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An analytical version of the discrete-ordinates method is used to develop a concise and particularly
accurate solution of the heat-transfer problem for a binary gas mixture confined between two
parallel plates. The formulation of the problem allows general �specular-diffuse� Maxwell boundary
conditions for each of the two types of particles and is based on a form of the linearized Boltzmann
equation that incorporates recently established analytical expressions for the relevant rigid-sphere
kernels. Numerical results are reported for the density, the temperature, and the heat-flow profiles
relative to each species in Ne-Ar and He-Xe mixtures. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2511039�

I. INTRODUCTION

The heat-transfer problem within the context of rarefied
gas dynamics has been studied in terms of linear theory for a
single-species gas based on the Bhatnagar-Gross-Krook
�BGK� model �see, for example, the work by Thomas,
Chang, and Siewert1 and the references quoted therein�. The
problem has also been solved in terms of the linearized
Boltzmann equation �LBE� for rigid-sphere interactions.2,3

Recently, single-species studies of heat transfer between par-
allel plates have been extended to the case of binary mixtures
of rigid spheres and the nonlinear Boltzmann equation.4 Our
own work5 reports an essentially analytical solution of the
heat-transfer problem as described by the McCormack ki-
netic model.6 We do not discuss here many relevant works
on this subject, but we refer instead to the books of
Cercignani,7,8 Williams,9 and Ferziger and Kaper,10 as well
as review papers by Sharipov and Seleznev11 and Williams,12

for general background material.

II. A FORMULATION OF THE PROBLEM
IN TERMS OF THE LINEARIZED
BOLTZMANN EQUATION

We consider that a binary gas mixture is confined be-
tween two parallel plates that are kept at different tempera-
tures. The two plates or walls reflect the gas particles both
diffusely and specularly. The problem is thus to find the den-
sity profiles, the temperature profiles, and the heat-transfer
profiles relevant to each of the two species of gas particles
that are assumed to interact as rigid spheres. The particle
velocity distributions are governed by the linearized Boltz-
mann equation.

Before starting our work that is specific to the heat-
transfer problem, we briefly review our analytical formula-
tion of the linearized Boltzmann equation for a binary mix-
ture of rigid spheres. This formulation was started in Ref. 13
and was further developed in Refs. 14–17. In order to avoid
too much duplication of previously reported aspects of our

work, we consider that Refs. 13–17 can be consulted for
some mathematical expressions that are not given in this
work. To start, we write the coupled linearized Boltzmann
equation �for variations only in the z direction� for the con-
sidered binary mixture as

c�
�

�z
H�z,c� + �0V�c�H�z,c�

= �0� e−c�2K�c�:c�H�z,c��d3c�, �1�

where

H�z,c� = �h1�z,c�
h2�z,c� � . �2�

At this point, �0 is an arbitrary parameter that we �soon� will
use to define a dimensionless spatial variable. Since Eq. �1�
is written in terms of a dimensionless velocity variable c, we
note that the basic velocity distribution functions �for each of
the two species of particles� are available from

f��z,v� = f�,0�v��1 + h��z,��
1/2v��, � = 1,2, �3�

where ��=m� / �2kT0�, and where

f�,0�v� = n���� /��3/2e−��v2
�4�

is the Maxwellian distribution for n� particles of mass m� in
equilibrium at temperature T0. Here, k is the Boltzmann con-
stant. Continuing, we note that we use spherical coordinates
�c ,� ,�	, with �=cos �, to describe the dimensionless veloc-
ity vector, so that

H�z,c� ⇔ H�z,c,�,�� .

The basic elements of Eq. �1�, viz., V�c� and the scattering
kernel K�c� :c�, are defined explicitly by Eqs. �23�, �24�,
�64�, and �65� of Ref. 15 in terms of �a� the ratio of the two
particle masses m1 /m2, �b� the ratio of the two particle di-
ameters d1 /d2, and �c� the ratio of particle densities n1 /n2.
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In this work, we seek a solution of Eq. �1� that is valid
for all z� �−z0 ,z0� and that satisfies Maxwell boundary con-
ditions at the walls. If we denote the temperatures of the
walls located at z=−z0 and z=z0 by Tw1 and Tw2, respec-
tively, we can follow a recent review paper by Williams12

and linearize the boundary conditions about T0 to express the
relevant boundary conditions as

H�− z0,c,�,�� − �I − ��H�− z0,c,− �,�� − �I−�H	�− z0�

= �c2 − 2����1

�2
� �5a�

and

H�z0,c,− �,�� − �I − ��H�z0,c,�,�� − �I+�H	�z0�

= �2 − c2���	1

	2
� , �5b�

for �� �0,1�, all c, and all �. Here we have chosen T0 to be
the average of Tw1 and Tw2, and so we have written

Tw1 = T0�1 + �� �6a�

and

Tw2 = T0�1 − �� , �6b�

where � is the parameter we use to specify the deviations of
the wall temperatures relative to the reference temperature
T0. In writing Eqs. �5�, we have used

� = diag��1,�2	 �7a�

and

� = diag�	1,	2	 �7b�

to compact our notation for the accommodation coefficients
�1 ,�2 �for the wall located at z=−z0� and 	1 ,	2 �for the wall
located at z=z0�. In addition,

I
�H	�z� =
2

�
�

0

� �
0

1 �
0

2�

e−c�2
H�z,c�, 
 ��,���

���c�3d��d��dc� �8�

is used to denote the diffuse terms in Eqs. �5�.
In this work, we intend to compute, for z� �−z0 ,z0�, the

density, the temperature, and the heat-flow perturbations �see
Appendix A of Ref. 16 for definitions of these and other
macroscopic quantities of interest�, i.e.,

N�z� =
1

�3/2 � e−c2
H�z,c�d3c , �9a�

T�z� =
2

3�3/2 � e−c2
H�z,c��c2 − 3/2�d3c , �9b�

and

Q�z� =
1

�3/2 � e−c2
H�z,c��c2 − 5/2�c�d3c . �9c�

Now, taking note of the Legendre expansion of K�c� :c� that
was reported in Ref. 15 and the boundary conditions listed as
Eqs. �5�, we find that here an expansion of H�z ,c� in a Fou-

rier series of the azimuthal angle � requires only the first
term, and so, making use of the dimensionless spatial
variable15

 = z�0, �10�

with

�0 = �n1 + n2��1/2
n1d1 + n2d2

n1 + n2
�2

, �11�

we introduce

��,c,�� = H�/�0,c� , �12�

so that Eqs. �9� can be written as

N�� =
2

�1/2�
0

� �
−1

1

e−c2
��,c,��c2d�dc , �13a�

T�� =
4

3�1/2�
0

� �
−1

1

e−c2
��,c,���c2 − 3/2�c2d�dc

�13b�

and

Q�� =
2

�1/2�
0

� �
−1

1

e−c2
��,c,���c2 − 5/2�c3�d�dc .

�13c�

It should be noted that to avoid excessive notation in writing
Eqs. �13�, we have followed the �common, but dubious� pro-
cedure of not always introducing new labels for dependent
quantities �in this case N, T, and Q� when the independent
variable is changed.

We can now use Eq. �12� in Eqs. �1� and �5� to deduce
that �� ,c ,�� is to be determined from the balance equation

c�
�

�
��,c,�� + V�c���,c,��

= �
0

� �
−1

1

e−c�2K�c�,��:c,����,c�,���c�2d��dc�

�14�

and the boundary conditions

��− a,c,�� − �I − ����− a,c,− ��

− 4��
0

� �
0

1

e−c�2
��− a,c�,− ���c�3��d��dc�

= �c2 − 2����1

�2
� �15a�

and

��a,c,− �� − �I − ����a,c,��

− 4��
0

� �
0

1

e−c�2
��a,c�,���c�3��d��dc�

= �2 − c2���	1

	2
� , �15b�
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for �� �0,1� and all c, and where a=z0�0. In writing
Eq. �14�, we have used

K�c�,��:c,�� = �
0

2�

K�c�:c�d��, �16�

which is expressed, as in Ref. 15, in the form

K�c�,��:c,�� = �1/2��
n=0

�

�2n + 1�Pn����Pn���Kn�c�,c� ,

�17�

where Pn��� denotes the nth order Legendre polynomial and
Kn�c� ,c� is defined by Eqs. �73� and �74� of Ref. 15. We
note that, for computational purposes, we use a truncated
version �say, at n=L� of the expansion in Eq. �17�.

III. THE COMPLETE SPEED-DEPENDENT
ADO SOLUTION

In Ref. 16, a work devoted to the temperature-jump
problem, we used the analytical discrete-ordinates �ADO�
method,18 supplemented with exact asymptotic solutions, and
an expansion in terms of Legendre polynomials written in
the form

��,c,�� = �
k=0

K

�k�c�Gk�,�� , �18�

with �for use in the computational work�

�k�c� = Pk�2e−c − 1� , �19�

to express a general solution of a discrete-ordinates version
of Eq. �14�, evaluated at �±�i	, as

��,c, ± �i� = �*�,c, ± �i�

+ P�c��
j=4

J

�Aj��� j, ± �i�e−�a+�/�j

+ Bj��� j, 
 �i�e−�a−�/�j� �20�

for i=1,2 , . . . ,N and J=2N�K+1�. Here, we use ��i	 to de-
note the collection of N quadrature points,

P�c� = �P0�2e−c − 1�I P1�2e−c − 1�I ¯ PK�2e−c − 1�I� ,

�21�

I is the 2�2 identity matrix, and �*� ,c ,�� is as defined in
terms of the elementary solutions we reported in Ref. 15,
viz.,

�*�,c,�� = A1H1 + A2H2 + A3H3�c� + B1H4�c,��

+ B2� �1�c� − �A�1��c��

+ B3� �2�c� − �A�2��c�� , �22�

where

H1 = �1

0
� , �23a�

H2 = �0

1
� , �23b�

H3�c� = c2�1

1
� , �23c�

and

H4�c,�� = c�� 1

�m2/m1�1/2� . �23d�

In addition,

�1�c� = �c1�c2 − 5/2� − c2

c1�c2 − 3/2� � �24a�

and

�2�c� = � c2�c2 − 3/2�
c2�c2 − 5/2� − c1

� , �24b�

where

c� = n� /�n1 + n2�, � = 1,2, �25�

and the A����c�, �=1,2, are two generalized Chapman-
Enskog �vector-valued� functions �also defined in Ref. 15�.
While in Eqs. �20� and �22� Aj and Bj, for j=1,2 , . . . ,J, are
arbitrary constants that are to be determined �from the
boundary conditions�, the elementary solutions ��� j , ±�i�,
the separation constants � j, and other elements of the solu-
tion are all defined in Refs. 15 and 16. Postponing briefly a
description of the way we find the arbitrary constants in
Eqs. �20� and �22�, we use those equations in discrete-
ordinates versions of Eqs. �13� to find

N�� = N*�� + �
j=4

J

�Aje
−�a+�/�j + Bje

−�a−�/�j�N j , �26a�

T�� = T*�� + �
j=4

J

�Aje
−�a+�/�j + Bje

−�a−�/�j�T j , �26b�

and

Q�� = Q* + �
j=4

J

�Aje
−�a+�/�j − Bje

−�a−�/�j�Q j , �26c�

where

N*�� = �A1 + �3/2�A3 − B2

A2 + �3/2�A3 − B3
� , �27a�

T*�� = �A3 + �c1B2 + c2B3�
A3 + �c1B2 + c2B3� � , �27b�

and

Q* = −
4

3�1/2�
0

�

e−c2
�B2 A�1��c� + B3 A�2��c���c2 − 5/2�c3dc .

�27c�

We note that to complete Eqs. �26� and �27�, we must find
the constants �Aj ,Bj	 and then use the definitions of the vec-
tors N j, T j, and Q j that are given in Ref. 16.
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To find the required constants �Aj ,Bj	, we substitute
Eq. �20� into discrete-ordinates versions of Eqs. �15�, multi-
ply the resulting equations by

c2 exp�− c2	PT�c� ,

where the superscript T is used to denote the transpose op-
eration, and integrate over all c to define a system of 2J
linear algebraic equations for the 2J unspecified constants.
However, there is an issue of importance. Since solutions H1

and H2 each satisfy homogeneous versions of Eqs. �15�, the
constants A1 and A2 cannot be determined from the estab-
lished linear system. It follows that the boundary conditions
listed as Eqs. �15� are not sufficient to define a unique solu-
tion to the considered heat-transfer problem. We follow our
previous papers3,5,19 and impose the additional �vector�
condition

�
−a

a

N��d = 0 . �28�

And so we solve the constructed 2J+2 system of linear equa-
tions �of rank 2J� to find the 2J constants �Aj ,Bj	 needed to
complete our solution for N��, T��, and Q�� as listed in
Eqs. �26� and �27�.

IV. NUMERICAL RESULTS

In order to demonstrate that our ADO solution for the
considered heat-transfer problem can yield accurate results
with a relatively modest computational effort, we report de-
tailed numerical results for two test cases. As in the related
work5 that is based on the McCormack model, the test cases
are defined for a Ne-Ar mixture in the first case and for a
He-Xe mixture in the second case. We note that only the
mass ratio m1 /m2, the diameter ratio d1 /d2, and the density
ratio n1 /n2 are needed to define the LBE for rigid-sphere
interactions, and so we use the basic data,

m2 = 39.948, m1 = 20.183, d2/d1 = 1.406, n1/n2 = 2/3

for the Ne-Ar mixture, and

m2 = 131.30, m1 = 4.0026, d2/d1 = 2.226, n1/n2 = 2/3

for the He-Xe mixture. It should be noted that the values of
the masses used here are taken from Ref. 20, while the di-
ameter ratios are those reported by Sharipov and Kalempa.21

As we wish to compare our results found here with our pre-
vious work5 that was based on the McCormack model, we
find it convenient to define our half-width a in terms of the
half-width aM =1.5 that was used in Ref. 5. In Ref. 16, we
expressed the relationship between the dimensionless spatial
variable M used in our work5 with the McCormack model
and , the dimensionless spatial variable used in this work, as

�M = /M , �29�

where �M can be computed from

�M =
c2��1 + X2,1

�4�� + c1��2 + X1,2
�4��

�1�2 − X1,2
�4�X2,1

�4� , �30�

where

�1 = X1,1
�3� + X1,2

�3� − X1,1
�4� , �31�

�2 = X2,2
�3� + X2,1

�3� − X2,2
�4� , �32�

X�,	
�3� = 
10

3
+

2m	

m�
�F�,	, �33�

and

X�,	
�4� = 4

3F�,	, �34�

with

F�,	 =
2c	m�

5m	

 m	

m� + m	
�3/2
 c1m1 + c2m2

m�
�1/2

�
 d� + d	

c1d1 + c2d2
�2

. �35�

And so, for Tables I and II, we use the half-width
a=1.5�M. It can be observed that by tabulating the tempera-

TABLE I. The density, temperature, and heat-flow profiles for the Ne-Ar mixture: �1=0.2, �2=0.4, 	1=0.6,
	2=0.8, n1 /n2=2/3, �=1, aM =1.5⇒a=0.644 978 249. . ..

� N1�−a+2�a� N2�−a+2�a� −T1�−a+2�a� −T2�−a+2�a� Q1�−a+2�a� Q2�−a+2�a�

0.0 −1.6801�−1� −3.6136�−1� 1.7754�−1� −5.4437�−3� 1.5790�−1� 3.0481�−1�
0.1 −1.2351�−1� −2.3950�−1� 2.3943�−1� 1.3845�−1� 1.7993�−1� 2.8414�−1�
0.2 −9.1550�−2� −1.6723�−1� 2.8324�−1� 2.1561�−1� 1.9411�−1� 2.7085�−1�
0.3 −6.1223�−2� −1.0555�−1� 3.2422�−1� 2.7809�−1� 2.0384�−1� 2.6172�−1�
0.4 −3.1289�−2� −4.8759�−2� 3.6424�−1� 3.3382�−1� 2.1044�−1� 2.5553�−1�
0.5 −1.3257�−3� 5.5732�−3� 4.0403�−1� 3.8625�−1� 2.1460�−1� 2.5163�−1�
0.6 2.8918�−2� 5.8953�−2� 4.4409�−1� 4.3747�−1� 2.1668�−1� 2.4968�−1�
0.7 5.9720�−2� 1.1270�−1� 4.8493�−1� 4.8935�−1� 2.1681�−1� 2.4956�−1�
0.8 9.1603�−2� 1.6851�−1� 5.2743�−1� 5.4426�−1� 2.1490�−1� 2.5135�−1�
0.9 1.2599�−1� 2.2995�−1� 5.7376�−1� 6.0713�−1� 2.1052�−1� 2.5545�−1�
1.0 1.7374�−1� 3.2019�−1� 6.3923�−1� 7.0843�−1� 2.0237�−1� 2.6310�−1�
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ture and density profiles in fractions of the half-width, we are
able to compare our results directly with the results5 of the
McCormack model once the expression

a = aM�M �36�

is used to relate the two relevant half-widths. We believe that
the results in Tables I and II are good to plus/minus one digit
in the last place listed. In comparing our results with the
results of Tables I and II of Ref. 5, we found that the largest
differences displayed by the McCormack-model results with
respect to the LBE results occur for the density profiles: up
to 15% for Table I and 51% for Table II, without taking into
account the difference in N1�0�. With regard to the tempera-
ture profiles, the maximum differences, without taking into
account the differences in T1�−a� and T2�−a�, are 12% for
Table I and 20% for Table II, while for the heat-flow profiles
the maximum differences are �4% for both Tables I and II.

To have an additional comparison of our numerical re-
sults, we have also used our code to compute the normalized
heat flow reported by Kosuge, Aoki, and Takata4 for the
problem of a binary mixture of rigid-sphere gases confined
between two diffusely reflecting parallel plates with different
temperatures. These authors employed an iterative finite-
difference technique to solve the two coupled nonlinear

Boltzmann equations that describe the problem and reported
numerical results in tabular form for a normalized heat flow
defined as

q1
* = �2p0�2kTw1/m1�1/2�−1

��
−�

� �
−�

� �
−�

�

�m1 f1�x,v� + m2 f2�x,v��v2vxdvxdvydvz,

�37�

where, except for the pressure p0=k�n1+n2�Tw1, all symbols
have been defined in our work. We have found that q1

* can be
expressed in terms of the constant

q0 = �c1 c2�m1/m2�1/2 �Q�� , �38�

where Q�� is given by Eq. �26c�, in the following way:

q1
* = �1 + ��−3/2q0, �39�

and so we report in Table III our numerical results for q1
*,

along with those based on the nonlinear Boltzmann equation
�NLBE� for rigid-sphere interactions reported by Kosuge,
Aoki, and Takata4 and those listed in Ref. 5 for the McCor-
mack model. Since our mean free path is defined in a way

TABLE II. The density, temperature, and heat-flow profiles for the He-Xe mixture: �1=0.2, �2=0.4, 	1=0.6,
	2=0.8, n1 /n2=2/3, �=1, aM =1.5⇒a=0.530 099 262. . ..

� N1�−a+2�a� N2�−a+2�a� −T1�−a+2�a� −T2�−a+2�a� Q1�−a+2�a� Q2�−a+2�a�

0.0 −1.0728�−1� −3.7765�−1� 2.9276�−1� 6.7202�−3� 1.6823�−1� 3.1227�−1�
0.1 −7.7050�−2� −2.4863�−1� 3.4526�−1� 1.5038�−1� 1.7123�−1� 3.0083�−1�
0.2 −5.5818�−2� −1.7442�−1� 3.8228�−1� 2.2641�−1� 1.7353�−1� 2.9207�−1�
0.3 −3.6531�−2� −1.1021�−1� 4.1587�−1� 2.8897�−1� 1.7538�−1� 2.8499�−1�
0.4 −1.8049�−2� −5.0652�−2� 4.4801�−1� 3.4517�−1� 1.7688�−1� 2.7925�−1�
0.5 1.2253�−4� 6.4315�−3� 4.7958�−1� 3.9803�−1� 1.7809�−1� 2.7465�−1�
0.6 1.8299�−2� 6.2356�−2� 5.1115�−1� 4.4940�−1� 1.7902�−1� 2.7111�−1�
0.7 3.6780�−2� 1.1826�−1� 5.4325�−1� 5.0088�−1� 1.7968�−1� 2.6856�−1�
0.8 5.5995�−2� 1.7564�−1� 5.7666�−1� 5.5454�−1� 1.8009�−1� 2.6702�−1�
0.9 7.6891�−2� 2.3772�−1� 6.1303�−1� 6.1463�−1� 1.8020�−1� 2.6659�−1�
1.0 1.0511�−1� 3.2931�−1� 6.6202�−1� 7.1084�−1� 1.7991�−1� 2.6768�−1�

TABLE III. Comparison results for a normalized heat flux �−q1
*�: �1=1.0, �2=1.0, 	1=1.0, 	2=1.0, �=−1/3.

m1 /m2=2 and d1 /d2=1 m1 /m2=4 and d1 /d2=2

n1 /n2 Kn NLBEa McCormack modelb This work NLBEa McCormack modelb This work

1.0�1� 1.0�−1� 0.184 0.181 0.187 0.207 0.202 0.210

1.0�1� 1.0 0.509 0.519 0.529 0.547 0.557 0.568

1.0�1� 1.0�1� 0.656 0.683 0.684 0.693 0.721 0.723

1.0 1.0�−1� 0.209 0.205 0.212 0.370 0.358 0.376

1.0 1.0 0.589 0.599 0.610 0.814 0.830 0.846

1.0 1.0�1� 0.763 0.794 0.795 0.966 1.006 1.008

1.0�−1� 1.0�−1� 0.245 0.241 0.249 0.659 0.653 0.677

1.0�−1� 1.0 0.677 0.689 0.702 1.124 1.159 1.170

1.0�−1� 1.0�1� 0.871 0.906 0.908 1.244 1.298 1.299

aReference 4.
bReference 5.
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different from that of Kosuge, Aoki, and Takata,4 the equiva-
lent half-width in our formulation is computed from

a = �c1 + c2d2/d1�2/�2�2��1/2Kn� , �40�

where Kn is the Knudsen number used by Kosuge, Aoki, and
Takata.4 We note also that to compute our entries in Table III,
we have put all our accommodation coefficients equal to
unity, and we have used �=−1/3. As the approach based on
the LBE is good only for small deviations from the equilib-
rium state, it is anticipated that better agreement between the
NLBE and the LBE results would be observed for absolute
values of � smaller than 1/3.

In our two recent works16,17 concerning the temperature-
jump problem and three half-space flow problems �viscous
slip, thermal creep, and diffusion slip�, we reported detailed
descriptions of computational aspects related to implementa-
tions of our solutions. To be brief, we do not repeat this type
of discussion here, especially since no new numerical com-
plications were encountered in this work.

V. CONCLUDING REMARKS

We have reported in this work what we believe to be a
concise, accurate, and essentially analytical solution for the
problem of heat transfer between two parallel plates, as de-
scribed by the �vector� linearized Boltzmann equation for a
binary mixture of rigid spheres.

In addition to the comparisons with numerical results of
other works for binary mixtures that are reported in Sec. IV,
we have also performed a comparison with the single-gas
results of Ref. 3, using three different ways of achieving the
single-gas limit in our formulation,

�i� c1 = 0, �ii� c2 = 0,

or

�iii� m1 = m2, d1 = d2, �1 = �2, and 	1 = 	2.

Since the mean free path used in this work and that used in
Ref. 3 are different, we have used

a = aS�S,t, �41�

where

�S,t = 0.679 630 049. . . �42�

and where aS is the half-width used in Ref. 3, to compute the
half-width in our current notation. While we found at most a
difference of 14 units �for one small entry� in the last two of
the five digits listed for the temperature and density profiles
in Tables 1 and 2 of Ref. 3, we found only a maximum
difference of 3 units in the sixth digit listed in Table 3 of
Ref. 3. We have confirmed that the �very slight� loss of ac-
curacy in Tables 1–3 of Ref. 3 was due to using L=8 in those
computations. To make available our current results �based
on L=100�, we list in Tables IV and V improved versions of
Tables 1–3 of Ref. 3. It can be noted that Table 1 of Ref. 3 is
based on aS=1 and accommodation coefficients �0.7,0.3	,
while Table 2 of Ref. 3 is based on aS=2.5 and accommoda-
tion coefficients �1.0,0.5	. The definition of the normalized

TABLE IV. Refined �LBE� results for the single-gas cases listed in Tables 1
and 2 of Ref. 3.

T�−a+2�a� N�−a+2�a�

� Table 1 Table 2 Table 1 Table 2

0.0 6.7605�−1� 8.2332�−1� −2.5367�−1� −5.6833�−1�
0.1 5.9100�−1� 6.6684�−1� −1.8265�−1� −4.2825�−1�
0.2 5.3593�−1� 5.5223�−1� −1.3342�−1� −3.1770�−1�
0.3 4.8692�−1� 4.4421�−1� −8.8300�−2� −2.1140�−1�
0.4 4.4033�−1� 3.3853�−1� −4.4787�−2� −1.0661�−1�
0.5 3.9450�−1� 2.3353�−1� −1.7755�−3� −2.2547�−3�
0.6 3.4824�−1� 1.2816�−1� 4.1504�−2� 1.0237�−1�
0.7 3.0025�−1� 2.1165�−2� 8.5893�−2� 2.0807�−1�
0.8 2.4843�−1� −8.9846�−2� 1.3278�−1� 3.1637�−1�
0.9 1.8785�−1� −2.1157�−1� 1.8556�−1� 4.3158�−1�
1.0 8.4286�−2� −4.0266�−1� 2.6931�−1� 5.9527�−1�

TABLE V. Refined results �normalized heat flux q� for the single-gas cases listed in Table 3 of Ref. 3.

�1 �2 a=0.1 a=0.5 a=1.0 a=1.5 a=2.0 a=2.5

0.7 0.1 9.85340�−1� 9.44283�−1� 9.04245�−1� 8.69276�−1� 8.37449�−1� 8.08047�−1�
0.7 0.3 9.61125�−1� 8.61659�−1� 7.75503�−1� 7.08002�−1� 6.52111�−1� 6.04642�−1�
0.7 0.5 9.42050�−1� 8.03656�−1� 6.93254�−1� 6.12618�−1� 5.49560�−1� 4.98494�−1�
0.7 0.7 9.26733�−1� 7.60978�−1� 6.36429�−1� 5.49802�−1� 4.84615�−1� 4.33436�−1�
0.7 0.9 9.14237�−1� 7.28470�−1� 5.95003�−1� 5.05448�−1� 4.39903�−1� 3.89560�−1�
0.7 1.0 9.08834�−1� 7.15014�−1� 5.78283�−1� 4.87862�−1� 4.22420�−1� 3.72597�−1�
0.9 0.1 9.85020�−1� 9.43316�−1� 9.02501�−1� 8.66748�−1� 8.34195�−1� 8.04152�−1�
0.9 0.3 9.58141�−1� 8.52559�−1� 7.61853�−1� 6.91377�−1� 6.33547�−1� 5.84854�−1�
0.9 0.5 9.34747�−1� 7.83174�−1� 6.65323�−1� 5.81139�−1� 5.16540�−1� 4.65054�−1�
0.9 0.7 9.14237�−1� 7.28470�−1� 5.95003�−1� 5.05448�−1� 4.39903�−1� 3.89560�−1�
0.9 0.9 8.96137�−1� 6.84284�−1� 5.41522�−1� 4.50277�−1� 3.85821�−1� 3.37631�−1�
0.9 1.0 8.87872�−1� 6.65246�−1� 5.19319�−1� 4.27947�−1� 3.64341�−1� 3.17305�−1�
1.0 1.0 8.78056�−1� 6.43427�−1� 4.94555�−1� 4.03496�−1� 3.41131�−1� 2.95558�−1�

027102-6 R. D. M. Garcia and C. E. Siewert Phys. Fluids 19, 027102 �2007�

Downloaded 08 Mar 2007 to 152.1.79.103. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



heat flux q reported in Table V is given in Ref. 3, and finally
it should be noted that Table V is defined in terms of the
notation of Ref. 3, i.e., a⇒aS, and the relevant accommoda-
tion coefficients are ��1 ,�2	.
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