
Φ(νj ,μk) + Φ(νj ,−μk)

]
, (6.6a)

Y j = 1

π1/2

N∑
k=1

wkμk

(
1 − μ2

k

)[
Φ(νj ,μk) − Φ(νj ,−μk)

]
, (6.6b)

and

Πn =
∞∫

0

e−c2
Π(c)cn+2 dc. (6.7)

As the coefficient of the linear behavior (as τ tends to infinity) of U(τ ) is unspecified, we can normalize our solution
by taking B1 = 2(m1/m)1/2, where

m = c1m1 + c2m2. (6.8)

We also let A1 = 2(m1/m)1/2ζp and rewrite our results for the quantities of interest as

Up(τ) = (ζp + τ)Ψ +
J∑

j=2

AjUj e−τ/νj , (6.9a)

P p(τ) = −
(

m1

m

)1/2

εp +
J∑

j=2

AjPj e−τ/νj , (6.9b)

and

Qp(τ) =
J∑

j=2

AjQj e−τ/νj , (6.9c)

where (mα/m)1/2, α = 1,2, are the two components of the vector Ψ that appears in Eq. (6.9a). Using the definitions
listed in Appendix A, we find that the average velocity

up(τ) = v0

[
c1

(
m

m1

)1/2

U1(τ ) + c2

(
m

m2

)1/2

U2(τ )

]
(6.10a)

and the bulk velocity

ûp(τ ) = v0

[
c1

(
m1

m

)1/2

U1(τ ) + c2

(
m2

m

)1/2

U2(τ )

]
, (6.10b)

where Uα(τ) are the two components of Up(τ), both satisfy the same asymptotic form, i.e.,

lim
d

up(τ) = v0 (6.11a)

τ→∞ dτ
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and

lim
τ→∞

d

dτ
ûp(τ ) = v0, (6.11b)

where

v0 =
(

2kT0

m

)1/2

. (6.12)

Note that we have added the subscript p to Eqs. (6.9), (6.10) and (6.11) to denote our final forms for the viscous-slip
problem.

In order to determine the required constants in our solution, we now write our discrete-ordinates version of the
boundary condition listed as Eq. (2.49) in the form

Ψ (0, c,μi) − (I − α)Ψ (0, c,−μi) = 0, (6.13)

for i = 1,2, . . . ,N . We now substitute Eq. (6.2) into Eq. (6.13), multiply the resulting equation by

c2 exp
(−c2)Πl(c),

and integrate over all c to find, for i = 1,2, . . . ,N and l = 0,1, . . . ,K , a system of linear algebraic equations which
we can solve to find Aj , j = 1,2, . . . , J . In this way we have completed our solution, as given by Eq. (6.2), and our
expressions for the quantities of interest, as given by Eqs. (6.9).

Finally, if we let

Up,asy(τ ) = (ζp + τ)Ψ , (6.14)

with components U1,asy(τ ) and U2,asy(τ ), denote the asymptotic part of the velocity profile, then

ζp,α = Uα,asy(0)

U ′
α,asy(0)

, α = 1,2, (6.15)

defines a viscous-slip coefficient for each species. We see from Eq. (6.14) that the two coefficients are the same, i.e.,

ζp,α = ζp, α = 1,2. (6.16)

6.2. A common formulation of the thermal-creep and diffusion-slip problems

In regard to the problem of thermal creep (diffusion slip), the flow is caused by a constant temperature gradient
(constant density gradients) in the direction x (parallel to the wall), and so it is helpful [29] to express the particle
velocity-distribution functions in terms of linearized forms of the local Maxwellian distributions, rather than absolute
Maxwellians, as was done in regard to Eq. (2.1). We write the local Maxwellians as

fα,0(x, v) = nα(x)

[
mα

2πkT (x)

]3/2

exp

{
− mαv2

2kT (x)

}
, α = 1,2, (6.17)

and if we express the considered linear variations in the number densities and the temperature (both of the wall and
the gas mixture) as

nα(x) = nα(1 + Rαx), α = 1,2, (6.18)

and

T (x) = T0(1 + KT x), (6.19)

where Rα and KT are considered to be given (small) constants, we can linearize Eq. (6.17) to obtain an approximation
of the form

f ∗
α,0(x, v) = fα,0(v)

[
1 + fα(v)x

]
, (6.20)

where fα(v) is to be determined. In order to have the pressure constant, we find, after neglecting 2nd order terms, that
we must have

c1R1 + c2R2 = −KT , (6.21)
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and so, making use of Eq. (6.21), we find that we can use

f1(v) = c2KC +
(

m1v
2

2kT0
− 5

2

)
KT (6.22)

and

f2(v) = −c1KC +
(

m2v
2

2kT0
− 5

2

)
KT , (6.23)

with KC = R1 − R2, to complete Eq. (6.20). Continuing our linearizations, we now write the velocity distribution
functions we seek as

fα(x, z,v) = fα,0(v)
{
1 + fα(v)x + hα

(
z,λ1/2

α v
)}

, α = 1,2. (6.24)

As a result of Eq. (6.24), an inhomogeneous source

S(c) = c
(
1 − μ2)1/2 cosφ

{(
c2 − 5

2

)
KT

[
1
1

]
+ KC

[
c2

−c1

]}
(6.25)

must be added to Eq. (2.1) to yield

S(c) + cμ
∂

∂z
H (z, c) + ε0V (c)H (z, c) = ε0

∫
e−c′2K(c′ : c)H (z, c′)d3c′. (6.26)

It is clear that we can solve the defined problem in two steps; for the first (generally referred to as the half-
space thermal-creep problem) we take KC = 0 and introduce the normalization KT = ε0, while for the second (often
referred to as the diffusion-slip problem) we take KT = 0 and use the normalization KC = ε0. Before considering the
first of these two problems, we note that the inhomogeneous term in Eq. (6.26) has only one term in a Fourier-series
representation, and so, since the boundary condition listed as Eq. (2.47) is homogeneous and since the only additional
condition we impose is that U(τ ), as listed by Eq. (6.1), be bounded as τ tends to infinity, we are justified in using
Eq. (2.32) also for the thermal-creep and diffusion-slip problems.

6.2.1. The thermal-creep problem
We use Eq. (2.32) to find from Eq. (6.26)

Γ (c) + cμ
∂

∂τ
Ψ (τ, c,μ) + V (c)Ψ (τ, c,μ) =

∞∫
0

1∫
−1

e−c′2
f (μ′,μ)K(c′,μ′ : c,μ)Ψ (τ, c′,μ′)c′2 dμ′ dc′,

(6.27)

where

Γ (c) = c

(
c2 − 5

2

)[
1
1

]
. (6.28)

If we note how the two generalized Chapman–Enskog (vector-valued) functions A(1)(c) and A(2)(c) are defined in
Ref. [26], then we can conclude that

Ψ ps(τ, c,μ) = −A(c), (6.29)

where

A(c) = A(1)(c) + A(2)(c), (6.30)

is a particular solution of Eq. (6.27).
Now since we wish U(τ ) to be bounded as τ tends to infinity, we write our discrete-ordinates solution to the

half-space thermal-creep problem as

Ψ (τ, c,±μi) = −A(c) + A1cΦ + Π(c)

J∑
AjΦ(νj ,±μi)e

−τ/νj , (6.31)

j=2
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for i = 1,2, . . . ,N . We now substitute Eqs. (6.31) into Eq. (6.13), multiply the resulting equation by

c2 exp
(−c2)Πl(c),

and integrate over all c to find, for i = 1,2, . . . ,N and l = 0,1, . . . ,K , a system of linear algebraic equations which
we can solve to find Aj , j = 1,2, . . . , J . In this way we have completed Eq. (6.31). And so the quantities of interest
here can be expressed as

U t (τ ) = 1

2
A1Φ − 4

3π1/2

∞∫
0

e−c2
A(c)c3 dc +

J∑
j=2

AjUj e−τ/νj , (6.32a)

P t (τ ) =
J∑

j=2

AjPj e−τ/νj , (6.32b)

and

Qt (τ ) = − 4

3π1/2

∞∫
0

e−c2
A(c)

(
c2 − 5

2

)
c3 dc +

J∑
j=2

AjQj e−τ/νj , (6.32c)

where Eqs. (6.5)–(6.7) are to be used, and where we have added the subscript t for the thermal-creep problem. Taking
note of Eq. (6.32a), we can define two (different) thermal-slip coefficients, viz.,

ζt,1 = [1 0]U t (∞) (6.33a)

and

ζt,2 = [0 1]U t (∞), (6.33b)

where

U t (∞) = 1

2
A1Φ − 4

3π1/2

∞∫
0

e−c2
A(c)c3 dc. (6.34)

A comment regarding the fact that we have defined two slip coefficients here is considered important. Following
Ferziger and Kaper [3] and Appendix A of this work, we define the average flow velocity u(τ) and the bulk velocity
û(τ ) as

ut (τ ) = v0

[
c1

(
m

m1

)1/2

U1(τ ) + c2

(
m

m2

)1/2

U2(τ )

]
(6.35a)

and

ût (τ ) = v0

[
c1

(
m1

m

)1/2

U1(τ ) + c2

(
m2

m

)1/2

U2(τ )

]
, (6.35b)

where Uα(τ) are the components of U t (τ ) and where Eqs. (6.8) and (6.12) are to be used. And so by reporting both
ζt,1 and ζt,2 we make available both ut (∞) and ût (∞).

6.2.2. The diffusion-slip problem
Using Eq. (2.32) again, we find from Eq. (6.26)

cN + cμ
∂

∂τ
Ψ (τ, c,μ) + V (c)Ψ (τ, c,μ) =

∞∫
0

1∫
−1

e−c′2
f (μ′,μ)K(c′,μ′ : c,μ)Ψ (τ, c′,μ′)c′2 dμ′ dc′, (6.36)

where

N =
[

c2
−c

]
. (6.37)
1
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Since Eq. (6.36) has an inhomogeneous driving term, we must supplement our ADO solution of the homogeneous
equation with a particular solution. We find we can express the particular solution required here as

Ψ ps(τ, c,μ) = c2A
(1)(c) − c1A

(2)(c). (6.38)

Now since we wish Ψ (τ, c,μ) to be bounded as τ tends to infinity, we write our discrete-ordinates solution to the
diffusion-slip problem as

Ψ (τ, c,±μi) = c2A
(1)(c) − c1A

(2)(c) + A1cΦ + Π(c)

J∑
j=2

AjΦ(νj ,±μi)e
−τ/νj , (6.39)

for i = 1,2, . . . ,N . We now substitute Eqs. (6.39) into Eq. (6.13), multiply the resulting equation by

c2 exp
(−c2)Πl(c),

and integrate over all c to find, for i = 1,2, . . . ,N and l = 0,1, . . . ,K , a system of linear algebraic equations which
we can solve to find Aj , j = 1,2, . . . , J . In this way we have completed Eq. (6.39). And so, using the subscript c for
the diffusion-slip problem, we can express the quantities of interest here as

U c(τ ) = 1

2
A1Φ + 4

3π1/2

∞∫
0

e−c2[
c2A

(1)(c) − c1A
(2)(c)

]
c3 dc +

J∑
j=2

AjUj e−τ/νj , (6.40a)

P c(τ ) =
J∑

j=2

AjPj e−τ/νj , (6.40b)

and

Qc(τ ) = 4

3π1/2

∞∫
0

e−c2[
c2A

(1)(c) − c1A
(2)(c)

](
c2 − 5

2

)
c3 dc +

J∑
j=2

AjQj e−τ/νj , (6.40c)

where Eqs. (6.5)–(6.7) are to be used. Taking note of Eq. (6.40a), we can define two (different) diffusion-slip coeffi-
cients, viz.,

ζc,1 = [1 0]U c(∞) (6.41a)

and

ζc,2 = [0 1]U c(∞), (6.41b)

where

U c(∞) = 1

2
A1Φ + 4

3π1/2

∞∫
0

e−c2[
c2A

(1)(c) − c1A
(2)(c)

]
c3 dc. (6.42)

The fact that we have defined two slip coefficients here is motivated by the discussion that follows Eq. (6.34).

6.3. Relationships between the problems

In a somewhat recent work [30], Sharipov used physical arguments to provide, within the context of the S model for
a single-species gas, a relationship between the heat flow from Kramers’ problem and the thermal-slip coefficient. In
a following work [31], Siewert used the defining equations relevant to the linearized Boltzmann equation and Maxwell
or Cercignani–Lampis boundary conditions to generalize Sharipov’s basic result. These two results [30,31] define, for
the case of a single-species gas, a relationship between the viscous-slip problem and the half-space thermal-creep
problem that can be used, for example, to help evaluate the quality of numerical results obtained for the two problems.
As a generalization of the mentioned papers [30,31], Siewert and Valougeorgis [17] established a similar relationship
between the viscous-slip problem and the thermal-creep problem for the case of a binary mixture described by the
McCormack kinetic model [32]. Following these works [17,30,31], we can establish important relationships between
the three half-space problems considered in this work.
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6.3.1. A relationship between the viscous-slip and the thermal-creep problems
Since our derivation follows very closely the one given in Refs. [17,31], we can be brief here. If we add subscripts

t for the thermal-creep problem and p for the viscous-slip problem, we find we can write

Γ (c) − cμ
∂

∂τ
Ψ t (τ, c,−μ) + L{Ψ t }(τ, c,−μ) = 0 (6.43)

and

cμ
∂

∂τ
Ψ p(τ, c,μ) + L{Ψ p}(τ, c,μ) = 0, (6.44)

where

L{F }(τ, c,μ) = V (c)F (τ, c,μ) −
∞∫

0

1∫
−1

e−c′2
f (μ′,μ)K(c′,μ′ : c,μ)F (τ, c′,μ′)c′2 dμ′ dc′. (6.45)

We note from Ref. [26] that the kernel listed in Eq. (2.13) is such that

SKT(c : c′) = K(c′ : c)S, (6.46)

where

S =
[

c2 0
0 c1a1,2

]
. (6.47)

And so we can multiply Eq. (6.43) by

c2(1 − μ2)e−c2
Ψ T

p(τ, c,μ)S−1,

multiply Eq. (6.44) by

c2(1 − μ2)e−c2
Ψ T

t (τ, c,−μ)S−1,

integrate the resulting equations over all μ, over all c and over τ from 0 to τ0, to find, after subtracting the two
subsequently resulting equations, one from the other, and using Eq. (2.49),

π1/2

τ0∫
0

QT
p(τ)dτ

[
c1a1,2

c2

]
=

∞∫
0

1∫
−1

e−c2
c3μ

(
1 − μ2)Ψ T

p(τ0, c,μ)ΞΨ t (τ0, c,−μ)dμdc, (6.48)

where

Ξ =
[

c1a1,2 0
0 c2

]
, (6.49)

and where Eq. (6.9c) is to be used. At this point we use Eqs. (6.2) and (6.31) in Eq. (6.48) and let τ0 tend to infinity to
find

[ c1a1,2 c2 ]

∞∫
0

Qp(τ)dτ = β − εT
pΥ

[
ζ t + 4

3π1/2

∞∫
0

e−c2
A(c)c3 dc

]
, (6.50)

where

β = 8

15π1/2

∞∫
0

e−c2
BT(c)Υ A(c)c3 dc (6.51)

and

Υ =
[

c1(m2/m)1/2 0
0 c (m /m)1/2

]
. (6.52)
2 1
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In addition, εp is as defined in Eq. (6.4), and

ζ t =
[

ζt,1
ζt,2

]
, (6.53)

where ζt,1 and ζt,2 are as defined in Eqs. (6.33). While Eqs. (6.50) and (6.51) cannot be used to find both ζt,1 and ζt,2
from results derived from the viscous-slip problem, one of these quantities can be found in terms of the other. More
importantly, however, Eqs. (6.50) and (6.51) can be used as a measure of the accuracy of numerical results found from
solutions of the two problems: viscous slip and thermal creep. We note that β , as defined by Eq. (6.51), is independent
of the accommodation coefficients α1 and α2.

6.3.2. A relationship between the viscous-slip and the diffusion-slip problems
The derivation reported in this section is very similar to that given in regard to the viscous-slip and thermal-creep

problems, so we can (again) be very brief. If we add subscripts c for the diffusion-slip problem and p for the half-space
viscous-slip problem, we find we can write

cN − cμ
∂

∂τ
Ψ c(τ, c,−μ) + L{Ψ c}(τ, c,−μ) = 0 (6.54)

and

cμ
∂

∂τ
Ψ p(τ, c,μ) + L{Ψ p}(τ, c,μ) = 0, (6.55)

where Eqs. (6.37) and (6.45) are to be used. We can multiply Eq. (6.54) by

c2(1 − μ2)e−c2
Ψ T

p(τ, c,μ)S−1,

multiply Eq. (6.55) by

c2(1 − μ2)e−c2
Ψ T

c (τ, c,−μ)S−1,

integrate the resulting equations over all μ, over all c and over τ from 0 to τ0, to find, after subtracting the two
subsequently resulting equations, one from the other, and using Eq. (2.49),

c1c2π
1/2

τ0∫
0

UT
p(τ)

[
a1,2
−1

]
dτ =

∞∫
0

1∫
−1

e−c2
c3μ

(
1 − μ2)Ψ T

p(τ0, c,μ)ΞΨ c(τ0, c,−μ)dμdc, (6.56)

where Ξ is given by Eq. (6.49), and where Eq. (6.9a) is to be used. At this point we can use Eqs. (6.2) and (6.39) in
Eq. (6.56) and let τ0 tend to infinity to find

c1c2

∞∫
0

[a1,2 −1 ]Up(τ)dτ = γ − εT
pΥ

{
ζ c + 4

3π1/2

∞∫
0

e−c2[
c1A

(2)(c) − c2A
(1)(c)

]
c3 dc

}
, (6.57)

where

γ = 8

15π1/2

∞∫
0

e−c2
BT(c)Υ

[
c1A

(2)(c) − c2A
(1)(c)

]
c3 dc (6.58)

and

ζ c =
[

ζc,1
ζc,2

]
, (6.59)

where ζc,1 and ζc,2 are as defined in Eqs. (6.41). While Eqs. (6.57) and (6.58) cannot be used to find both ζc,1 and ζc,2
from results derived from the viscous-slip problem, one of these quantities can be found in terms of the other. More
importantly, however, Eqs. (6.57) and (6.58) can be used as a measure of the accuracy of numerical results found from
solutions of the two problems: viscous and diffusion slip.
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6.3.3. Relationships between the thermal-creep and the diffusion-slip problems
Following the procedures used in Sections 6.3.1 and 6.3.2, we can deduce that

c1c2[a1,2 − 1]ζ t = [c1a1,2 c2]Qc(∞) (6.60a)

and

c1c2[a1,2 − 1]
∞∫

0

[
U t (τ ) − ζ t

]
dτ = [c1a1,2 c2]

∞∫
0

[
Qc(τ ) − Qc(∞)

]
dτ, (6.60b)

where Eqs. (6.33), (6.34), (6.40c), and (6.53) are to be used. While Eq. (6.60a) is a result we sought here, an identity
involving the generalized Chapman–Enskog functions A(α)(c) can also be obtained when Eqs. (6.33), (6.34), (6.40c),
and (6.53) are used with Eq. (6.60a). We find

c1c2[a1,2 − 1]
∞∫

0

e−c2[
A(1)(c) + A(2)(c)

]
c3 dc

= [c1a1,2 c2]
∞∫

0

e−c2[
c1A

(2)(c) − c2A
(1)(c)

](
c2 − 5

2

)
c3 dc. (6.61)

As our solutions to the three considered problems are complete, we are ready to evaluate these solutions numerically
for selected data cases.

7. Numerical results

To begin this section, we note that the computational implementation of our ADO solutions follows very closely
that of our recent work on the temperature-jump problem [27]. Thus, for computational purposes, the kernel
K(c′,μ′ : c,μ) defined by Eq. (2.39) and the summation in Eq. (4.9) were both truncated at n = L and, for con-
sistency, the summations in Eq. (4.12) were truncated at m = 
L/2�− 1 and m′ = 
L/2�, where 
x� denotes the floor
(or integer part) of x. In addition, the Legendre components Kn(c

′, c) that are required in Eq. (4.11) were computed us-
ing a 200-point Gauss–Legendre quadrature set with the integration algorithms discussed in Appendix A of Ref. [26].
Along with the order M of the Gaussian quadrature used for integration over the speed variable in Eqs. (3.5a), (3.5b),
(3.7), (4.11), (6.7), (6.51), and (6.58), the order K of the approximate representation of Eq. (3.1), with the choice

Πk(c) = Pk

(
2e−c − 1

)
,

the order N of the half-range Gaussian scheme introduced in Eqs. (4.16), and the number of spline functions Ks used
to compute, without postprocessing [26], the generalized Chapman–Enskog vector functions A(1)(c), A(2)(c), and
B(c), the kernel truncation parameter L defines the set of five approximation parameters

{L,M,K,N,Ks},
upon which our numerical results are based. We should also note that integrals involving only one of the generalized
Chapman–Enskog vector functions were performed in this work as in Ref. [27], by applying a Gaussian quadrature of
order four to each of the subintervals of integration defined by two consecutive knots.

In regard to computational linear algebra, we have used the sequence of EISPACK [33] routines BALANC,
ELMHES, ELTRAN, HQR2, and BALBAK for solving the eigensystem defined by Eq. (4.16a) for i = 1,2, . . . ,N

and subroutines DGECO and DGESL of the LINPACK package [34] for solving the systems of linear algebraic equa-
tions obtained for the superposition coefficients {Aj } of the three problems, as discussed in Section 6. We note that
we can write these three linear systems at once as

A1Π
T
1 αΦ +

J∑
Aj

[
FΦ(νj ,μi) − HΦ(νj ,−μi)

] = R(μi), (7.1)

j=2
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for i = 1,2, . . . ,N . Here, only the right-hand side vector R(μi) of size 2(K + 1) is problem-dependent. Using sub-
scripts p, t , and c to identify the right-hand side vector respectively for the viscous-slip problem, for the thermal-creep
problem, and for the diffusion-slip problem, we have

Rp(μi) = 2

(
m1

m

)1/2

μi

∞∫
0

e−c2
c2ΠT(c)(2I − α)B(c)dc, (7.2a)

Rt (μi) =
∞∫

0

e−c2
c2ΠT(c)αA(c)dc, (7.2b)

and

Rc(μi) =
∞∫

0

e−c2
c2ΠT(c)α

[
c1A

(2)(c) − c2A
(1)(c)

]
dc. (7.2c)

It is thus clear that only one LU matrix factorization is sufficient for the three systems. We also note that, for some
choices of the approximation parameters, a few eigenvalues of Eq. (4.16a) can appear in the calculation as complex
conjugate pairs slightly off the real axis. This situation is resolved in our code without having to resort to programming
in complex mode.

The numerical results reported in this work are based on two binary gas mixtures: Ne–Ar and He–Xe. For the
Ne–Ar mixture, we use the basic data

m2 = 39.948, m1 = 20.183,
d2

d1
= 1.406,

while for the He–Xe mixture we use

m2 = 131.30, m1 = 4.0026,
d2

d1
= 2.226.

It should be noted that the values of the masses used here are taken from Ref. [17], while the diameter ratios are those
reported in Ref. [14].

We report in Tables 1–5, for both of these mixtures, the viscous-slip, the thermal-slip, and the diffusion-slip coef-
ficients computed with our method, for several values of c1, the relative equilibrium concentration of the first species,
and three different combinations of the accommodation coefficients for the first and second species at the wall. The
numerical results in Tables 1–5 are thought to be correct to within ±1 in the last digit and were obtained by increasing
the values of the approximation parameters of our method in steps, until numerical convergence was observed. For
this purpose, we have used 20 � L � 40, 100 � M � 400, 20 � K � 35, 20 � N � 40, and 80 � Ks − 2 � 1280.

Table 1
The viscous-slip coefficient ζp

Ne–Ar mixture He–Xe mixture

α1 = 0.3 α1 = 0.4 α1 = 1.0 α1 = 0.3 α1 = 0.4 α1 = 1.0
α2 = 0.6 α2 = 0.7 α2 = 1.0 α2 = 0.6 α2 = 0.7 α1 = 1.0

c1 ζp

0.05 1.02260 8.20968(−1) 4.42845(−1) 9.93929(−1) 7.99122(−1) 4.39547(−1)

0.1 1.05230 8.43259(−1) 4.42380(−1) 9.94325(−1) 7.99261(−1) 4.35936(−1)

0.2 1.11723 8.91355(−1) 4.41544(−1) 9.98609(−1) 8.02167(−1) 4.29351(−1)

0.3 1.19095 9.44968(−1) 4.40852(−1) 1.00892 8.09579(−1) 4.23808(−1)

0.4 1.27573 1.00536 4.40329(−1) 1.02765 8.23240(−1) 4.19621(−1)

0.5 1.37465 1.07422 4.40008(−1) 1.05867 8.45920(−1) 4.17228(−1)

0.6 1.49207 1.15382 4.39931(−1) 1.10866 8.82313(−1) 4.17253(−1)

0.7 1.63430 1.24731 4.40150(−1) 1.19025 9.41073(−1) 4.20556(−1)

0.8 1.81086 1.35921 4.40729(−1) 1.33085 1.04023 4.28151(−1)

0.9 2.03681 1.49621 4.41755(−1) 1.60486 1.22546 4.39975(−1)

0.95 2.17561 1.57714 4.42468(−1) 1.86222 1.38965 4.45247(−1)
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Table 2
The thermal-slip coefficient ζt,1

Ne–Ar mixture He–Xe mixture

α1 = 0.3 α1 = 0.4 α1 = 1.0 α1 = 0.3 α1 = 0.4 α1 = 1.0
α2 = 0.6 α2 = 0.7 α2 = 1.0 α2 = 0.6 α2 = 0.7 α1 = 1.0

c1 ζt,1

0.05 2.36503(−1) 2.40184(−1) 2.51134(−1) 2.29346(−1) 2.30227(−1) 2.32747(−1)

0.1 2.33394(−1) 2.37086(−1) 2.48521(−1) 2.24463(−1) 2.25325(−1) 2.27804(−1)

0.2 2.27397(−1) 2.31125(−1) 2.43646(−1) 2.14949(−1) 2.15781(−1) 2.18246(−1)

0.3 2.21707(−1) 2.25493(−1) 2.39268(−1) 2.05841(−1) 2.06658(−1) 2.09222(−1)

0.4 2.16341(−1) 2.20211(−1) 2.35429(−1) 1.97261(−1) 1.98084(−1) 2.00911(−1)

0.5 2.11319(−1) 2.15306(−1) 2.32186(−1) 1.89399(−1) 1.90263(−1) 1.93593(−1)

0.6 2.06666(−1) 2.10811(−1) 2.29613(−1) 1.82568(−1) 1.83527(−1) 1.87745(−1)

0.7 2.02411(−1) 2.06764(−1) 2.27806(−1) 1.77322(−1) 1.78475(−1) 1.84249(−1)

0.8 1.98581(−1) 2.03216(−1) 2.26895(−1) 1.74747(−1) 1.76298(−1) 1.84940(−1)

0.9 1.95199(−1) 2.00225(−1) 2.27058(−1) 1.77312(−1) 1.79794(−1) 1.94399(−1)

0.95 1.93679(−1) 1.98958(−1) 2.27617(−1) 1.82340(−1) 1.85833(−1) 2.06200(−1)

Table 3
The thermal-slip coefficient ζt,2

Ne–Ar mixture He–Xe mixture

α1 = 0.3 α1 = 0.4 α1 = 1.0 α1 = 0.3 α1 = 0.4 α1 = 1.0
α2 = 0.6 α2 = 0.7 α2 = 1.0 α2 = 0.6 α2 = 0.7 α1 = 1.0

c1 ζt,2

0.05 2.05171(−1) 2.10350(−1) 2.25754(−1) 2.02735(−1) 2.07781(−1) 2.22215(−1)

0.1 2.01813(−1) 2.07007(−1) 2.23095(−1) 1.96908(−1) 2.01842(−1) 2.16045(−1)

0.2 1.95327(−1) 2.00571(−1) 2.18187(−1) 1.85401(−1) 1.90161(−1) 2.04280(−1)

0.3 1.89153(−1) 1.94479(−1) 2.13859(−1) 1.74135(−1) 1.78810(−1) 1.93500(−1)

0.4 1.83297(−1) 1.88743(−1) 2.10152(−1) 1.63192(−1) 1.67907(−1) 1.84097(−1)

0.5 1.77768(−1) 1.83378(−1) 2.07125(−1) 1.52700(−1) 1.57647(−1) 1.76720(−1)

0.6 1.72571(−1) 1.78402(−1) 2.04854(−1) 1.42879(−1) 1.48370(−1) 1.72529(−1)

0.7 1.67710(−1) 1.73835(−1) 2.03437(−1) 1.34139(−1) 1.40739(−1) 1.73813(−1)

0.8 1.63177(−1) 1.69699(−1) 2.03011(−1) 1.27358(−1) 1.36239(−1) 1.85737(−1)

0.9 1.58940(−1) 1.66011(−1) 2.03762(−1) 1.24802(−1) 1.39017(−1) 2.22664(−1)

0.95 1.56909(−1) 1.64337(−1) 2.04656(−1) 1.27051(−1) 1.47061(−1) 2.63709(−1)

Table 4
The diffusion-slip coefficient ζc,1

Ne–Ar mixture He–Xe mixture

α1 = 0.3 α1 = 0.4 α1 = 1.0 α1 = 0.3 α1 = 0.4 α1 = 1.0
α2 = 0.6 α2 = 0.7 α2 = 1.0 α2 = 0.6 α2 = 0.7 α1 = 1.0

c1 −ζc,1

0.05 3.11893(−1) 3.10993(−1) 3.05877(−1) 3.81849(−1) 3.81546(−1) 3.79748(−1)

0.1 2.96294(−1) 2.94534(−1) 2.84735(−1) 3.57949(−1) 3.57355(−1) 3.53860(−1)

0.2 2.65338(−1) 2.61991(−1) 2.44161(−1) 3.12228(−1) 3.11091(−1) 3.04507(−1)

0.3 2.34609(−1) 2.29875(−1) 2.05858(−1) 2.69231(−1) 2.67601(−1) 2.58339(−1)

0.4 2.03956(−1) 1.98076(−1) 1.69817(−1) 2.28876(−1) 2.26802(−1) 2.15287(−1)

0.5 1.73171(−1) 1.66448(−1) 1.36026(−1) 1.91032(−1) 1.88559(−1) 1.75243(−1)

0.6 1.41962(−1) 1.34790(−1) 1.04467(−1) 1.55467(−1) 1.52641(−1) 1.38032(−1)

0.7 1.09901(−1) 1.02823(−1) 7.51194(−2) 1.21725(−1) 1.18602(−1) 1.03337(−1)

0.8 7.63442(−2) 7.01476(−2) 4.79530(−2) 8.87572(−2) 8.54351(−2) 7.05108(−2)

0.9 4.02773(−2) 3.61750(−2) 2.29300(−2) 5.34294(−2) 5.02635(−2) 3.79460(−2)

0.95 2.08124(−2) 1.84371(−2) 1.12072(−2) 3.16125(−2) 2.90980(−2) 2.04286(−2)
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Table 5
The diffusion-slip coefficient ζc,2

Ne–Ar mixture He–Xe mixture

α1 = 0.3 α1 = 0.4 α1 = 1.0 α1 = 0.3 α1 = 0.4 α1 = 1.0
α2 = 0.6 α2 = 0.7 α2 = 1.0 α2 = 0.6 α2 = 0.7 α1 = 1.0

c1 ζc,2

0.05 8.45039(−3) 9.71652(−3) 1.69144(−2) 1.03574(−2) 1.20941(−2) 2.23910(−2)

0.1 1.69611(−2) 1.94367(−2) 3.32223(−2) 2.04741(−2) 2.38738(−2) 4.38908(−2)

0.2 3.42280(−2) 3.89369(−2) 6.40213(−2) 4.00843(−2) 4.65921(−2) 8.43059(−2)

0.3 5.19561(−2) 5.86160(−2) 9.24050(−2) 5.90896(−2) 6.84221(−2) 1.21473(−1)

0.4 7.03554(−2) 7.86269(−2) 1.18384(−1) 7.78968(−2) 8.97793(−2) 1.55731(−1)

0.5 8.97160(−2) 9.91742(−2) 1.41975(−1) 9.71832(−2) 1.11349(−1) 1.87616(−1)

0.6 1.10447(−1) 1.20537(−1) 1.63197(−1) 1.18170(−1) 1.34353(−1) 2.18029(−1)

0.7 1.33146(−1) 1.43103(−1) 1.82078(−1) 1.43307(−1) 1.61193(−1) 2.48625(−1)

0.8 1.58710(−1) 1.67428(−1) 1.98653(−1) 1.78339(−1) 1.97366(−1) 2.82844(−1)

0.9 1.88560(−1) 1.94332(−1) 2.12966(−1) 2.40666(−1) 2.58798(−1) 3.29346(−1)

0.95 2.05778(−1) 2.09120(−1) 2.19292(−1) 3.00413(−1) 3.14814(−1) 3.64468(−1)

Table 6
Viscous-slip problem: velocity, heat-flow and shear-stress profiles for the He–Xe mixture with c1 = 0.3, α1 = 0.3, and α2 = 0.6

τ U1(τ ) U2(τ ) Q1(τ ) Q2(τ ) −P1(τ ) −P2(τ )

0.0 2.3116(−1) 9.4111(−1) 7.4923(−3) 8.8403(−2) 5.2476(−2) 5.2017(−1)

0.1 2.5003(−1) 1.1897 6.0126(−3) 4.9819(−2) 6.7090(−2) 5.1391(−1)

0.2 2.6766(−1) 1.3496 4.9948(−3) 3.5255(−2) 7.7586(−2) 5.0941(−1)

0.3 2.8570(−1) 1.4919 4.2000(−3) 2.6009(−2) 8.5723(−2) 5.0593(−1)

0.4 3.0418(−1) 1.6260 3.5581(−3) 1.9574(−2) 9.2216(−2) 5.0314(−1)

0.5 3.2304(−1) 1.7555 3.0306(−3) 1.4904(−2) 9.7484(−2) 5.0088(−1)

0.6 3.4220(−1) 1.8820 2.5918(−3) 1.1432(−2) 1.0181(−1) 4.9903(−1)

0.7 3.6163(−1) 2.0065 2.2238(−3) 8.8118(−3) 1.0539(−1) 4.9750(−1)

0.8 3.8126(−1) 2.1297 1.9133(−3) 6.8132(−3) 1.0837(−1) 4.9622(−1)

0.9 4.0107(−1) 2.2519 1.6499(−3) 5.2773(−3) 1.1086(−1) 4.9515(−1)

1.0 4.2102(−1) 2.3733 1.4257(−3) 4.0907(−3) 1.1296(−1) 4.9425(−1)

2.0 6.2483(−1) 3.5709 3.5536(−4) 2.6841(−4) 1.2249(−1) 4.9017(−1)

Table 7
Thermal-creep problem: velocity, heat-flow and shear-stress profiles for the He–Xe mixture with c1 = 0.3, α1 = 0.3, and α2 = 0.6

τ U1(τ ) U2(τ ) −Q1(τ ) −Q2(τ ) −P1(τ ) P2(τ )

0.0 1.6685(−1) 8.6058(−2) 7.0316(−1) 4.4891(−1) 2.9330(−3) 1.2570(−3)

0.1 1.7926(−1) 1.2053(−1) 7.5050(−1) 5.6611(−1) 3.3504(−3) 1.4359(−3)

0.2 1.8553(−1) 1.3514(−1) 7.7256(−1) 6.1220(−1) 3.3008(−3) 1.4146(−3)

0.3 1.8984(−1) 1.4463(−1) 7.8699(−1) 6.4050(−1) 3.0878(−3) 1.3234(−3)

0.4 1.9303(−1) 1.5136(−1) 7.9724(−1) 6.5965(−1) 2.8113(−3) 1.2048(−3)

0.5 1.9546(−1) 1.5632(−1) 8.0485(−1) 6.7325(−1) 2.5174(−3) 1.0789(−3)

0.6 1.9737(−1) 1.6007(−1) 8.1066(−1) 6.8322(−1) 2.2292(−3) 9.5536(−4)

0.7 1.9888(−1) 1.6296(−1) 8.1518(−1) 6.9068(−1) 1.9584(−3) 8.3931(−4)

0.8 2.0010(−1) 1.6520(−1) 8.1874(−1) 6.9636(−1) 1.7104(−3) 7.3301(−4)

0.9 2.0109(−1) 1.6696(−1) 8.2159(−1) 7.0072(−1) 1.4870(−3) 6.3728(−4)

1.0 2.0189(−1) 1.6835(−1) 8.2389(−1) 7.0412(−1) 1.2881(−3) 5.5205(−4)

2.0 2.0514(−1) 1.7337(−1) 8.3299(−1) 7.1584(−1) 2.7563(−4) 1.1813(−4)

In addition to the slip coefficients reported in Tables 1–5, we report in Tables 6–8 the velocity, heat-flow, and shear-
stress profiles for the considered problems, for one of the studied He–Xe cases. These results are also thought to be
correct to within ±1 in the last reported digit and were obtained using the same range of values for the approximation
parameters as above, except the upper limit of L, which was extended to 100 for these calculations. The reason for
this extension is the fact that we have found that the entries that correspond to Q2(0) in Tables 6 and 8 require more
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Table 8
Diffusion-slip problem: velocity, heat-flow and shear-stress profiles for the He–Xe mixture with c1 = 0.3, α1 = 0.3, and α2 = 0.6

τ −U1(τ ) U2(τ ) Q1(τ ) Q2(τ ) P1(τ ) −P2(τ )

0.0 2.2768(−1) 3.4232(−2) 1.0290(−1) 1.8802(−4) 4.0753(−2) 1.7465(−2)

0.1 2.4279(−1) 4.2934(−2) 1.1026(−1) −1.4997(−3) 3.1748(−2) 1.3606(−2)

0.2 2.4980(−1) 4.6755(−2) 1.1361(−1) −1.7065(−3) 2.5420(−2) 1.0894(−2)

0.3 2.5436(−1) 4.9303(−2) 1.1577(−1) −1.6374(−3) 2.0639(−2) 8.8455(−3)

0.4 2.5758(−1) 5.1161(−2) 1.1728(−1) −1.4677(−3) 1.6918(−2) 7.2506(−3)

0.5 2.5997(−1) 5.2579(−2) 1.1839(−1) −1.2626(−3) 1.3966(−2) 5.9856(−3)

0.6 2.6179(−1) 5.3692(−2) 1.1923(−1) −1.0514(−3) 1.1595(−2) 4.9691(−3)

0.7 2.6319(−1) 5.4582(−2) 1.1987(−1) −8.4819(−4) 9.6702(−3) 4.1444(−3)

0.8 2.6430(−1) 5.5303(−2) 1.2037(−1) −6.5945(−4) 8.0965(−3) 3.4699(−3)

0.9 2.6518(−1) 5.5894(−2) 1.2077(−1) −4.8785(−4) 6.8017(−3) 2.9150(−3)

1.0 2.6589(−1) 5.6382(−2) 1.2108(−1) −3.3396(−4) 5.7306(−3) 2.4560(−3)

2.0 2.6865(−1) 5.8505(−2) 1.2228(−1) 4.7335(−4) 1.1502(−3) 4.9293(−4)

terms than the others in the scattering kernel expansion of Eq. (2.39) to be determined with the desired five-figure
accuracy.

We note that a useful identity related to the x–z component of the shear-stress profile for the gas mixture,

p(τ) = p0
[
c1P1(τ ) + c2P2(τ )

]
, (7.3)

where Pα(τ), α = 1,2, is the shear-stress profile for species α, as given by Eq. (2.28) or Eq. (2.34), and

p0 = nkT0 (7.4)

is the equilibrium pressure, can be derived and used to check the accuracy of the numerical results obtained for the
shear-stress profiles. Multiplying Eq. (2.36), (6.27), or (6.36) by

[c1 c2]e−c2(
1 − μ2)c3

and integrating over all μ and all c, we find, after using Eq. (6.46) and (from Ref. [26]){
cV (c) −

∞∫
0

e−c′2K1(c
′, c)c′3 dc′

}[
1

a1,2

]
= 0, (7.5)

that

P0 = [c1 c2]P (τ ) (7.6)

is a constant. And so we deduce from Eq. (6.9b) that

P0 = −[c1 c2]
(

m1

m

)1/2

εp (7.7)

for the viscous-slip problem. Similarly, we conclude from Eqs. (6.32b) and (6.40b) that P0 is zero for the thermal-
creep and the diffusion-slip problems.

Typically, we have found that our solutions (for all three of the considered problems) obtained with L = 50,
M = 100, K = 20, N = 20, and Ks = 82, yield at least five figures of accuracy for the slip coefficients and four
figures for the profiles, except possibly at positions located in the neighborhoods of the zeros of these quantities
(when zeros exist), and require less than a minute of CPU time on an AMD Athlon 64 3200+ machine running at
2 GHz. We report in Table 9 results of our evaluation, for the considered mixtures, of the constants β and γ defined
by Eqs. (6.51) and (6.58).

To increase our level of confidence in the correctness of our computational implementation, we have considered
additional test cases for which numerical results are available in the literature. While we have found the work reported
in Refs. [21,22] to be very important, we consider it unfortunate that the numerical results reported in those works
are limited to the special case of pure diffuse reflection at the bounding surface, to the special case of equal-diameter
particles, and to the special case of unit mass for the lighter of the two particle species. In order to make some
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Table 9
The constants β and γ

Ne–Ar mixture He–Xe mixture

c1 β γ β γ

0.05 1.221262(−1) 9.666591(−4) 1.199337(−1) 2.807231(−3)

0.1 1.226397(−1) 1.802326(−3) 1.184587(−1) 5.161078(−3)

0.2 1.240895(−1) 3.099505(−3) 1.166436(−1) 8.615523(−3)

0.3 1.261612(−1) 3.929240(−3) 1.166506(−1) 1.056734(−2)

0.4 1.289443(−1) 4.329468(−3) 1.190599(−1) 1.120242(−2)

0.5 1.325572(−1) 4.338643(−3) 1.248834(−1) 1.068357(−2)

0.6 1.371586(−1) 3.996221(−3) 1.360234(−1) 9.143439(−3)

0.7 1.429646(−1) 3.343468(−3) 1.564641(−1) 6.677131(−3)

0.8 1.502735(−1) 2.424839(−3) 1.960454(−1) 3.359170(−3)

0.9 1.595074(−1) 1.290379(−3) 2.874894(−1) −4.928570(−4)

0.95 1.650274(−1) 6.603696(−4) 3.942041(−1) −1.914827(−3)

comparisons with the numerical results reported in Refs. [21,22], we first must take note of the differing choices of
mean-free path used by the Kyoto group [21,22] and that used in this work. If we let τK denote the dimensionless
spatial variable used in Refs. [21,22], then we find that

ξK = τ

τK

(7.8)

can be computed from

ξK = 21/2
(

c1d1 + c2d2

2d1

)2

. (7.9)

Thus, upon dividing our converged numerical results for the viscous-slip coefficient by ξK , we found agreement
(within ±1 in the fifth figure) with the five-figure results reported in Table II of Ref. [21]. We note that since the
species-dependent viscous-slip coefficients we defined by Eq. (6.15) are the same for each species and since the
normalization used in Ref. [21] for this problem was also used here, the comparison with the coefficient b of Ref. [21]
was easily made, viz.

b = ζp

ξK

. (7.10)

For the thermal-creep and diffusion-slip problems, we found that the coefficients bI and bII listed respectively in
Tables III and IV of Ref. [22] are given, in our notation, by

bI = c1(m1/m)1/2ζt,1 + c2(m2/m)1/2ζt,2

ξK(c1m1 + c2m2)1/2
(7.11)

and

bII = c1(m1/m)1/2ζc,1 + c2(m1/m)1/2ζc,2

c1c2ξK(c1m1 + c2m2)1/2
, (7.12)

where ζt,α and ζc,α , for α = 1,2, are the species-dependent slip coefficients defined by Eqs. (6.33) and (6.41). Some
comments about Eqs. (7.11) and (7.12) can be made. First of all the factor ξK appears in Eqs. (7.11) and (7.12) in order
to take into account the different mean-free paths (and thus different temperature and/or concentration gradients) used
by the Kyoto group and here. The factor 1/(c1c2) appears in Eq. (7.12) because of the differing (here and in Ref. [22])
ways the driving term for the diffusion-slip problem is normalized. If we use

û∗(z) = û(z)/v0 (7.13)

to denote our reduced bulk velocity, and subscripts t and c to distinguish between thermal-creep and diffusion-slip
quantities, then Eqs. (7.11) and (7.12) can be expressed as

bI = û∗,t (∞)

1/2
(7.14)
ξK(c1m1 + c2m2)
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and

bII = û∗,c(∞)

c1c2ξK(c1m1 + c2m2)1/2
. (7.15)

We note that, while all of our slip coefficients and our reduced bulk velocity depend only on the ratios

n1

n2
,

m1

m2
,

d1

d2
,

the coefficients bI and bII depend also on the individual masses m1 and m2. We can report that we have used Eqs. (7.11)
and (7.12) to confirm (to within ±1 in the last digit shown) all of the (four-digit) entries listed in Tables III and IV of
Ref. [22].

In order to have independent checks on our velocity and heat-flow profiles, we have used our solutions to recompute
the Knudsen-layer functions tabulated in Refs. [21] and [22]. To be specific: in regard to Tables IV and V of Ref. [21],
we found a maximum difference of 1 unit in the last reported digit, with respect to Tables V and VI of Ref. [22]
we found maximum differences of 4 and 3 units, respectively, in the last reported digits, and for Tables IX and X
of Ref. [22] we found a maximum difference of 5 units in the last reported digit. We found that the Knudsen-layer
functions Uα(τK) and Hα(τK) of Refs. [21] and [22], where τK is the dimensionless spatial variable used (and
denoted as x1) in these works, can be computed from our solutions by

Uα(τK) = f α

J∑
j=2

AjUj,αe−ξKτK/νj (7.16a)

and

Hα(τK)/cα = f α

J∑
j=2

AjQj,αe−ξKτK/νj . (7.16b)

Here α = 1,2 (A,B in the notation of Refs. [21] and [22]), the problem-independent quantities {Uj,α} and {Qj,α} are
the components of the vectors {Uj } and {Qj } defined by Eqs. (6.5a) and (6.5c), and the coefficients {Aj } are found
for each problem by solving the linear system defined by Eq. (7.1) and the corresponding right-hand side vector, i.e.
Eq. (7.2a) or Eq. (7.2b) or Eq. (7.2c). Making use again of the subscripts p, t , and c to distinguish between problems,
we write the conversion factor f α used in Eqs. (7.16) as

f α
p =

(
m

mα

)1/2

ξ−1
K , (7.17a)

f α
t =

(
mα

m1

)1/2

ξ−1
K , (7.17b)

and

f α
c =

(
mα

m1

)1/2

(c1c2ξK)−1, (7.17c)

respectively for the viscous-slip, the thermal-creep, and the diffusion-slip problems.
We have also compared our numerical results with those based on the McCormack model and reported in Ref. [17]

for the viscous-slip and thermal-creep problems. For this purpose, we must first take note of the differing definitions
of the mean-free path used in this work and in Ref. [17]. Recalling that we use τ , as defined by Eqs. (2.30) and (2.31),
to denote our dimensionless spatial variable and using τM for that of Ref. [17], we find that the relationship between
these two quantities,

ξM = τ

τM

, (7.18)

can be computed from

ξM = c2[Υ1 + X
(4)
2,1] + c1[Υ2 + X

(4)
1,2]

Υ Υ − X
(4)

X
(4)

, (7.19)

1 2 1,2 2,1
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Table 10
A comparison: slip coefficients (relative to τM ) for the He–Xe mixture with α1 = 1.0 and α2 = 1.0

McCormack LBE

c1 ζp ζt,1 ζt,2 ζp ζt,1 ζt,2

0.0 1.018 4.423(−1) 5.874(−1) 1.003 5.380(−1) 5.171(−1)

0.1 1.057 4.546(−1) 6.049(−1) 1.043 5.450(−1) 5.168(−1)

0.2 1.099 4.682(−1) 6.256(−1) 1.087 5.523(−1) 5.170(−1)

0.3 1.145 4.836(−1) 6.507(−1) 1.135 5.601(−1) 5.180(−1)

0.4 1.197 5.011(−1) 6.820(−1) 1.187 5.685(−1) 5.209(−1)

0.5 1.253 5.215(−1) 7.226(−1) 1.245 5.777(−1) 5.273(−1)

0.6 1.313 5.458(−1) 7.776(−1) 1.306 5.878(−1) 5.402(−1)

0.7 1.375 5.755(−1) 8.563(−1) 1.368 5.994(−1) 5.654(−1)

0.8 1.424 6.127(−1) 9.764(−1) 1.417 6.122(−1) 6.148(−1)

0.9 1.413 6.546(−1) 1.168 1.404 6.203(−1) 7.104(−1)

1.0 1.018 5.874(−1) 1.286 1.003 5.171(−1) 7.751(−1)

Table 11
A comparison: velocity and heat-flow profiles for the viscous-slip problem (τ ⇒ τM ) for the He–Xe mixture with c1 = 0.3, α1 = 1.0, and α2 = 1.0

McCormack LBE

τ U1(τ ) U2(τ ) Q1(τ ) Q2(τ ) U1(τ ) U2(τ ) Q1(τ ) Q2(τ )

0.0 9.134(−1) 4.466 2.174(−1) 1.043 9.974(−1) 4.545 5.860(−2) 7.431(−1)

0.1 1.072 5.530 1.785(−1) 8.181(−1) 1.150 5.740 5.239(−2) 5.763(−1)

0.2 1.201 6.351 1.575(−1) 7.005(−1) 1.274 6.581 4.786(−2) 4.942(−1)

0.3 1.321 7.102 1.418(−1) 6.146(−1) 1.390 7.333 4.405(−2) 4.334(−1)

0.4 1.436 7.812 1.292(−1) 5.466(−1) 1.501 8.039 4.071(−2) 3.845(−1)

0.5 1.549 8.497 1.187(−1) 4.906(−1) 1.610 8.715 3.775(−2) 3.436(−1)

0.6 1.659 9.163 1.097(−1) 4.432(−1) 1.717 9.371 3.509(−2) 3.086(−1)

0.7 1.767 9.815 1.018(−1) 4.025(−1) 1.822 1.001(1) 3.268(−2) 2.782(−1)

0.8 1.874 1.046(1) 9.479(−2) 3.671(−1) 1.926 1.064(1) 3.049(−2) 2.516(−1)

0.9 1.980 1.109(1) 8.855(−2) 3.359(−1) 2.030 1.126(1) 2.848(−2) 2.281(−1)

1.0 2.086 1.171(1) 8.293(−2) 3.083(−1) 2.133 1.188(1) 2.663(−2) 2.071(−1)

2.0 3.117 1.774(1) 4.686(−2) 1.448(−1) 3.142 1.782(1) 1.424(−2) 8.423(−2)

where

Υ1 = X
(3)
1,1 + X

(3)
1,2 − X

(4)
1,1, (7.20a)

Υ2 = X
(3)
2,2 + X

(3)
2,1 − X

(4)
2,2, (7.20b)

X
(3)
α,β =

(
10

3
+ 2mβ

mα

)
Fα,β, (7.21a)

and

X
(4)
α,β = 4

3
Fα,β, (7.21b)

with

Fα,β = 2cβmα

5mβ

(
mβ

mα + mβ

)3/2(
c1m1 + c2m2

mα

)1/2( dα + dβ

c1d1 + c2d2

)2

. (7.22)

And so, to compare our results for the viscous-slip and thermal-slip coefficients with the equivalent results of
Ref. [17], we find that we must divide our results by the ξM factor defined by Eq. (7.19). Having done this conversion
for all of the Ne–Ar and He–Xe cases studied in Ref. [17], we found that the relative deviations of the McCormack
results for the viscous-slip coefficient with respect to our results are generally small and reach a maximum value of
1.5% for both the Ne–Ar and He–Xe mixtures. For the thermal-slip coefficients, the maximum deviations are much
larger: 24% for the Ne–Ar mixture and 66% for the He–Xe mixture. As an example of the kind of results we obtained,
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Table 12
A comparison: velocity and heat-flow profiles for the thermal-creep problem (τ ⇒ τM ) for the He–Xe mixture with c1 = 0.3, α1 = 1.0, and
α2 = 1.0

McCormack LBE

τ U1(τ ) U2(τ ) −Q1(τ ) −Q2(τ ) U1(τ ) U2(τ ) −Q1(τ ) −Q2(τ )

0.0 1.647(−1) 1.533(−1) 9.407(−1) 8.484(−1) 2.538(−1) 1.459(−1) 1.086 7.987(−1)

0.1 2.268(−1) 2.246(−1) 1.137 1.070 3.070(−1) 2.196(−1) 1.302 1.062
0.2 2.626(−1) 2.681(−1) 1.248 1.195 3.392(−1) 2.601(−1) 1.429 1.200
0.3 2.897(−1) 3.023(−1) 1.330 1.287 3.640(−1) 2.909(−1) 1.526 1.301
0.4 3.114(−1) 3.308(−1) 1.396 1.360 3.844(−1) 3.158(−1) 1.604 1.381
0.5 3.295(−1) 3.554(−1) 1.450 1.420 4.016(−1) 3.367(−1) 1.669 1.446
0.6 3.448(−1) 3.770(−1) 1.495 1.470 4.164(−1) 3.546(−1) 1.724 1.500
0.7 3.580(−1) 3.961(−1) 1.534 1.513 4.293(−1) 3.702(−1) 1.772 1.546
0.8 3.695(−1) 4.133(−1) 1.568 1.550 4.407(−1) 3.839(−1) 1.814 1.585
0.9 3.796(−1) 4.289(−1) 1.598 1.583 4.508(−1) 3.960(−1) 1.851 1.620
1.0 3.886(−1) 4.430(−1) 1.624 1.611 4.598(−1) 4.067(−1) 1.884 1.650
2.0 4.407(−1) 5.356(−1) 1.776 1.772 5.143(−1) 4.704(−1) 2.077 1.815

we report in Table 10 a comparison between the McCormack and LBE slip coefficients for various choices of the
relative He equilibrium concentration in the He–Xe mixture and complete accommodation for both species at the
half-space boundary. Finally, we believe it important to note that, while we have found reasonable agreement (relative
differences <10%) between the McCormack and LBE velocity profiles for the viscous-slip problem, we have also
found that the agreement between the heat-flow profiles for this problem is poor, with relative differences that usually
exceed 40% and can even be larger than 100% when the masses of the species are very different, as is the case of the
He–Xe mixture. With regard to the thermal-creep problem, we have found that the relative differences between the
McCormack and LBE profiles (for both the velocity and heat flow) vary, in general, from a few percent up to 40%.
These observations are illustrated in Tables 11 and 12 for a typical (but different from those of Ref. [17]) He–Xe case.

8. Concluding remarks

We have reported in this work what we believe to be concise and accurate solutions for the viscous-slip, the thermal-
creep, and the diffusion-slip problems, as described by the (vector) linearized Boltzmann equation for a binary mixture
of rigid spheres.

In addition to the comparisons with numerical results of other works for binary mixtures that are reported in
Section 7, we have also performed comparisons with the single-gas LBE results of Ref. [35], using three different
ways of achieving the single-gas limit in our formulation:

(i) c1 = 0, (ii) c2 = 0, or (iii) m1 = m2, d1 = d2, and α1 = α2.

We note that to convert our results to the same spatial units used in Ref. [35] we made use of the factors

ξS,p = 0.449027806 . . . and ξS,t = 0.679630049 . . . ,

which (for a single-species case) are the ratios between our dimensionless spatial variable, as defined by Eqs. (2.30)
and (2.31), and those of Ref. [35]. Doing this, we found good but not perfect agreement with the six-figure results for
the slip coefficients and the five-figure results for the velocity and heat-flow profiles that are tabulated in Ref. [35].
While we found at most a difference of one unit in the sixth digit listed for the slip coefficients, we did find a maximum
difference of 8 units in the fifth digit listed in Ref. [35] for the velocity and heat-flow profiles. We have confirmed that
the (very slight) loss of accuracy in Tables 1–5 of Ref. [35] was due to using L = 8 in those computations. To make
available our current results (based on L = 40), we list in Tables 13–17 improved versions of Tables 1–5 of Ref. [35].
To be clear, we note that in Ref. [35] the mean-free path for the viscous-slip problem was defined in terms of viscosity
(hence the conversion factor ξS,p was used), while for the thermal-creep problem a mean-free path based on thermal
conductivity (and the factor ξS,t ) was used. To be consistent, we have made use these same [35] definitions in our
Tables 13–17. We also note that the constant β defined by Eq. (6.51) of this work can be expressed, in the single-gas
limit, as
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Table 13
Single-species gas [35]: the slip coefficients

α ζP ζT

0.1 1.70478(1) 2.65765(−1)

0.2 8.17247 2.74450(−1)

0.3 5.20563 2.82899(−1)

0.4 3.71609 2.91124(−1)

0.5 2.81761 2.99133(−1)

0.6 2.21478 3.06938(−1)

0.7 1.78098 3.14546(−1)

0.8 1.45291 3.21968(−1)

0.9 1.19540 3.29210(−1)

1.0 9.87328(−1) 3.36280(−1)

Table 14
Single-species gas [35]: velocity profile uP(τ ) for Kramers’ problem

τ α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9 α = 1.0

0.0 1.6472(1) 4.7033 2.3851 1.4151 8.9297(−1) 7.1555(−1)

0.1 1.6771(1) 4.9753 2.6322 1.6386 1.0943 9.0630(−1)

0.2 1.6956(1) 5.1494 2.7960 1.7925 1.2389 1.0463
0.3 1.7111(1) 5.2981 2.9380 1.9281 1.3684 1.1729
0.4 1.7252(1) 5.4335 3.0685 2.0541 1.4899 1.2922
0.5 1.7383(1) 5.5606 3.1920 2.1740 1.6064 1.4071
0.6 1.7507(1) 5.6821 3.3105 2.2898 1.7195 1.5189
0.7 1.7627(1) 5.7994 3.4255 2.4025 1.8301 1.6284
0.8 1.7743(1) 5.9137 3.5379 2.5130 1.9388 1.7363
0.9 1.7857(1) 6.0255 3.6482 2.6218 2.0461 1.8429
1.0 1.7968(1) 6.1356 3.7568 2.7292 2.1523 1.9484
2.0 1.9023(1) 7.1839 4.7987 3.7649 3.1820 2.9752

Table 15
Single-species gas [35]: heat-flow profile qP(τ ) for Kramers’ problem

τ α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9 α = 1.0

0.0 2.3951(−1) 2.0553(−1) 1.7413(−1) 1.4506(−1) 1.1811(−1) 1.0537(−1)

0.1 1.9023(−1) 1.6449(−1) 1.4042(−1) 1.1786(−1) 9.6679(−2) 8.6566(−2)

0.2 1.6365(−1) 1.4191(−1) 1.2148(−1) 1.0225(−1) 8.4100(−2) 7.5405(−2)

0.3 1.4360(−1) 1.2475(−1) 1.0699(−1) 9.0208(−2) 7.4326(−2) 6.6698(−2)

0.4 1.2736(−1) 1.1079(−1) 9.5138(−2) 8.0319(−2) 6.6262(−2) 5.9498(−2)

0.5 1.1373(−1) 9.9038(−2) 8.5133(−2) 7.1945(−2) 5.9410(−2) 5.3371(−2)

0.6 1.0206(−1) 8.8950(−2) 7.6525(−2) 6.4722(−2) 5.3488(−2) 4.8069(−2)

0.7 9.1925(−2) 8.0175(−2) 6.9023(−2) 5.8416(−2) 4.8308(−2) 4.3428(−2)

0.8 8.3041(−2) 7.2470(−2) 6.2426(−2) 5.2863(−2) 4.3740(−2) 3.9332(−2)

0.9 7.5195(−2) 6.5656(−2) 5.6585(−2) 4.7940(−2) 3.9686(−2) 3.5695(−2)

1.0 6.8225(−2) 5.9597(−2) 5.1386(−2) 4.3554(−2) 3.6070(−2) 3.2449(−2)

2.0 2.7542(−2) 2.4123(−2) 2.0852(−2) 1.7718(−2) 1.4709(−2) 1.3248(−2)

β =
(

m2

m

)1/2

ξS,pξS,tβS, single-gas case, (8.1)

where

βS = 0.398935128 . . . (8.2)

was reported in Ref. [31].
Finally, we note that measurements of viscous-slip and thermal-slip coefficients for binary-gas mixtures have been

made available by Loyalka and co-workers [36,37].
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Table 16
Single-species gas [35]: velocity profile uT(τ ) for the thermal-creep problem

τ α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9 α = 1.0

0.0 2.3877(−1) 2.0478(−1) 1.7338(−1) 1.4433(−1) 1.1742(−1) 1.0471(−1)

0.1 2.4634(−1) 2.2627(−1) 2.0732(−1) 1.8939(−1) 1.7238(−1) 1.6421(−1)

0.2 2.5011(−1) 2.3715(−1) 2.2478(−1) 2.1296(−1) 2.0163(−1) 1.9614(−1)

0.3 2.5279(−1) 2.4491(−1) 2.3731(−1) 2.2996(−1) 2.2283(−1) 2.1935(−1)

0.4 2.5484(−1) 2.5089(−1) 2.4699(−1) 2.4312(−1) 2.3931(−1) 2.3741(−1)

0.5 2.5648(−1) 2.5567(−1) 2.5474(−1) 2.5369(−1) 2.5256(−1) 2.5196(−1)

0.6 2.5781(−1) 2.5957(−1) 2.6108(−1) 2.6236(−1) 2.6344(−1) 2.6391(−1)

0.7 2.5892(−1) 2.6282(−1) 2.6636(−1) 2.6957(−1) 2.7250(−1) 2.7387(−1)

0.8 2.5985(−1) 2.6554(−1) 2.7079(−1) 2.7564(−1) 2.8013(−1) 2.8225(−1)

0.9 2.6064(−1) 2.6784(−1) 2.7454(−1) 2.8078(−1) 2.8660(−1) 2.8937(−1)

1.0 2.6131(−1) 2.6981(−1) 2.7774(−1) 2.8516(−1) 2.9212(−1) 2.9544(−1)

2.0 2.6456(−1) 2.7935(−1) 2.9333(−1) 3.0657(−1) 3.1912(−1) 3.2516(−1)

Table 17
Single-species gas [35]: heat-flow profile −qT(τ ) for the thermal-creep problem

τ α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9 α = 1.0

0.0 1.1662 1.0071 8.5848(−1) 7.1948(−1) 5.8923(−1) 5.2716(−1)

0.1 1.1930 1.0838 9.8034(−1) 8.8227(−1) 7.8910(−1) 7.4423(−1)

0.2 1.2056 1.1202 1.0390 9.6162(−1) 8.8780(−1) 8.5212(−1)

0.3 1.2141 1.1450 1.0791 1.0162 9.5599(−1) 9.2682(−1)

0.4 1.2205 1.1635 1.1090 1.0569 1.0070 9.8276(−1)

0.5 1.2254 1.1778 1.1322 1.0886 1.0467 1.0264
0.6 1.2293 1.1891 1.1507 1.1139 1.0784 1.0612
0.7 1.2324 1.1984 1.1657 1.1344 1.1042 1.0896
0.8 1.2350 1.2059 1.1781 1.1513 1.1255 1.1129
0.9 1.2371 1.2122 1.1883 1.1653 1.1432 1.1324
1.0 1.2389 1.2175 1.1969 1.1771 1.1580 1.1487
2.0 1.2472 1.2418 1.2365 1.2315 1.2266 1.2242
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Appendix A. Macroscopic quantities for mixtures

In Appendix A of Ref. [27], we did a review of the way we followed Ferziger and Kaper [3] to define relevant
macroscopic quantities for each species and for a binary mixture, as they applied to the temperature-jump problem
where the temperature, density, velocity, and heat flow (in the transverse direction z) varied with z. Here, we continue
that work [27] and define the velocity and heat flow (as functions of z) in direction of the flow x. We also list here the
basic definition of the shear stress defined by the x and z directions.

A.1. Single-species quantities

For flow problems driven in the x direction that have variations along only the (transverse) spatial variable z, the
average velocity in the x direction uα(z) and the heat flux (also called heat flow) in the x direction qα(z) for a species
(with particle mass mα and equilibrium number density nα) are expressed as

uα(z) = vα,0Uα(z) (A.1a)

and

qα(z) = pα,0vα,0Qα(z), (A.1b)
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where pα,0 = nαkT0, vα,0 = (2kT0/mα)1/2,

Uα(z) = 1

π3/2

∫
e−c2

hα(z, c)c
(
1 − μ2)1/2 cosφ d3c (A.2a)

and

Qα(z) = 1

π3/2

∫
e−c2

hα(z, c)

(
c2 − 5

2

)
c
(
1 − μ2)1/2 cosφ d3c. (A.2b)

Since we are reporting shear-stress profiles in this work, we also consider

p
(α)
ab (x, z) = mα

∫
fα,0(v)

[
1 + fα(v)x + hα

(
z,λ1/2

α v
)]

wawb d3v, (A.3)

where a and b can be x, y or z, wx = vx − uα(z), wy = vy and wz = vz. Note that while fα(v) is given by Eqs. (6.22)
and (6.23) for the thermal-creep and diffusion-slip problems, the term fα(v)x should not, for our formulation of the
viscous-slip problem, be included in Eq. (A.3). Some elementary work leads to

p
(α)
ab (x, z) = pα,0

{
P

(α)
ab (z) + δa,b

[
1 + (KT + Rα)x

]}
, a, b = x, y, z, (A.4)

where the x-dependent part of Eq. (A.4) is to be ignored for the viscous-slip problem, and where

P
(α)
ab (z) = 2

π3/2

∫
e−c2

hα(z, c)cacb d3c. (A.5)

We can use Eq. (2.32) in Eq. (A.5) to show, for the considered problems of viscous slip, thermal creep, and diffusion
slip that

P
(α)
ab (z) = 0, ab �= xz. (A.6)

In this work, we are concerned with the shear stress (defined by the x and z directions) which we write as

p(α)
xz (z) = pα,0Pα(z), (A.7)

where

Pα(z) = 2

π3/2

∫
e−c2

hα(z, c)c2μ
(
1 − μ2)1/2 cosφ d3c. (A.8)

A.2. Mixture quantities

In Ref. [27] we listed (for mixtures) expressions, as defined by Ferziger and Kaper [3], for the number density n(z),
the mass density ρ(z), the average velocity u(z), the bulk velocity û(z), the temperature t (z) and the heat flux q(z),
as they applied to the temperature-jump problem. Continuing, we follow similar logic and list the definitions relevant
here for the considered flow problems, viz.

u(z) = v0

[
c1

(
m

m1

)1/2

U1(z) + c2

(
m

m2

)1/2

U2(z)

]
, (A.9a)

û(z) = v0

[
c1

(
m1

m

)1/2

U1(z) + c2

(
m2

m

)1/2

U2(z)

]
, (A.9b)

q(z) = p0v0

[
c1

(
m

m1

)1/2

Q1(z) + c2

(
m

m2

)1/2

Q2(z)

]
, (A.9c)

and (the x–z component of the shear stress)

p(z) = p0
[
c1P1(z) + c2P2(z)

]
, (A.9d)

where p0 = nkT0, v0 = (2kT0/m)1/2, m = c1m1 + c2m2, and cα = nα/(n1 + n2), α = 1,2.
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